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Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-
wave cavity are carried out. The delayed photon coincident rate for forward scattering is computed and
compared with the measurements of Rempe et al. �Phys. Rev. Lett. 67, 1727 �1991�� and Foster et al. �Phys.
Rev. A 61, 053821 �2000��. It is shown that a moderate atomic beam misalignment can account for the
degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a
single adjustable parameter—the atomic beam tilt from perpendicular to the cavity axis. Departures of the
measurement conditions from the weak-field limit are discussed.
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I. INTRODUCTION

Cavity quantum electrodynamics �1–6� has as its central
objective the realization of strong dipole coupling between a
discrete transition in matter �e.g., an atom or quantum dot�
and a mode of an electromagnetic cavity. Most often strong
coupling is demonstrated through the realization of vacuum
Rabi splitting �7,8�. First realized for Rydberg atoms in su-
perconducting microwave cavities �9,10� and for transitions
at optical wavelengths in high-finesse Fabry-Pérot interfer-
ometers �11–14�, vacuum Rabi splitting was recently ob-
served in monolithic structures where the discrete transition
is provided by a semiconductor quantum dot �15–17�, and in
a coupled system of qubit and resonant circuit engineered
from superconducting electronics �18�.

More generally, vacuum Rabi spectra can be observed for
any pair of coupled harmonic oscillators �19� without the
need for strong coupling of the one-atom kind. Prior to ob-
servations for single atoms and quantum dots, similar spectra
were observed in many-atom �20–22� and many-exciton
�23,24� systems where the radiative coupling is collectively
enhanced.

The definitive signature of single-atom strong coupling is
the large effect a single photon in the cavity has on the re-
flection, side scattering, or transmission of another photon.
Strong coupling has a dramatic effect, for example, on the
delayed photon coincidence rate in forward scattering when a
cavity QED system is coherently driven on axis �25–28�.
Photon antibunching is seen at a level proportional to the
parameter 2C1=2g2 /�� �27�, where g is the atomic dipole
coupling constant, � is the atomic spontaneous emission rate,
and 2� is the photon loss rate from the cavity; the collective
parameter 2C=N2C1, with N the number of atoms, does not
enter into the magnitude of the effect when N�1. In the
one-atom case, and for 2���, the size of the effect is raised
to �2C1�2 �25,26� �see Eq. �30��.

The first demonstration of photon antibunching was made
�29� for moderately strong coupling �2C1�4.6� and N=18,
45, and 110 �effective� atoms. The measurement has subse-
quently been repeated for somewhat higher values of 2C1
and slightly fewer atoms �30,31�, and a measurement for one
trapped atom �32�, in a slightly altered configuration, has
demonstrated the so-called photon blockade effect �33–38�—

i.e., the antibunching of forward-scattered photons for coher-
ent driving of a vacuum-Rabi resonance, in which case a
two-state approximation may be made �39�, assuming the
coupling is sufficiently strong.

The early experiments of Rempe et al. �29� and those of
Mielke et al. �30� and Foster et al. �31� employ systems
designed around a Fabry-Pérot cavity mode traversed by a
thermal atomic beam. Their theoretical modeling therefore
presents a significant challenge, since for the numbers of
effective atoms used, the atomic beam carries hundreds of
atoms—typically an order of magnitude larger than the ef-
fective number �40�—into the interaction volume. The Hil-
bert space required for exact calculations is enormous
�2100–1030�; it grows and shrinks with the number of atoms,
which inevitably fluctuates over time; and the atoms move
through a spatially varying cavity mode, so their coupling
strengths are changing in time. Ideally, all of these features
should be taken into account, although certain approxima-
tions might be made.

For weak excitation, as in the experiments, the lowest
permissible truncation of the Hilbert space—when calculat-
ing two-photon correlations—is at the two-quanta level.
Within a two-quanta truncation, relatively simple formulas
can be derived so long as the atomic motion is overlooked
�27,28�. It is even possible to account for the unequal cou-
pling strengths of different atoms, and, through a Monte
Carlo average, fluctuations in their spatial distribution �29�.
A significant discrepancy between theory and experiment
nevertheless remains: Rempe et al. �29� describe how the
amplitude of the Rabi oscillation �magnitude of the anti-
bunching effect� was scaled down by a factor of 4 and a
slight shift of the theoretical curve was made in order to
bring their data into agreement with this model; the discrep-
ancy persists in the experiments of Foster et al. �31�, except
that the required adjustment is by a scale factor closer to 2
than to 4.

