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In the case of the nonlinear Schrödinger equation with designed group velocity dispersion, variable nonlin-
earity, and gain or loss, we analytically demonstrate the phenomenon of chirp reversal crucial for pulse
reproduction. Two different scenarios are exhibited, where the pulses experience identical dispersion profiles,
but show entirely different propagation behavior. Exact expressions for dynamical quasisolitons and soliton
bound states relevant for fiber communication are also exhibited.
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Nonlinear Schrödinger equation �NLSE� is known to gov-
ern the pulse dynamics in nonlinear optical fibers �1�. In
recent years, the study of nonlinear fiber optics, dealing with
optical solitons, has attracted considerable attention since it
has an important role in the development of several technolo-
gies of the 21st century �2�. NLSE with distributed coeffi-
cients, such as group velocity dispersion �GVD�, distributed
nonlinearity, and gain or loss, is being studied extensively in
order to determine the effect of various distributed param-
eters on the pulse profile.

In the realistic situation in a fiber, there arises nonunifor-
mity due to variation in the lattice parameters of the fiber
medium, as a result of which the distance between two
neighboring atoms is not constant throughout the fiber. It
may also arise due to the variation of the fiber geometry, e.g.,
diameter fluctuation. These nonuniformities influence effects,
such as loss �or gain�, phase modulation, etc., which can be
modeled by making corresponding parameters space depen-
dent. From a practical point of view, tailoring of various fiber
parameters may lead to effective control of the pulse. This
has been one of the prime motivations of a number of au-
thors to analyze NLSE in a distributed scenario.

Dispersion management has emerged as an important
technology to control and manipulate the light pulses in op-
tical fibers �2,3�. Pulse compression has been demonstrated
with appropriately designed GVD and nonlinearity in the
presence of chirping �4–6�, as also through soliton effects
�7�. Adiabatic soliton compression, through the decrease of
dispersion along the length of the fiber has been shown to
provide good pulse quality �8�. The possibility of amplifica-
tion of soliton pulses using a rapidly increasing distributed
amplification with scale lengths comparable to the character-
istic dispersion length has been reported �9�. It has been nu-
merically shown that, in the case where the gain due to the
nonlinearity and the linear dispersion balance each other,
equilibrium solitons are formed �10�. Serkin and Hasegawa
have formulated the effect of varying dispersion and other
parameters on the soliton dynamics and have explained the
concept of amplification of soliton �11�.

The formal structure of the Lax pair for the deformed
NLSE has been studied �12,13�. In a significant result, it has
been numerically shown that in an appropriately designed
dispersion profile chirped pulses can be retrieved through
chirp reversal at a calculated location in the fiber �14�. The
advantage of prechirping of the input pulse in overcoming
soliton interaction and dispersive-wave generation has been
noted earlier �16�.

In the present paper, we demonstrate analytically the phe-
nomenon of chirp reversal of quasisolitons with a designed
dispersion profile. Very interestingly we find two possibilities
of chirp reversal for which the dispersion profiles are identi-
cal. However, they exhibit entirely different propagation be-
havior. In one case the motion is sinusoidal and in the other
case it shows pulse acceleration. The procedure to control
pulse dynamics is also pointed out. Exact expressions for
dynamical quasisolitons and soliton bound states relevant for
fiber communication are exhibited.

It is worth emphasizing that, exact solutions have played a
crucial role in demonstrating different pulse shaping tech-
niques. The soliton solutions of NLSE or modifications of
the same have come in handy in studying these mechanisms.
In the same light, finding exact solutions for general types of
distributed scenarios will illustrate the subtle effects and in-
terplay of various parameters on formation and propagation
dynamics of light pulses.

