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Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the
similarities and the differences between ghost imaging by third-order correlation and by second-order corre-
lation, and analyze the effect from each correlation part of the third-order correlation function on the imaging
process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the
second-order correlated one, while the imaging information originates mainly from the correlation of the
intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-
order correlation.
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I. INTRODUCTION

Correlated imaging has been studied extensively in recent
years, both experimentally and theoretically �1–14�. It is a
technique to image nonlocally an object by transmitting two
correlated beams through a test arm and a reference arm,
respectively. By measuring the spatial correlation between
the two arms, the image of the object inserted into the test
arm can be obtained as a function of the position of the
detector in the reference arm. The first two-photon imaging
experiment was performed based on the quantum nature of
the signal and idler photon pairs from spontaneous paramet-
ric down conversion �1�. The experiment led to many inter-
esting studies �2–8� and some debate about whether ghost
imaging can be achieved with a classical light source. Ben-
nink et al. showed that ghost imaging technique does not
require entanglement, and provided an experimental demon-
stration with a classical source �9�. Our group theoretically
studied correlated imaging with incoherent source by using
classical statistical optics, based on which we gave a pro-
posal to realize lensless Fourier-transform imaging, and dis-
cussed its applicability in x-ray diffraction �10�. Recently, the
correlated imaging equation for the classical thermal light
source was given, and the macroscopic differences of quan-
tum and classical correlated imaging were shown �11�. Very
recently, Ou and Kuang rewrote the Gaussian thin lens equa-
tions when another reference arm is considered �12�. Further-
more, the experimental demonstration of two-photon corre-
lated imaging with true thermal light from a hollow cathode
lamp was also reported �13�.

In previous work about correlated imaging by second-
order correlation, one can obtain one image in one place �the
reference detector� by measuring the second-order intensity
correlation. Then, can more images of an object be recon-
structed at different places by considering more higher-order
correlation? In this paper, we present the third-order corre-
lated imaging theory. It is shown that the spatial information
of an object can be produced at two different places by
means of a third-order correlated imaging process. By the
analytical results and numerical simulation, the effects from
different correlation parts of the third-order correlation func-
tion on ghost imaging are investigated, and the similarities

and the differences between the third-order correlated imag-
ing and the second-order correlated one are also discussed.

II. THE MODEL AND ANALYTICAL RESULTS

Our imaging system includes three arms �see Fig. 1�. The
classical thermal light source, usually obtained by illuminat-
ing a laser beam into a slowly rotating ground glass �15–17�,
is divided into three beams, which can be implemented by a
combination of two beam splitters. The three beams travel
through a test arm and two reference arms, which are char-
acterized by their impulse response functions hr�xr ,ur� �r
=1,2 ,3�. An unknown object is included in the test arm. The
detector Dr is used to record the intensity distribution at ur.

The optical field of the source is represented by E�x�. As
we know that, in many cases, the field fluctuations of a clas-
sical light source can be modeled by a complex circular
Gaussian random process with zero mean �18�, based on
which the second-order correlation function of the source
fields can be written as �10�
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FIG. 1. A scheme for ghost imaging by third-order correlation.
The reference arms 2 and 3 are symmetrical about the test arm 1.
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�E�x1�E�x2�E��x2��E
��x1��� = �E��x1�E�x1����E

��x2�E�x2��� + �E��x1�E�x2����E
��x2�E�x1��� , �1�

where �E��x�E�x��� is the first-order correlation of the fluctuating source field. From Eq. �1�, an arbitrary order correlation
function can be expressed via the first-order correlation function. Thus, the third-order correlation function of the source field
has

�E��x1�E��x2�E��x3�E�x1��E�x2��E�x3��� = �E��x1�E�x1�����E
��x2�E�x2����E

��x3�E�x3��� + �E��x2�E�x3����E
��x3�E�x2����

+ �E��x1�E�x2�����E
��x2�E�x1����E

��x3�E�x3��� + �E��x2�E�x3����E
��x3�E�x1����

+ �E��x1�E�x3�����E
��x2�E�x1����E

��x3�E�x2��� + �E��x2�E�x2����E
��x3�E�x1���� . �2�

After propagating through three different optical systems, the field at the detector Dr becomes

Er�ur� =� E�x�hr�x,ur�dx . �3�

The third-order correlation function between the three detectors can be expressed by

G�3��u1,u2,u3� = �E��u1�E��u2�E��u3�E�u1��E�u2��E�u3���

=� �E��x1�E��x2�E��x3�E�x1��E�x2��E�x3���h1
��x1,u1�h1�x1�,u1�

�h2
��x2,u2�h2�x2�,u2�h3

��x3,u3�h3�x3�,u3�dx1dx1�dx2dx2�dx3dx3�. �4�

Substituting Eqs. �2� and �3� into Eq. �4�, we have

G�3��u1,u2,u3� = �I1��I2��I3� + �I3��� dx1dx2��E
��x1�E�x2���h1

��x1,u1�h2�x2�,u2��2

+ �I2��� dx3dx1��E
��x3�E�x1���h3

��x3,u3�h1�x1�,u1��2

+ �I1��� dx2dx3��E
��x2�E�x3���h2

��x2,u2�h3�x3�,u3��2

+ 	� dx1dx2��E
��x1�E�x2���h1

��x1,u1�h2�x2�,u2�� dx2dx3��E
��x2�E�x3���h2

��x2,u2�h3�x3�,u3�

�� dx3dx1��E
��x3�E�x1���h3

��x3,u3�h1�x1�,u1� + c.c.
 , �5�

where �Ir�= �I�ur��. The first term on the right-hand side of
Eq. �5� is the multiplication of the intensity distribution at the
three detectors. It contributes only the background, and can-
not be used to realize the correlated imaging. The second
term is the multiplication between the intensity distribution
at the detector D3 and the intensity fluctuation correlation
between the detectors D1 and D2, which gives the informa-
tion of the object imaged at D2. From the third term, we can
obtain the imaging signal at the detector D3. The fourth term
is the correlation of the intensity fluctuations at D2 and D3,
and the last term is the intensity fluctuation correlation be-
tween the three detectors. In the following we will discuss
the effect of each correlation part on ghost imaging and will
compare our results with those in the second-order correlated
imaging.

