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The propagation of a laser beam of intensity I in a nonlinear medium with a refractive index n�I� of arbitrary
form is studied. In particular, the influence of the functional form n=n�I� on self-focusing and self-trapping is
investigated. Starting from the propagation equations and using symmetry considerations and the Bogoliubov
renormalization group approach, we derive a general equation relating the self-focusing distance, the intensity,
and n�I�. For different polynomial dependences of n�I� on I, we construct analytical solutions for the spatial
intensity profile I�r� for an initially collimated Gaussian beam inside the medium. We also explicitly analyze
the case of nonlinear self-focusing accompanied by multiphoton ionization. For particular �already studied�
cases, we considerably improve the accuracy of the results with respect to previous semianalytical studies and
obtain very good agreement with recent numerical simulations.
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I. INTRODUCTION

The problem of intense light propagation in media exhib-
iting nonlinear response has been investigated in detail since
the early 1960s �1–4�. Already in the case of linear intensity
dependence of the refractive index, numerous self-action ef-
fects have been observed �5,6�, like solitary waves, self-
focusing, self-phase-modulation, etc. Great success in math-
ematical modeling of these processes was achieved due to
this simple dependence of the index of refraction on the in-
tensity. In particular, analytical soliton solutions to the prob-
lem were obtained by Zakharov and Shabat in the framework
of the inverse scattering problem �7�. Self-similar solutions
for parabolic and hyperbolic-secant beam shapes were found
by Akhmanov et al. �3� under the geometrical optics approxi-
mation. Approximate solutions for several initial beam inten-
sity distributions were obtained by Kovalev based on the Lie
symmetry group analysis and the renormalization group ap-
proach �8,9�.

However, modern experimental techniques allow one to
obtain strong time compression of laser pulses and electric
field intensities above the ionization threshold. For a theoret-
ical description of such experiments, the linear approxima-
tion becomes insufficient, and more complicated forms of the
refractive index should be considered �10,11�. The theoreti-
cal results obtained so far were mainly based on extensive
numerical simulations. In particular, self-guiding versus col-
lapse in air �12,13�, filament formation in fused silica
�14–16�, splitting of one filament into several �17�, and their
stability and features of their interactions �18,19� have been
investigated. In general, those numerical simulations are very
time consuming and require a preliminary analytical investi-
gation.

The most widely used analytical method for this goal is
known as the variational approach �20� with its different cor-
rections, e.g., �10,13,21–23�. Its basic assumption is an an-
satz on the fixed functional form of the beam, in which the
average beam radius, the amplitude, and the phase are as-

sumed to be slowly varying functions of the propagation
distance. Substitution of this trial function into the corre-
sponding Lagrangian of the problem followed by its averag-
ing over the radial variable and application of the variational
procedure allows the original nonlinear wave equation to be
reduced to a system of rather complicated ordinary differen-
tial equations. These equations are usually solved numeri-
cally for given initial conditions and the model parameters.

The main shortcoming of the variational method is related
to the restriction that the form of the trial solution remains
unchanged upon propagation. Usually, the spatial profile of
the beam is taken to be of Gaussian or super-Gaussian form.
However, it was demonstrated �9� that the Gaussian beam
rapidly loses its initial form when passing through a nonlin-
ear medium.

In the present paper, we search for approximate analytical
solutions of the problem of light propagation in nonlinear
media, avoiding any assumption on the form of the beam
during propagation and any restriction on the functional de-
pendence of the refractive index on the light intensity. For
this goal we used a method based on the Lie symmetry group
analysis, which is currently being applied to a large number
of problems in physics and engineering �24�. The method has
been developed to find analytical solutions for boundary
value problems by Shirkov and Kovalev �8�. They pointed
out that this method is closely related to the Bogoliubov
renormalization group, well known in quantum field theory
and the theory of condensed mater. This method has already
been used to construct analytical solutions of the Vlasov
equation �25�, and also to describe self-focusing wave col-
lapse in optical media where the refractive index is a linear
function of intensity �9�.