We develop a methodology to obtain self-similar solitary
wave solutions of the generalized NLSE model with varying
nonlinearity, GVD, gain or loss, and a confining oscillator
which can be further modulated. One or a few of these pa-
rameters can be switched off depending on the situation at
hand. It is shown that, this equation decouples into a elliptic
function equation and a Schrödinger eigenvalue problem.
This allows one to analytically treat a variety of distributed
scenarios, a few of which we explicate in the text. In the
context of Bose-Einstein condensates the procedure to deal
with variable coefficient NLSE in the absence of GVD has
been carried out recently by the present authors �17�. GVD
leads to a fundamentally new control parameter in the
present case dealing with optical fibers. For example, a
subtle interplay of GVD and nonlinearity leads to a soliton
bound state as will be seen below. The effect of GVD, alter-
nating between normal and anomalous dispersion, on the
pulse profile is also discussed.

For the purpose of analytic demonstration of chirp rever-
sal we start with a NLSE model with variable GVD, nonlin-
earity, and loss or gain �14�,

i�zq�z,t� +
d�z�

2
�ttq�z,t� + ��z��q�2q�z,t� + ig�z�q�z,t� = 0.

�1�

Following Ref. �14�, here z and t are dimensionless. With
q�z , t�=a�z�u�z , t� and a�z�=exp�−�0

zdz�g�z���, one obtains
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i�z�u�z�,t� +
de�z��

2
�ttu�z�,t� + �̃�z���u�2u�z�,t� = 0, �2�

where z�=�0
zdz�a2�z��, de�z��=d�z� /a2�z�, and �̃�z��

=��z� /a2�z�.
Keeping in mind, prechirping and the self-similar nature

of the pulse we make use of the following ansatz:

u�z�,t� = �p�z�� ��p�z��t,z��exp�iC�z��t2� , �3�

where p and C are real functions of z�.
The numerical investigation of Kumar and Hasegawa �14�

indicated that the soliton of the NLSE with distributed coef-
ficients is intermediate between a sech and a Gaussian pro-
file. This is our primary motivation to take into account the
distributed coefficients through variable width and amplitude
of the same sech profile. As will be shown, this self-similar
ansatz leads to analytic solutions for a wide class of distrib-
uted coefficients.

However, in other scenarios the asymptotic and core func-
tional dependencies of the profile can be different. An ex-
ample of this kind can be found in Ref. �15�.

Defining �= p�z��t, for preserving space-time identity, one
obtains

i� ��

�z�
+ K0�

��

��
	 +

dep
2

2

�2��z�,��
��2 + �̃�z��p���2��z�,��

−
K1�2p

2
� +

iK0�

2
= 0, �4�

where

K0 =
pz� + Cdep

p
and K1 =

Cz� + C2de

p3 . �5�

We now tailor the dispersion profile with K0=0 and K1
=const,

i
��

�z�
+

dep
2

2

�2��z�,��
��2 + �̃�z��p���2��z�,�� =

K1�2p

2
� . �6�

In order to map the above equation to one with constant
anomalous dispersion we assume the constraint dep=1 to
obtain

i
��

�z�
+

1

2

�2��z�,��
��2 + �̃�z�����2��z�,�� =

K1�2

2
� , �7�

where z�=�0
z�p�s�ds.

As mentioned earlier, the above equation has been nu-
merically investigated, where a chirp reversal was observed
for a quasisoliton having a profile intermediate to a Gaussian
and the fundamental NLSE soliton �14�. These are stationary
solutions obeying NLSE with an additional oscillator term,
which explains the above profile. The exact solutions of Eq.
�7� can be obtained following the formalism developed in
Ref. �17�:

��z�,�� = �A�z��F
A�z���� − ��z����ei��z�,��, �8�

where

��z�,�� = a1�z�� + b�z��� −
1

2
c�z���2. �9�

Here, a1�z��=a10
− �−1

2 �0
z�A2�z�dz, ��z��=�0

z�v�z�dz, which
satisfies the following equation:

d�

dz�
+ c�z����z�� = b�z�� , �10�

with the general solution

��z�� = �e−�c�z��dz���� dz��b�z��e�c�z��dz��	 . �11�

The parameter c�z�� obeys the Riccati equation

cz� − c2�z�� = K1, �12�

which can be exactly mapped to linear the Schrödinger ei-
genvalue problem. We also find the following consistency
conditions:

�̃�z�� = �̃0A�z��/A0, b�z�� = A�z�� ,

A�z�� = A0 exp��
0

z�
c�z�dz	, A0 � 0. �13�

F obeys the elliptic function equation in the new variable
T=A�z����−��z���,

F��T� − �F�T� + 2�F3�T� = 0, where � = −
�0

A0
. �14�

The free real parameter �, appearing in a1 of Eq. �9�, mani-
fests in the above equation as the coefficient of the linear
term. The 12 Jacobian elliptic functions satisfy the above
equation and depend on the values of �. These functions
interpolate between the trigonometric and hyperbolic func-
tions in the limiting cases �18�. Bright soliton solutions of the
type ��z� ,��=�A�z�� sech�T /T0�ei��z�,�� exist for ��0,
where T0

2=−A0 /�0 and �=1/2T0
2, similarly kink-type dark

solitons exist for �0�0. We further note that, with normal
dispersion one can obtain dark solitons for �0	0. It needs to
be emphasized that, in the present approach the oscillator
term leads to a dynamical chirp and modulates the pulse
profile. However, the pulse retains its fundamental NLSE
soliton character in the scaled variable z�.

Below, we examine the formation of bright quasi-soliton-
like excitations, exhibiting chirp-reversal phenomenon. This

FIG. 1. �Color online� Variation of z� with physical parameter z.
It is clear from the figure that as z increases z� saturates very fast.
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is accomplished by the appropriate tailoring of GVD and
prechirping of the launching pulse. Combining Eq. �5� and
constraint dep=1 yield the following expressions for the tai-
lored dispersion and the chirping parameter:

C =
de�

de
2 and de

d2de

dz�2 − �dde

dz�
	2

= K1. �15�

It is interesting to notice that the choice of the constant K1,
gives rise to two scenarios, having identical dispersion and
chirp profiles, but possessing entirely different pulse veloci-
ties.

We list below some explicit examples, depicting a variety
of control mechanisms for pulse manipulation.

Soliton pulses exhibiting chirp reversal. Inspired from the
numerical investigations of Kumar and Hasegawa �14�, we
first consider in Eq. �15�, K1�0, which is equivalent to a
regular oscillator potential in Eq. �7�. For constant loss
g�z�=
, the dispersion profile reads as

de�z�� = cosh��z�� +
C�0�

�
sinh��z�� , �16�

d�z� = exp�− 2
z��cosh��z�� +
C�0�

�
sinh��z��	

with � = �K1 + C2�0��1/2. �17�

It is worth pointing out that, the dispersion profile given by
Eq. �16� is in the variable z�; since z� saturates very fast as z
increases, behavior of GVD with respect to the physical vari-
able z does not differ much from that of z�. We have plotted

in Fig. 1, the variation of z� showing the above-mentioned
saturation. We have also compared the behavior of GVD
with respect to the parameter z� and the physical variable z in
Figs. 2 and 3, respectively.

From the above dispersion profile we compute the
launched chirp parameter C�z�� and plot it together with the
dynamical chirp in Fig. 4. The top curve depicts the spatial
evolution of the launching chirp and the bottom one that of
launching and dynamical chirp together. From Eqs. �5� and
�16� it is clear that launched chirp profile changes sign at
z�zc��= �1/��tanh−1�−C�0� /��.

The expression for the traveling quasisoliton, propagating
with velocity v�z��=A0 cos�K0z��, reads as

q�z,t� = a�z��p�z��sec�K1z��

�sech
sec�K1z���� − ��z����

�exp
i�C�z��t2 + ��z�,���� . �18�

The presence of the dynamical chirp shifts the chirp-reversal
location slightly away from zc. Just after chirp reversal, we
notice that the pulse seems to broaden, as is clearly seen in
Fig. 5. Hence, the pulse needs to be retrieved at this point.
With the help of a normal dispersive element such as grating,
the original pulse can be recovered �19�.

