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We analyze the validity of the adiabatic approximation, and in particular the reliability of what has been
called the “standard criterion” for validity of this approximation. Recently, this criterion has been found to be
insufficient. We will argue that the criterion is sufficient only when it agrees with the intuitive notion of
slowness of evolution of the Hamiltonian. However, it can be insufficient in cases where the Hamiltonian
varies rapidly but only by a small amount. We also emphasize the distinction between the adiabatic theorem
and the adiabatic approximation, two quite different, although closely related, ideas.
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The adiabatic theorem in quantum mechanics was devel-
oped when quantum mechanics was still in its infancy �1�,
and is a useful tool for analyzing problems where the Hamil-
tonian evolves slowly in time. It has come under some scru-
tiny recently, largely, we believe, due to a misunderstanding
as to exactly what the theorem states, with many authors
weighing in on both sides of the issue �2–12�.

We will attempt to identify this misunderstanding, and
will make a distinction between the adiabatic theorem, which
is no more and no less than a mathematical theorem which
can be �and has been� rigorously proven and which is beyond
dispute, and the adiabatic approximation, which is a state-
ment about the conditions under which a system governed by
a time-dependent Hamiltonian will to a good approximation
have an evolution that is adiabatic. These issues will be clari-
fied through an analysis of a concrete illustration of the in-
adequacy of what has been labeled �erroneously, we feel� the
“standard” criterion for the validity of the adiabatic approxi-
mation.

Roughly speaking, the adiabatic theorem states that a sys-
tem whose dynamics is governed by a time-dependent
Hamiltonian will, in the limit of infinitely slow evolution of
the Hamiltonian, remain in the state that evolves from the
initial state. More precisely, suppose that the Hamiltonian
can be written

H�t� = EĤ�t/�� , �1�

where Ĥ�s� is a dimensionless Hermitian operator depending
smoothly on a dimensionless variable s and E is a positive
constant with dimension of energy. E and � represent the
energy scale and time scale of evolution of the Hamiltonian,
respectively. We are interested in arriving at a given final
Hamiltonian via slow evolution; mathematically, we wish to
consider � large with s= t /� fixed. It is therefore useful to
write the Schrödinger equation in terms of s rather than t;
defining �= �E��−1, we have

i�
d

ds
���s�� = Ĥ�s����s�� . �2�

We define instantaneous eigenstates and energies as the so-
lutions of a family of time-independent Schrödinger equa-

tions parametrized by s, Ĥ�s� �n�s��= Ên�s� �n�s��, and choose
the phases of the states so that �n�s� � ṅ�s��=0. Suppose that
the system is initially in the state �0�0�� �not necessarily the

ground state� and that the gap between Ê0�s� and the other
energy eigenvalues is bounded from below by unity. The
adiabatic theorem states that, as �→0, the solution to the
time-dependent Schrödinger equation approaches

��ad�s�� = exp�− �i/��	
0

s

Ê0�s��ds�
�0�s�� , �3�

within an error of order �.
Closely related to, but independent of, the adiabatic theo-

rem is the following question: under what circumstances will
a physical system governed by a time-dependent Hamil-
tonian and initially in an instantaneous eigenstate of the ini-
tial Hamiltonian evolve adiabatically, that is to say, when
will the exact solution of the Schrödinger equation satisfy the
adiabatic approximation ���t�����ad�t��? One answer is if
the conditions of the adiabatic theorem are satisfied. Yet cir-
cumstances other than these might also lead to adiabatic evo-
lution, and it is obviously useful �and surprisingly nontrivial�
to clarify such circumstances.

Let us return to the case of a Hamiltonian of the form
given in �1�. A perturbative calculation of ���t�� can be given
that is useful in adiabatic problems; an early classic reference
is �13�. In a more recent and perhaps more intuitive work
�14�, ���t�� is written �returning to dimensionful quantities�
as an expansion in the number of transitions the system
makes between instantaneous eigenstates:

���t�� = ���t���0� + ���t���1� + ���t���2� + ¯ . �4�

The zeroth-order term, corresponding to no jumps, is simply
���t���0�= ��ad�t��, while the first correction is

���t���1� = �
m�0

�m�t��	
0

t

dt1 exp�− i	
t1

t

dt�Em�t��

��ṁ�t1��0�t1��exp�− i	

0

t1

dt�E0�t��
 , �5�

corresponding to a transition from instantaneous eigenstate
�0� to �m� at an arbitrary time t1, sandwiched by adiabatic
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evolutions. Subsequent terms can be written by a straightfor-
ward generalization of �5�.

When will the adiabatic approximation be good? At the
very least,  ����1�  must be small. This is of course true for t
sufficiently small, but we are often interested in t=�, in
which case generically ��ṁ�t� �0�t�� � �1/�, and  ����1� �1.
For a slowly-varying Hamiltonian, this crude estimate ne-
glects the fact that the rapid variation of the phase in the
integral in �5� leads to cancellations in the integral, and in-
deed it can be shown that �14�

��m�t����t���1�� � � �ṁ�t��0�t��
Em − E0

� . �6�

If these terms are all small �and if they are finite in number�
then ����1� will be small and, at least to first order, the
adiabatic approximation is accurate.