Here, we apply the method to find analytical solutions to
the problem of the propagation of intense laser pulses in a
medium with arbitrary nonlinearities. Starting from the
propagation equation for the electric field and the equation
for the temporal evolution of the photoexcited carrier den-
sity, and using the semiclassical approximation, we first for-
mulate the boundary value problem. Then, we make use of
the Bogoliubov renormalization group method and find the
approximate symmetry group admitted by the equations.
This allows us to construct the desired analytical solutions.*tatarino@nat.uni-kassel.de
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For the general case we find an expression to determine the
self-focusing distance for an arbitrary functional dependence
of the refractive index n�I� on the light intensity I �Eq. �24��.
Then, we calculate the intensity profile of the light inside the
sample for different polynomial dependences of n on I.

The paper is organized as follows. In Sec. II, starting from
the nonlinear wave equation, we derive the corresponding
generalized nonlinear Schrödinger and eikonal equations
�semiclassical approximation�. In Sec. III we search for ap-
proximate analytical solutions for eikonal equations and dis-
cuss the results obtained for different nonlinear forms of the
refractive index. Particular attention is given to the case
when n�I� reflects both nonlinear Kerr self-focusing and mul-
tiphoton plasma generation. Section IV is devoted to the ap-
plication of the obtained results to the problem of ultrashort
laser pulse propagation in air and a comparison with results
of numerical simulations. In Sec. V the results are summa-
rized and further applications are discussed.

II. MODEL EQUATIONS

We consider the propagation of a linearly polarized laser
beam in a medium. The scalar wave equation that governs
the electric field E distribution reads

��
2 E −

1

c2�ttE =
4�

c2 �ttP
4�

c2 + �tJ , �1�

where c is the light velocity, ����x+�y +�z, and �tt stands
for the second derivative with respect to time. P= PL+ PNL is
the polarization of the medium, where PL=�0E denotes the
linear contribution, �0 refers to the dielectric constant, and
PNL is a nonlinear function of the electric field. Usually the
nonlinear polarization PNL is presented in the form of a Tay-
lor series expansion in odd �for homogeneous media� powers
of the incident field amplitude: PNL=�2j+1E2j+1 , j
=1, . . . ,�. The nonlinear susceptibility coefficients of higher
than the third order �j=2, . . . ,�� are usually neglected �5,6�.

Strong interaction of an electric field with the medium can
produce very large carrier densities through multiphoton
�tunnel and avalanche� ionization processes. This is de-
scribed in the equations by the term proportional to the cur-
rent J and expressed as J=�E. Here, � is the conductance,
which can be calculated using methods of statistical mechan-
ics �26� for a cw beam or long pulses. For intense and short
pulses it is in accordance with Drude’s model �5� and reads
�=��cole

2 /m�1+	2�col
2 �, where 	 is the light frequency, �col

is the electron collision time, and � is the density of electrons
with mass m and charge e.

Direct integration of Eq. �1� with the terms discussed
above requires enormous computational effort and in many
cases does not provide an insight into basic physical under-
standing of the various linear and nonlinear effects involved.
However, significant simplification of the mathematical
model can be achieved if we consider the propagation of
laser beam along the z axis with fixed carrier frequency
	0, and neglect dispersion of the medium. Then, using
the slowly varying envelope approximation E�r , t�
=E�r , t�ei�k0z−	0t�+c.c., where k0=n0	0 /c, and transforming

into the retarded coordinate system, where t is the retarded
time t−z /vg with the group velocity vg, we obtain the gen-
eralized nonlinear Schrödinger equation

i�zE +
1

2k0
��

2 E + k0n��E�2�E = 0, �2�

where z is the propagation length. The Laplacian ��
2 de-

scribes wave diffraction in the transverse plane. For the sake
of simplicity we consider the �1+1�-dimensional problem,
i.e., ��

2 =�xx, where x is the axis transverse to the beam di-
rection. n=n��E�2� is the index of nonlinear refraction. In
general, n��E�2� is quite a complicated function of the electric
field intensity. However, in many problems the main contri-
bution of the response of a nonlinear medium is related to the
third-order Kerr nonlinearity and multiphoton ionization
�MPI�. For such cases, the refractive index in �2� reads

n = n2�E�2 − ���E�2�/2�c, �3�

where � is the density of electrons created by the photoin-
duced ionization process. �c denotes the critical density
above which the plasma becomes opaque. This value is re-
lated to the Drude model as �27� �c= �n0c��c�−1. The spatial
and temporal evolution of the plasma density is usually de-
termined as

�t� = WMPI��E����at − �� + 
��E�2 − �/�rec, �4�

Here, �at is the initial atomic density. 
 in Eq. �4� is the rate
of tunneling ionization, and �rec is the plasma recombination
rate. Both of these processes can be neglected for the propa-
gation of a femtosecond pulse with intensity smaller than
1014 W/cm2.