Attempts to account for these discrepancies have been
made but are unconvincing. Martini and Schenzle �41� report
good agreement with one of the data sets from Ref. �29�;
they numerically solve a many-atom master equation, but
under the unreasonable assumption of stationary atoms and
equal coupling strengths. The unlikely agreement results
from using parameters that are very far from those of the
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experiment—most importantly, the dipole coupling constant
is smaller by a factor of approximately 3.

Foster et al. �31� report a rather good theoretical fit to one
of their data sets. It is obtained by using the mentioned ap-
proximations and adding a detuning in the calculation to ac-
count for the Doppler broadening of a misaligned atomic
beam. They state that “Imperfect alignment . . . can lead to a
tilt from a perpendicular of as much as 1°.” They suggest
that the mean Doppler shift is offset in the experiment by
adjusting the driving laser frequency and account for the dis-
tribution about the mean in the model. There does appear to
be a difficulty with this procedure, however, since while such
an offset should work for a ring cavity, it is unlikely to do so
in the presence of the counterpropagating fields of a Fabry-
Pérot. Indeed, we are able to successfully simulate the pro-
cedure only for the ring-cavity case �Sec. IV C�.

The likely candidates to explain the disagreement be-
tween theory and experiment have always been evident. For
example, Rempe et al. �29� state

Apparently the transient nature of the atomic motion
through the cavity mode �which is not included here or
in Ref. �7�� has a profound effect in decorrelating the
otherwise coherent response of the sample to the es-
cape of a photon.

and also,

Empirically, we also know that �g�2��0�−1� is reduced
somewhat because the weak-field limit is not strictly
satisfied in our measurements.

To these two observations we should add—picking up on the
comment in �31�—that in a standing-wave cavity an atomic
beam misalignment would make the decorrelation from
atomic motion a great deal worse.

Thus, the required improvements in the modeling are �i� a
serious accounting for atomic motion in a thermal atomic
beam, allowing for up to a few hundred interacting atoms
and a velocity component along the cavity axis, and �ii� ex-
tension of the Hilbert space to include 3, 4, etc. quanta of
excitation, thus extending the model beyond the weak-field
limit. The first requirement is entirely achievable in a quan-
tum trajectory simulation �42–46�, while the second, even
with recent improvements in computing power, remains a
formidable challenge.

In this paper we offer an explanation of the discrepancies
between theory and experiment in the measurements of Refs.
�29,31�. We perform ab initio quantum trajectory simulations
in parallel with a Monte Carlo simulation of a tilted atomic
beam. The parameters used are listed in Table I: Set 1 corre-
sponds to the data displayed in Fig. 4�a� of Ref. �29�, and set
2 to the data displayed in Fig. 4 of Ref. �31�. All parameters
are measured quantities—or are inferred from measured
quantities—and the atomic beam tilt alone is varied to opti-
mize the data fit. Excellent agreement is demonstrated for
atomic beam misalignments of approximately 10 mrad �a
little over 1 /2°�. These simulations are performed using a
two-quanta truncation of the Hilbert space.

Simulations based upon a three-quanta truncation are also
carried out, which, although not adequate for the experimen-
tal conditions, can begin to address physics beyond the

weak-field limit. From these, an inconsistency with the int-
racavity photon number reported by Foster et al. �31� is
found.

Our model is described in Sec. II, where we formulate the
stochastic master equation used to describe the atomic beam,
its quantum trajectory unraveling, and the two-quanta trun-
cation of the Hilbert space. The previous modeling on the
basis of a stationary-atom approximation is reviewed in Sec.
III and compared with the data of Rempe et al. �29� and
Foster et al. �31�. The effects of atomic beam misalignment
are discussed in Sec. IV; here the results of simulations with
a two-quanta truncation are presented. Results obtained with
a three-quanta truncation are presented in Sec. V, where the
issue of intracavity photon number is discussed. Our conclu-
sions are stated in Sec. VI.

II. CAVITY QED WITH ATOMIC BEAMS

A. Stochastic master equation: Atomic beam simulation

Thermal atomic beams have been used extensively for
experiments in cavity QED �9–12,20–22,29–31�. The experi-
mental setups under consideration are described in detail in
Refs. �47,48�. As typically, the beam is formed from an
atomic vapor created inside an oven, from which atoms es-
cape through a collimated opening. We work from the stan-
dard theory of an effusive source from a thin-walled orifice

�49�, for which for an effective number N̄eff of intracavity

atoms �11,40� and cavity mode waist �0 �N̄eff is the average
number of atoms within a cylinder of radius w0 /2�, the av-
erage escape rate is

R = 64N̄effv̄beam/3�2w0, �1�

with mean speed in the beam

TABLE I. Parameters used in the simulations. Set 1 is taken
from Ref. �29� and set 2 from Ref. �31�.