It is perhaps unfortunate that Messiah �13� states that

� �ṁ�t��0�t��
Em − E0

� � 1 �7�

“may be taken as a criterion for the validity of the adiabatic
approximation,” even going so far as to say that it is “too
restrictive” when in fact it can be too loose. �To be fair, he
preceded this statement with the qualifier “in most cases,” so
he cannot be held accountable.� Equation �7� is often referred
to as the “standard” condition of validity of the adiabatic
approximation, but we will refer to it as the a priori condi-
tion of validity because it can be evaluated without solving
for ���t��. At issue is the sufficiency of �7� as a guarantee that
the adiabatic approximation ���t�����ad�t�� is valid. This
can be written in the slightly more convenient form

1 − ��0�t����t��� � 1. �8�

We will refer to �8� as the a posteriori condition, because it
can be checked only after determining ���t��.

Below, we will argue that �7� is a reliable criterion of
validity of the adiabatic approximation only insofar as
��ṁ�t� �0�t��� is a measure of the time scale of evolution of H
�in which case it is ��−1�, leading to the widely held �and
generally correct� view that for adiabatic evolution the
Hamiltonian must evolve slowly: E��1. However, if
��ṁ�t� �0�t��� is not a measure of the time scale of evolution
of the Hamiltonian, then �7� cannot be relied upon as a cri-
terion of validity.

The possibility that ��ṁ�t� �0�t��� might not be a measure
of the time scale of evolution of H can easily be demon-
strated with an example. Leaving aside for the moment how
quickly H changes, suppose its instantaneous eigenstates do
not change appreciably over the course of the evolution, so
that 1− ��m�t1� �m�t2�� � ���1 for all t1 , t2. Then if the time
scale of the evolution of H is �, we find ��ṁ�t� �0�t�� � �� /�.
This being so,

� �ṁ�t��0�t��
Em − E0

� �
�

E�
, �9�

and obviously this can be small not because E��1, but sim-
ply because � is sufficiently small. Thus, the inadequacy of

�7� as a criterion of validity for the adiabatic approximation
stems from the fact that ��ṁ�t� �0�t��� may be small even
though the Hamiltonian is not slowly varying. This is our
main conclusion.

A concrete realization of this is the much studied example
of a spin 1/2 in a uniformly rotating magnetic field, one of
very few soluble time-dependent models, making it an obvi-
ous testing ground for the sufficiency of the a priori crite-
rion. This example was discussed in the context of the adia-
batic approximation by Tong et al. �2� �inspired by Marzlin
and Sanders �3�, who presented a similar example�, and we
will comment upon their work shortly. The Hamiltonian for
this system can be written

H�t� = −
�0

2
� · n�t� , �10�

where n�t�= �s	c�t ,s	s�t ,c	� �using the shorthand notation
sx=sin x, etc.� is the direction of the magnetic field, �0 is the
energy gap between instantaneous eigenstates, � is the angu-
lar frequency of rotation of n, and 	 is the opening angle of
the cone swept out by n. We can �and will� assume 	

� /2 and �0�0, but having done so, the sign of � �the
direction of rotation of the magnetic field� cannot be changed
without loss of generality, a seemingly innocuous fact that
will turn out to be of some importance.

Before proceeding further, note that, intuitively speaking,
�10� is adiabatic—the Hamiltonian varies slowly—if
�� /�0 � �1.

Let us suppose that the spin is initially aligned with the
magnetic field. Then the a priori criterion turns out to be �2�

��s	

�0
� � 1. �11�

That this does not agree with the intuitive notion of adiaba-
ticity should already cast doubt on whether or not this crite-
rion is sufficient. There is a very simple reason for this dis-
crepancy, which occurs if 	�1. If this is so, then the
magnetic field is always aligned near the z axis and the in-
stantaneous eigenstates change very little �of order 	�. In-

deed, ��±�̇� � ��� �sin 	, as envisaged above �see the discus-
sion preceding �9��.

The a posteriori criterion can be written

��s	

�̄
� � 1, �12�

where �̄ is defined in Fig. 1. �A factor sin �̄t /2 has been
dropped, making �12� the worst-case scenario.� If ��0 then
�̄��0, so if �11� is satisfied then �12� is as well, which
seems to indicate �contrary to the discussion above� that �11�
is after all a sufficient criterion. However, if ��0 then �̄
��0, and �11� being satisfied no longer implies that �12� is
also satisfied.

Figure 1 has a physical interpretation familiar from mag-
netic resonance, which enables us to visualize these conclu-
sions. A common approach to studying a spin in a rotating
magnetic field �whether classically or quantum mechani-
cally� is to go into a rotating reference frame, giving a static
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Hamiltonian. The effect of the change of reference frame is
to add a component of the magnetic field along the axis of
rotation. Thus, up to a multiplicative constant, the vector OA
is the original magnetic field as viewed in the rotating frame,
and OB is the effective static magnetic field. The spin, ini-
tially in the direction OA, precesses around OB. The instan-
taneous eigenstate in the rotating frame remains in the direc-
tion OA, so the adiabaticity of the evolution depends on the
angular separation between OA rotated about OB, on the one
hand, and OA itself, on the other. This depends on the angle
	−�, and indeed �12� can be written �sin�	−�� � �1. Let us
suppose 	 is small, since this is when �11� differs signifi-
cantly from the intuitive notion of adiabaticity. If ��0, then
clearly �	−�� is small and �12� is also satisfied. If, however,
��0, then �	−�� is not necessarily small and �12� is not
automatically satisfied.