It has been demonstrated �14,28� that, in many cases, the
rate of multiphoton ionization can be approximated by a
power function of the intensity as WMPI��E��=�K�E�2K. Here
K=mod�Ui /�	0+1� corresponds to the number of photons
required for ionization of an atom having an ionization po-
tential �or gap� equal to Ui. The quantity �K is proportional
to the multiphoton adsorption cross section. Moreover, from
a direct numerical simulation �27�, it was proven that �
��K�E�K�attp is a sufficiently good approximation to the so-
lution of Eq. �4�, were tp is the pulse duration time.

All the simplifications discussed above allow us to inves-
tigate the beam propagation Eq. �2� in a closed form. We will
consider that the refractive index is a polynomial function of
the electric field.

Equation �2� was investigated analytically in the frame of
the inverse scattering method �7�, under the semiclassical
approximation and the renormalization group �9�, only for
the simplest nonlinearity n=n2�E�2.

In the present paper, we construct an approximate analyti-
cal solution of the light propagation Eq. �2� for a more gen-
eral form of the refractive index, and particularly for the case
of multiphoton plasma generation.

Let us represent the electric field E in the eikonal form
E=�I exp�ik0S�. Then, starting from �2�, after some algebraic
manipulations, we obtain
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�zS = −
1

2
��xS�2 + n�I� + �	 �xxI

I
−

��xI�2

2I2 
 ,

�zI = − �x�I�xS� , �5�

where both coordinates z and x are normalized to the initial
beam radius w0. I is the intensity normalized with respect to
its value at the entry plane, I0, and �= �2k0

2w0
2�−1.

Typical values of the parameters in modern experiments
are =800 nm and initial beam radius w0=1 mm. Using
these values, the dimensionless prefactor of the diffraction
term in Eq. �5� becomes ��8�10−8. This means that the
diffraction term is negligible and that the geometrical optics
approximation should give a reasonable description of the
problem of intense laser beam propagation in nonlinear me-
dia for several experimental conditions.

Thus, we consider the following system of equations:

�zS = −
1

2
��xS�2 + n�I� ,

�zI = − �x�I�xS� .

These equations are canonical, i.e., they can be written as
�zI=�H /�S, �zS=−�H /�I, where H is a Hamiltonian of the
form

H =� 	 I

2
��xS�2 − ��I�
dx �6�

with ��I�=�0
I n�I��dI�.

We introduce now the dimensionless variable v=�xS, and
differentiate the eikonal Eq. �5� with respect to x. Then a
refractive index of the form �3� gives the term n2I0�1
−�I� /2�c��xI�a��xI. For an intensity I0 of the order
1013 W/cm2 and light propagation in air �n2=3.2
�10−19 cm2/W�, a�n2I0�10−5. Therefore, a turns out to
be a small parameter. In what follows we construct an ap-
proximate analytical solution making use of the fact that the
parameter a is small.

Finally, we obtain a boundary value problem

�zv + v�xv − a��I��xI = 0,

�zI + v�xI + I�xv = 0,

v�0,x� = 0, I�0,x� = exp�− x2� , �7�

which describes propagation of an initially collimated Gauss-
ian beam in a nonlinear medium.

The system �7� is linear with respect to first-order deriva-
tives. Therefore, it is convenient to use the hodograph trans-
formation �29� in order to transform it into a linear system:

�w� −
I

��I�
�I� = 0, �w� + a�I� = 0, �8�

where �= Iz, �=x−vz, w=v /a. The boundary conditions are
transformed as follows:

w = 0, � = �ln�1/I� . �9�

In spite of their simple form, Eqs. �8� can be exactly solved
analytically only for a few particular functions ��I� �30�.