FIG. 2. �Color online� Variation of GVD with z� for parameter
values C�0�=−1.34, 
=0.36, and K1=1.

FIG. 3. �Color online� Variation of GVD with physical param-
eter z for the same parameter values as Fig. 2.
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FIG. 4. �Color online� Depiction of the variation of chirp param-
eters with z. The top �red� curve shows the launching chirp and the
bottom �blue� curve shows the same in combination with the dy-
namical chirp.
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FIG. 5. �Color online� Pulse propagation having sinusoidal ve-
locity profile. The plot shows broadening after chirp reversal.
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In contrast to the above example, if we consider K1	0,
we obtain �= �K1−C2�0��1/2, which again leads to the same
dispersion profile as that of the previous example, but with
the pulse velocity v�z��=A0 cosh�K0z��. Figure 6 shows
pulse dynamics for K1	0. The expression for the soliton
profile in this case is

q�z,t� = a�z��p�z��sech�K1z��

�sech
sech�K1z���� − ��z����

�exp
i�C�z��t2 + ��z�,���� . �19�

It is interesting to observe that, compared with the previ-
ous case, pulse broadening is significantly reduced for the
same parameter values.

Soliton bound states. Starting from Eq. �1� without tailor-
ing the dispersion profile, we proceed to obtain self-similar
solutions assuming the ansatz solution of the type

q�z,t� = �A�z�F
A�z��� − 
�z���exp�G�z� + i��z,t�� .

�20�

The parameters appearing in Eq. �20� can be straightfor-
wardly evaluated from Eqs. �11�–�13� and the soliton profile
can be obtained from Eq. �14�.

Below, we explicate some examples of spatial bound
states of solitons, arising from interplay of GVD, nonlinear-
ity, and gain or loss. Figure 7 depicts a two-soliton bound
state. This arises in a medium, where both anomalous and
normal dispersion regimes are smoothly connected. In the
presence of periodic gain or loss one observes modulation in
the bound-state profile as is shown in Fig. 8.

This multisoliton bound state shows different behavior as
compared to the two soliton one. The intensity profile has
local minima as z=0. For the soliton bound state the origin
corresponded to a maximum. The intensity modulations
show multiple peaks and wider temporal variations for the
former case. These can be controlled through GVD.

In conclusion, we have obtained exact soliton solutions
exhibiting chirp reversal, while retaining their original pro-
file, crucial for pulse recovery in fiber optics. Two different
soliton sectors differing in propagation behavior, but with
identical dispersion profiles, are analytically exhibited. We
have outlined a general formalism for obtaining self-similar
solutions of the nonlinear Schrödinger equation, in the pres-
ence of distributed coefficients, from which earlier scenarios
follow as special cases �20�. It is shown that, this nonlinear
system, involving pulse propagation with group velocity dis-
persion, variable nonlinearity, variable gain, exactly de-
couples into a elliptic function equation and a Schrödinger
eigenvalue problem. This opens up a number of possibilities
to take into account a wide class of distributed scenarios, in
close conformity with the experimentally achievable situa-
tions. This incorporates a number of special cases dealt ear-
lier, in the context of pulse compression. We find that, apart
from compression, one can achieve control over the pulse
velocity, pulse profile, through interplay of group velocity
dispersion, nonlinearity, gain or loss. Formation of soliton
bound states in a medium with GVD alternating between
normal and anomalous dispersion is discussed. In the pres-
ence of the oscillatory gain or loss profile, we find the mul-
tiple bound-state structure.

The authors acknowledge many useful discussions with
Professor G. S. Agarwal.
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FIG. 6. �Color online� Soliton pulse acceleration with parameter
K1	0 implying an expulsive oscillator scenario.
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FIG. 7. �Color online� Soliton bound state in a medium with two
dispersion regimes.
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FIG. 8. �Color online� Multiple soliton bound state with oscil-
latory gain or loss.
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