III. NUMERICAL RESULTS

Suppose the light source is fully spatially incoherent, and
its intensity distribution is of the Gaussian type. Then the
first-order correlation function for the source can be written
as

�E��x�E�x��� = G0 exp	−
x2 + x�2

4a2 
��x − x�� , �6�

where G0 is a normalized constant, a is the transverse size of
the source.

Now we use the third-order correlation theory to analyze
the 2f imaging scheme. The test arm consists of an object
with transmission function t�x�, a lens, and a detector D1.
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The lens is located at a focal distance f from the object and
from D1. If the size of the lens is much larger than the object,
the impulse response function has the form

h1�x1,u1� = −
i

�f
t�x1�exp	−

i2�

�f
x1u1
 . �7�

The two reference arms are identical: a lens is placed at a
focal distance f� both from the source and from the detector
Dk �k=2,3�. For simplicity, we assume f = f�. The corre-
sponding impulse response function is

hk�xk,uk� = −
i

�f
exp	−

i2�

�f
xkuk
 . �8�

Here we take a double slit with the slit width �
=0.075 mm and the distance between two slits d
=0.15 mm as the object imaged. The transverse size of the
source a=1 mm, other parameters are chosen as �
=532 nm, f =75 mm.

By using a pointlike test detector located at u1=0 and
substituting Eqs. �6�–�8� into Eq. �5�, the conditional third-
order correlation function G�3��u1=0 ,u2 ,u3� can be obtained.
Figure 2�a� shows the simulation result, which is normalized
by Gmax

�3� . It clearly emerges that the Fourier-transform image
of the double slit can be observed at two different places, the
reference detectors D2 and D3. For the sake of comparison,
in Fig. 2�b� we give the numerical simulation about the re-
construction of the Fourier-transform image from the
second-order correlated imaging. It is shown that the images
given by the third-order correlation consist with that ob-
tained by the second-order correlation. To get a deeper in-
sight into the relationship between the two ghost imaging

theories, we first give the expression of the second-order
correlation function �8,10�,

G�2��u1,u2� = �I�u1���I�u2��

+ �� dx1dx2��E
��x1�E�x2���h1

��x1,u1�h1�x2�,u2��2

.

�9�

It is obvious that Eq. �9� is just the first two terms of Eq. �5�,
which presents the Fourier-transform image of the object at
the reference detector D2. At this point we can say that the
third-order correlated imaging includes all information in
ghost imaging by second-order correlation. The contribution
from the third term of Eq. �5� is similar to that from the
second term, it symmetrically gives the information of the
object at the reference detector D3. In Fig. 3, we depict the
superposition effects of the first three terms. It is shown that
the pattern is almost the same as that in Fig. 2�a� except for
slight amplitude difference.

From the above discussion, the intensity fluctuation cor-
relations between the test detector D1 and the reference de-
tector Dk �k=2,3� are dominant during third-order correlated
imaging. The effects from additional correlation parts, in-
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FIG. 2. �Color online� �a� Normalized third-order interference-
diffraction pattern at the planes of the reference detectors D2 and
D3. �b� Normalized G�2��u1=0,u2� for ghost imaging by second-
order correlation.
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FIG. 3. �Color online� The superposition effects of the back-
ground and the intensity fluctuation correlation between the test
detector D1 and the reference detector Dk �k=2,3�.
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FIG. 4. Dependence of the visibility on the transverse size of the
source. Other parameters are the same as those in Fig. 2.
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cluding the intensity fluctuation correlations between the two
reference detectors and between the three detectors, are quite
small, but their existence maybe influenced the visibility of
the third-order correlated imaging.

We now investigate the visibility, in previous work it is
defined as �19,20�

V =
�G�2��u1,u2� − �I�u1���I�u2���max

G�2��u1,u2�max
. �10�

From Ref. �21�, we know that the visibility of the object
imaged decreases with an increase of the source’s transverse
size for ghost imaging by second-order correlation. Shown in
Fig. 4 is the dependence of the visibility on the transverse
size of the source in our imaging system �see the solid line�,
the dashed line corresponds to the change of the visibility of
ghost imaging by second-order correlation. The similarity is
that an increase of the transverse size will result in a decrease
of the visibility for both cases. The difference between the
two curves is induced by the additional correlation parts of
Eq. �5�, i.e., the correlation of the intensity fluctuations be-
tween the two reference detectors and between the three de-
tectors. From Fig. 4 the visibility of third-order correlated
imaging is better than that of correlated imaging by second-
order correlation.

IV. CONCLUSION

In conclusion, we have investigated the third-order corre-
lated imaging with classical incoherent light. The relation-
ship between ghost imaging by third-order correlation and by
second-order correlation is discussed. It is shown that the
third-order correlated imaging includes all information of the
second-order correlation function. In the process of corre-
lated imaging, the information about the object imaged origi-
nates mainly from the intensity fluctuation correlation be-
tween the test detector and each reference detector. The
additional correlation parts, including the correlation of the
intensity fluctuations between the two reference detectors
and between all three detectors, only change the amplitude of
the imaging signal, i.e., the visibility.
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