III. ANALYTICAL SOLUTIONS

In order to solve Eqs. �8� we use an approach based on the
Lie symmetry group analysis of differential equations. The
regular scheme to make use of this method in the case of
boundary value problems was developed by Shirkov and
Kovalev �8,30–32�. In the following we briefly discuss those
aspects important for our calculations. A detailed description
of the method is, however, out of the scope of this paper. For
more details we address the interested reader to mathematical
textbooks �see, e.g., �33,34��.

The main steps of the method consist in the construction
of the renormalization group manifold, the calculation of the
symmetry group admitted by this manifold, and the subse-
quent restriction of this group on the particular solution of
the boundary value problem. The constructed exact or ap-
proximate symmetry is used to find the desired solution.

In the problem under consideration the renormalization
group manifold is given by Eqs. �8�. Now, we have to con-
struct the Lie symmetry admitted by Eqs. �8�, namely, we
have to find the corresponding infinitesimal transformation
operator X. For this goal we have to solve the equation

�XF�F=0 = 0, �10�

where F is the frame of Eqs. �8�. Equation �10� is known as
the determining equation �24,33�; its solution is one of the
central problems in the Lie symmetry analysis of differential
equations.

We search for X in the canonical Lie-Bäcklund form

X = f�� + g��, �11�

where and g are unknown functions of n ,w ,� ,�, and their
derivatives: �� /�n, �� /�n, etc.

Applying the operator of Eq. �11� to the equations of mo-
tion �8�, we obtain the determining equation �35�

Dw�g� + aDI�f� = 0,

Dw�f� −
I

��I�
DI�g� = 0, �12�

where

DI � �I + 
s=0

�

��Is+1��Is + �Is+1��I
s� , �13�

Dw � �w + 
s=0

�

��ws+1��ws + �ws+1��w
s � �14�

are total derivatives. Here, the index s stands for the order of
the derivatives: �I

s��s� /�Is, etc. Derivatives with respect to
w in the parentheses in Eq. �14� should be excluded in ac-
cordance with Eqs. �8�: �w

1 = I /��I
1, �w

2 = I /��Iw
1 =−aI /��I

2,
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and so on. As a result, the operator of Eq. �14� takes the form
of a series in powers of the small parameter a.

To determine f and g we propose formal series in powers
of a as well:

f = 
i=0

�

aif i, g = 
i=0

�

aigi, �15�

Substituting Eqs. �15� into Eqs. �12� and collecting terms
with the same power of a, we obtain up to the first order in a

�wf0 −
I

�
DI�g0� = 0, �16�

�wg1 − Dw� �g0� + DI�f0� = 0, �17�

�wf1 − Dw� �f0� −
I

�
DI�g1� = 0, �18�

where Dw� =s=0
� �Is+1��Is. The system of differential equations

�16�–�18� can be solved sequentially starting from a given g0.
The requirement that the symmetry group satisfies the
boundary conditions means that f and g vanish under substi-
tution of Eqs. �9� in each order of approximation. Therefore,
the natural choice for the first step in solving equations
�16�–�18� is to put g0=0. However, in Ref. �8�, it was dem-
onstrated that, for an initial Gaussian beam, the choice

g0 = 1 + 2I��I �19�

provides the better result, since it corresponds to a further
iteration in the renormalization procedure.

Substituting Eq. �19� into Eq. �16�, and solving Eqs.
�16�–�18� step by step, after some calculations, we obtain

g1 = 1 + 2I��I + 2a	1 + I
�I

�

��a − 2a���I − 2a�I�

2 + G1,

�20�

f1 = 2I	�I� + ��I +
�I

�
��
 + 2a��a	1 + I

�I

�

 + F1.

�21�

Here, Fi�I ,�Is , �̃Is� and Gi�I ,�Is , �̃Is� �i�0� are, in principle,
arbitrary functions of their arguments and

�̃Is = �Is − w
p=0

s
s!

p ! �s − p�!
�p�I/��I��

�Ip �Is−p+1.