To recapitulate, the intuitive notion of adiabaticity for this
system is ���0. The a priori condition differs significantly
from this when 	�1, so its appropriateness as a criterion for
adiabaticity is already in doubt. This is borne out when � is
negative and not small. The worst-case scenario is ��−�0.
This is in the vicinity of the resonant frequency—clearly not
an adiabatic situation, despite the fact that �7� is satisfied. In
fact, what is surprising is not so much the fact that �7� fails
there, but the fact that the evolution actually turns out to be
adiabatic if � is large and positive—clearly not a situation
that satisfies the intuitive notion of adiabaticity.

Although at first sight it is perhaps surprising that the
direction of rotation of the magnetic field is important, this is
familiar already from the classical problem and is related to
the fact that an external magnetic field breaks time-reversal
and parity invariance. Also, note that the sign of � is of no
importance to magnetic resonance experiments, because the
rotating field is actually an oscillating field, which can be
written as a combination of fields rotating in both directions.

How does this relate to the work of Tong et al. �2�? Let us
briefly review their findings. They considered two systems
for which the a priori conditions agree by construction but
the a posteriori ones do not agree, leading to the possibility
that both systems satisfy the former condition but only one
satisfies the latter. The relation between the two Hamilto-
nians is H��t�=−U†�t�H�t�U�t�, where U�t� is the evolution
operator for H�t�.

They substantiated this idea using �10� as the unprimed
Hamiltonian. The a priori criterion �11� for H was given, but
the a posteriori criterion for H was not in fact evaluated, so
the importance of the sign of �, and the inadequacy of �11�
as a guarantee for adiabatic evolution without even going to
the primed system, was not noted.

By construction, the a priori condition for the primed
system is �11�; the a posteriori condition turns out to be �2�

sin 	 � 1. �13�

The former is satisfied but the latter is not if ���0 and 	
�1, illustrating the inadequacy of �7� as a criterion for adia-
baticity.

A short calculation shows that the primed Hamiltonian
�which was not given in �2�� is again a spin 1/2 in a rotating
magnetic field, identical in form to �10� up to a global rota-
tion. We need only make the replacements 	→	�=	−� and
�→��=−�̄. It is important to note that �� is negative, and
also that it is not small in magnitude compared to �0 if
���0 �a fact also noted in Ref. �4��. Noting that H� is of
the same form as H, the same analysis can be applied simply
by making the appropriate substitutions, and nothing new is
learned since we have already determined that the a priori
criterion is inadequate. A primed version of Fig. 1 can be
used to visualize these conclusions.

Recently, we became aware of �15�, which supplements
the a priori condition with two other conditions that set a
limit on the total time of evolution of the system �distinct
from the time scale of the Hamiltonian’s evolution�. This
emphasizes a perhaps underappreciated point: that even for a
fixed, slow time scale for the evolution of the Hamiltonian,
the system will as a rule eventually escape from the adiabatic
state, a fact that has also been observed in �14�. The addi-
tional conditions given in �15� can be overly restrictive, and
even unnecessary, as can be seen by the example �10� in
cases where both �11� and �12� are satisfied, since then the
adiabatic approximation is valid for all times. This being
said, the additional conditions given in �15� �along with �7��
are sufficient to guarantee the validity of the adiabatic ap-
proximation, which is exactly what the authors had set out to
do.

In this paper we have emphasized the distinction between
the adiabatic theorem and the adiabatic approximation, and
have attempted to identify the underlying reason for the in-
adequacy for what has been labeled the “standard” criterion
�herein called the a priori criterion� for the validity of the
adiabatic approximation �7�. This inadequacy is by no means
a weakness of the adiabatic theorem; rather, it is an inad-
equacy of �7� as a measure of the slowness of the time scale
of evolution of the Hamiltonian—the intuitive notion of
adiabaticity. While often a reliable indicator of slowness of
the Hamiltonian, �7� can fail to be so in situations where the
Hamiltonian changes quickly but not by a great amount. In
these situations the adiabatic approximation can be invalid
despite the fact that �7� is satisfied. This point of view has
been illustrated by studying a spin 1/2 in a rotating magnetic
field.
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FIG. 1. Triangle that defines �̄ and �.
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Finally, we have emphasized that, even for a slowly
evolving Hamiltonian, the system will not stay in the adia-
batic state indefinitely; the system will as a rule eventually
escape, although this may take a time much longer than the
actual time scale on which the Hamiltonian evolves. This

point has been emphasized in �14�, and has been studied
more quantitatively by others more recently �15�.
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