The first-order partial differential equations g1=0 and f1=0
serve as a tool for constructing approximate solutions for the
boundary value problem Eq. �8�. The arbitrary functions F1

and G1 contained in these equations should be chosen to
satisfy the requirements of the renormalization group analy-
sis: f1=0, g1=0 at the boundary �8�. We imposed additional
restrictions from the requirement that solutions should corre-
spond, in their limit for z→�, to the equilibrium solutions of
the Hamiltonian Eq. �6�. Then, based on Eq. �20� and the
restrictions mentioned above, we construct the desired solu-
tion

− �2 = ln�I�1 − �2n�I�/I2�� ,

w = − 2��n�I�/I , �22�

where n�I� is the refractive index as a function of the light
intensity.

Returning to the original variables, we obtain

− x2

�1 − 2z2n�I��2 = ln�I�1 − z2n�I��� ,

v = −
2zxn�I�

1 − 2z2n�I�
. �23�

These expressions constitute an approximate solution of the
nonlinear geometrical optical equations �8� for an initially
collimated Gaussian beam and arbitrary nonlinear refractive
index n�I�. By direct substitution of these functions into Eqs.
�8� one can verify that the remaining terms at the beam axis
are of order O�a2�.

Note that expressions �23� exhibit singularities, which
correspond to the self-focusing of the beam. The self-
focusing point zsf can be found from the condition

I�1 − z2n�I�� = 1. �24�

This is one of the central equations of this work and provides
a transparent relationship between the functional form of the
index of refraction and the self-focusing distance. This equa-
tion might be useful for experimentalists, in order to deter-
mine a priori the self-focusing distance for materials where
the function n�I� is known. And vice versa, from the experi-
mental value of the self-focusing distance, one would be able
to draw conclusions on the microscopic properties of mate-
rial.

Equation �24� can even be solved analytically for n�I�
=n2I. In this case, the self-focusing distance of a Gaussian
beam turns out to be zsf=1/2�n2I0, which is the same expres-
sion as the one obtained in Ref. �8� for this particular case of
nonlinearity. We notice that this value coincides with the
exact Khokhlov solution �3� for a beam with an initial inten-
sity distribution defined as I�x ,0�=cosh−2�x�, and the same
form of nonlinearity.

The spatial intensity distribution for the self-focusing case
is presented in Fig. 1. A different example is shown in Fig. 2,
where we plot the intensity distribution corresponding to a
material with refractive index of negative sign �−n2�, which
leads to defocusing. One can observe the broadening of the
beam for increasing propagation distance. In both cases the
change in the shape of the intensity profile upon propagation
is clearly seen. Note that the variational method is not able to
describe this effect.

If n�I� has a more complicated dependence on I, Eq. �24�
cannot be solved analytically. Nevertheless, its numerical so-
lution is significantly simpler than that of the differential
equations provided by other methods; e.g., �10,13�.

We now apply the result of Eqs. �23� to the case where
n�I� shows nonlinearities in the form of a power law n�I�
=n2IK, with K�1. We find that the intensity distribution
does not qualitatively differ from that of the previously con-
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sidered case. In Fig. 3 we plot the on-axial intensity as a
function of the propagation distance for a fixed value of in-
tensity at the border of the medium and various power de-
pendences of the refractive index on intensity. In all cases
one can observe the collapsing behavior. An increase of the
power K leads to a decrease of the self-focusing distance.

In Fig. 4 we plot the on-axial intensity distribution for a
fixed form of refractive index n=n2I2 and various values of
intensity at the border of the medium.

Clearly, and as expected, an increase of the incident in-
tensity of the beam leads to a decrease of the self-focusing
distance.

IV. MULTIPHOTON IONIZATION IN AIR

In this section, we study the situation when the index of
refraction has competing contributions, i.e., it consists of
terms of different signs. We consider the form n=n2�I
−� /n2IK�, which includes both self-focusing and -defocusing
terms. This form of nonlinearity describes the case of multi-
photon plasma formation discussed above. One can notice
that in realistic optical media the coefficient � related to
multiphoton ionization is sufficiently smaller than the Kerr
nonlinearity n2 that our perturbative calculations are still
valid.

Substituting n=n2�I−� /n2IK� into Eqs. �23�, we get the
spatial intensity distribution for the process of nonlinear self-
focusing accompanied by the multiphoton ionization. The
corresponding on-axial intensity distribution for this case is
presented in Fig. 5. We analyze the effect by assuming dif-
ferent types of defocusing terms.

In contrast to the collapsing or broadening behavior
shown in the previous section, we see in Fig. 5 that the
intensity increases with the propagation distance and
achieves saturation at a given value, which depends on the
form of the defocusing term. This saturation value corre-
sponds to an equilibrium of the Hamiltonian Eq. �6�, and
remains stationary during the beam propagation as long as
the energy loss is not taken into account in Eqs. �2�. Such a
spatial intensity distribution is referred to as the self-guiding

FIG. 1. �Color online� Self-focusing of a laser beam in a non-
linear medium with positive refractive index n=n2I�n2I0=0.3�. In-
tensity distribution I / I0 versus propagation distance z /w0 and radius
x0 /x0. Intensity is normalized with respect to its peak value at the
entrance plane of the nonlinear medium, I0. w0 is the initial beam
radius. The peak intensity tends to infinity at the self-focusing dis-
tance zsf=1/ �2�0.3�.

FIG. 2. �Color online� Self-defocusing of a laser beam in a
nonlinear medium with negative refractive index n=n2I �n2I0=
−0.3�. Intensity distribution I / I0 versus propagation distance z /w0

and radius x /w0. The peak intensity of the beam �of Gaussian form
at z=0� decreases during the propagation. I0 is the peak value of the
intensity at the entrance plane of the nonlinear medium. w0 is the
initial beam radius.

FIG. 3. Self-focusing of a laser beam in a nonlinear medium
with positive refractive index. On-axial intensity distribution for
different dependences of the refractive index on the beam intensity:
n= �a� 0.3I; �b� 0.3I2, �c� 0.3I4, �d� 0.3I6. I0 is the peak value of
the intensity at the entrance plane of the nonlinear medium. w0 is
the initial beam radius.

FIG. 4. Self-focusing of a laser beam in a nonlinear medium
with positive refractive index of the form n=n2I2. On-axial inten-
sity distribution for various initial beam intensities: I= �a� I0; �b�
2I0; �c� 4I0; �d� 6I0. I0 is the peak value of the intensity at the
entrance plane of the nonlinear medium. w0 is the initial beam
radius.
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propagation or process of filament formation in the literature:
upon propagation in a nonlinear medium the laser beam
reaches a point, which we denote again as zsf, where the
intensity sharply increases until it achieves saturation at the
stationary value.

The rate of the intensity increase at zsf depends on the
ratio between the Kerr nonlinearity and the rate of multipho-
ton absorption. Very small values of �I0

�K−1� lead to a strong
increase of the derivative �I /�z. We must point out that for
very large values of the derivative �I /�z the result of Eqs.
�23� is no longer rigorous, since it was based on the geo-
metrical optics approximation. However, this does not affect
the overall physical picture since a strong increase of I�z�
occurs only on a small interval.

Based on our analytical results given by Eqs. �23� there
are different scenarios for the propagation of a laser beam in
a medium with competing contributions to the index of re-
fraction. �i� For a system with a multiphoton contribution
comparable to or greater than the Kerr nonlinearity, a smooth
on-axial intensity increase takes place, followed by a satura-
tion at the stationary value, which is equal to I
= �n2 /�I0

�K−1��(1/�K−1�). This value is obtained from the condi-
tion that for z→� the intensity tends to the value which
provides a minimum of the functional �6� �36�. �ii� If, on the
other hand, the rate of multiphoton ionization is significantly
smaller than the Kerr nonlinearity, its contribution is insuffi-
cient to prevent self-focusing followed by a strong intensity
increase at the point zsf.

Although in those regions where �I /�z is big our analyti-
cal solutions for I= I�z� will differ from the exact solution,
since they were obtained under the geometrical optics ap-
proximation, zsf can still be rigorously obtained from the ana-
lytical expressions �23�. In fact, one could describe the in-
tensity profile I�z� as a steplike function: it increases
monotonically along the propagation axis up to the point zsf,
and for z�zsf it remains stationary at the value defined from
the extremum of �6�.

Finally, we use the analytical method presented in this
paper to study intense laser pulse propagation in air. This
problem has many aspects from the pure theoretical point of
view �e.g., the question of existence and stability of solitary
wave solutions� and also numerous applications. The prob-
lem has been analyzed theoretically in a number of papers
�see, e.g., �12,17,27��.

We apply now the analytical expressions �23� to this prob-
lem. We take the beam parameters typically used in current
experiments and a model for the air response used in numeri-
cal simulations. For the comparison, we consider the two
cases treated in Refs. �27� and �19�. In both cases, a beam
with central wavelength =800 nm is considered. The value
of the Kerr nonlinear refractive index is n2=3.2
�10−19 cm2/W, and the air atomic density at the normal
pressure is �at=2.7�1019 cm−3. The other beam parameters
considered are shown in Table I. From the input energy Ein
used in the table one can obtain the input power of the pulse
as Pin=Ein / tp

�� /2. The input intensity I0 is computed from
the input power, the transverse waist of the beam at the bor-
der of the medium, w0, and the shape of the beam. For a
Gaussian beam one gets I0=2Pin /�w0

2.
In addition to the different input laser pulse parameters,

the numerical simulations of Refs. �27� and �19� were per-
formed using slightly different response models for air. In
particular, in Ref. �19� a multiphoton ionization model based
on values Ui=14.6 eV �37� and K=10 for the mean ioniza-
tion potential and the required number of photons was used.
The multiphoton absorption cross section ��K� was taken in
the form �K�K�	0�at�1.27�10−126 cm17/W9. More re-
cent parameter estimates �28� were used in Ref. �27�: Ui
=12.06 eV, K=8, and the multiphoton absorption cross sec-
tion was set to ��K��3.7�10−95 cm13/W7.

We performed analytical calculations of the self-focusing
distance and saturation intensity using the parameters of
Table I in order to compare our analytical predictions with
the results of numerical simulations for these two cases. The
results are summarized in Table II. In addition, we show the
predictions of the variational approach for the same sets of
parameters for comparison.

FIG. 5. Filamentation in a medium exhibiting Kerr nonlinearity
and multiphoton ionization. A saturated value of on-axial intensity
is achieved due to competition between linear and power terms. n
= �a� 0.3�I−0.2I2�; �b� 0.3�I−0.2I4�; �c� 0.3�I−0.2I6�. I0 is the
peak value of the intensity at the entrance plane of the nonlinear
medium. w0 is the initial beam radius.

TABLE I. Two sets of laser beam parameters are taken for com-
parison between numerical and analytical results.

Parameter Reference �27� Reference �19�

tp 120 fs 30 fs

w0 14 mm 1 mm

Ein 50 mJ 0.2 mJ

K 8 10

��K� 3.7�10−95 cm13/W7 1.27�10−126 cm17/W9

TABLE II. Comparison of results from extensive numerical
simulations from Refs. �27� �first and second rows� and �19� �third
and fourth rows� with those provided by our analytical solutions
�Eq. �23�� for the corresponding parameters. The last column refers
to results given by the variational approach.

Numerical This work Variational

Quantity simulations Eq. �23� approach

Isat 2�1013 W/cm2 1.8�1013 W/cm2

zsf 38.7 m 37.7 m 100 m

Isat 5.75�1013 W/cm2 5.29�1013 W/cm2

zsf 1.9 m 1.2 m 4 m
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The table shows a good agreement between the analytical
results obtained in Sec. III and results of numerical simula-
tions. For both cases analyzed above, the maximal intensity
in the filament is very close to the values obtained in the
numerical experiments. In our calculations, the saturated in-
tensity is given by

Isat = �2n2�c/�K�attp�1/�K−1�. �25�

The self-focusing distance obtained by us is, however,
shorter than the one obtained numerically. This discrepancy
is due to several effects that were included in the numerical
simulations and which could not be taken into account in the
Eqs. �8�. The most important of these effects is that our cal-
culations were carried out in the frame of the geometrical
optics approximation and did not take diffraction into ac-
count. For the same reason our analytical results of Eqs. �23�
give a better agreement with the numerical results of Ref.
�27�, where the initial beam radius is 14 times greater than in
Ref. �19�. Moreover, in contrast to the models solved nu-
merically, we did not consider the energy loss in multiphoton
absorption, group velocity dispersion, and delayed Raman
contribution in the Kerr effect. Taking into account all these
effects should increase the self-focusing distance. However,
in the case of air all these terms are small and will not sig-
nificantly alter the result �37�.

In Table II we compare our resulting values with those
provided by the variational approach. We use the variational
approach equations from Ref. �38� and the set of parameters
from Refs. �27� and �19�, respectively. Clearly, the varia-
tional approach gives significant discrepancies with the nu-
merical results, in contrast to our analytical solution �23�. We
note that the same order of discrepancy between numerical
simulations and the variational approach is usual �13�. More-
over, the variational approach does not predict the saturated
value of the intensity, but infinite-intensity oscillations along
the propagation axis �10,13�.

Summarizing this part, we can conclude that the analyti-
cal result Eqs. �23� allows us to obtain the most important
quantities for the problem within quite good precision. This
opportunity is very useful for preliminary estimation preced-
ing both complicated numerical simulations and experi-
ments. In comparison with the variational approach, which is
traditionally used for these goals, the expressions �23� and
�25� are more accurate and significantly easier to obtain.

V. CONCLUSIONS AND SUMMARY

In the present paper, the problem of light propagation in
nonlinear media was considered. The electric field intensity
was assumed to be strong enough to give rise to both Kerr
nonlinearity and multiphoton ionization processes.

Up to now this problem was investigated analytically only
under the assumption of fixed �e.g., Gaussian� shape of the
beam profile. However, this ansatz has no deep physical or
mathematical ground. Consequently, the semianalytical re-
sults obtained with this restriction lead to discrepancies with
respect to results of numerical simulation and experiments,
especially for high intensities.

In the present paper we obtain approximate analytical so-
lutions without any a priori ansatz.

Based on typical estimates for parameters in current ex-
periments, we demonstrate that for several experimental con-
ditions the geometrical optics approximation yields satisfac-
tory results. Moreover, for laser beam intensity up to
1015 W/cm2, the nonlinearity parameter a�n2I is still small
enough to allow a perturbative calculation in powers of a.
Thus, the mathematical model used in this paper to describe
intense laser pulse propagation in nonlinear media is based
on the eikonal equations with a small nonlinearity parameter.

An approximate analytical solution for these equations
was constructed using the renormalization group method for
the boundary value problem. This method of mathematical
physics was formulated and discussed in �8,32,39�. It is
based on the Lie symmetry analysis of differential equations.
An introduction to this field of mathematics can be found in
the textbook �34�, or in more more detail in Refs. �24,33�.

In accordance with the renormalization group method, we
started from the renormalization group manifold, Eqs. �8�,
and constructed, to the first order of a, the Lie-Bäcklund
operator Eq. �11� with coordinates Eqs. �17� and �18�. As a
next step, we had to restrict the obtained symmetry group to
the solutions that satisfied the boundary conditions �possible
ways to do this were discussed in �8,32,39��. This restriction
yields first-order partial differential equations g1=0, f1=0,
whose solution was constructed in such a way as to provide
the correct limit for z→�.

We applied the obtained solutions Eqs. �23� to various
polynomial forms of the nonlinear index of refraction. As
expected, we observed self-induced defocusing for negative
a, and self-focusing collapse of the beam for positive a. The
position of the collapse point zsf is a function of both the
initial intensity of the beam I0 and the order of nonlinearity
K.

Special attention was paid to the propagation of a laser
beam of intensity I above the ionization threshold. This prob-
lem has been studied intensively in recent years, and most of
these works were devoted to pulse propagation in air. We
considered this problem in the frame of the results Eqs. �23�.
This allowed us to describe the process of self-guiding of
collimated Gaussian laser beams. The predicted values of the
self-focusing position and saturated beam intensity were
demonstrated to be in good agreement with numerical simu-
lations.

In comparison to the widely used ansatz-based methods,
the analytical result of Eqs. �23� might be more suitable for
the following reasons: �i� the spatial intensity distribution is
easier to find numerically from the implicit analytical expres-
sions �23� than from the system of differential equations pro-
vided by the variational approach; �ii� as demonstrated, it
yields more precise values of zsf and the filament intensity.
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