Parameter Set 1 Set 2

Cavity halfwidth
� /2�

0.9 MHz 7.9 MHz

Dipole coupling constant
gmax/�

3.56 1.47

Atomic linewidth
� /�

5.56 0.77

Mode waist
w0

50 �m 21.5 �m

Wavelength
�

852 nm �Cs� 780 nm �Rb�

Effective atom number

N̄eff

18 13

Oven temperature
T

473 K 430 K

Mean speed in oven
v̄oven

274.5 m/s 326.4 m/s

Mean speed in beam
v̄beam

323.4 m/s 384.5 m/s
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v̄beam = �9�kBT/8M , �2�

where kB is Boltzmann’s constant, T is the oven temperature,
and M is the mass of an atom; the beam has atomic density

� = 4N̄eff/�w0
2l . �3�

where l is the beam width, and distribution of atomic speeds

P�v�dv = 2u3�v�e−u2�v�du�v� , �4�

u�v��2v /��v̄oven, where

v̄oven = �8kBT/�M = �8/3��v̄beam �5�

is the mean speed of an atom inside the oven, as calculated
from the Maxwell-Boltzmann distribution. Note that v̄beam is
larger than v̄oven because those atoms that move faster inside
the oven have a higher probability of escape.

In an open-sided cavity, neither the interaction volume nor
the number of interacting atoms is well defined; the cavity
mode function and atomic density are the well-defined quan-
tities. Clearly, though, as the atomic dipole coupling strength
decreases with the distance of the atom from the cavity axis,
those atoms located far away from the axis may be ne-
glected, introducing, in effect, a finite interaction volume.
How far from the cavity axis, however, is far enough? One
possible criterion is to require that the interaction volume
taken be large enough to give an accurate result for the col-
lective coupling strength, or, considering its dependence on
atomic locations �at fixed average density�, the probability
distribution over collective coupling strengths. According to
this criterion, the actual number of interacting atoms is typi-

cally an order of magnitude larger than N̄eff �40�. If, for ex-
ample, one introduces a cutoff parameter F�1, and defines
the interaction volume by �40,50,51�

VF � 	�x,y,z�:g�x,y,z� 	 Fgmax
 , �6�

with

g�x,y,z� = gmax cos�kz�exp�− �x2 + y2�/w0
2� , �7�

the spatially varying coupling constant for a standing-wave
TEM00 cavity mode �52�—wavelength �=2� /k—the com-
puted collective coupling constant is �40�

�N̄effgmax → �N̄eff
F gmax,

with

N̄eff
F = �2N̄eff/����1 − 2F2�cos−1 F + F�1 − F2� . �8�

For the choice F=0.1, one obtains N̄eff
F =0.98N̄eff, a reduction

of the collective coupling strength by 1%, and the interaction

volume—radius r�3�w0 /2�—contains approximately 9N̄eff

atoms on average. This is the choice made for the simula-
tions with a three-quanta truncation reported in Sec. V. When
adopting a two-quanta truncation, with its smaller Hilbert
space for a given number of atoms, we choose F=0.01,

which yields N̄eff
F =0.9998N̄eff and r�4.3�w0 /2�, and ap-

proximately 18N̄eff atoms in the interaction volume on aver-
age.

In fact, the volume used in practice is a little larger than
VF. In the course of a Monte Carlo simulation of the atomic
beam, atoms are created randomly at rate R on the plane x
=−w0

��ln F�. At the time t0
j of its creation, each atom is as-

signed a random position and velocity �j labels a particular
atom�,

r j�t0
j � = �− w0

��ln F�
yj�t0

j �
zj�t0

j �
�, vj = v j�cos 


0

sin 

� , �9�

where yj�t0
j � and zj�t0

j � are random variables, uniformly dis-
tributed on the intervals �yj�t0

j � � �w0
��ln F� and �zj�t0

j � �
�� /4, respectively, and v j is sampled from the distribution
of atomic speeds �Eq. �4��; 
 is the tilt of the atomic beam
away from perpendicular to the cavity axis. The atom moves
freely across the cavity after its creation, passing out of the
interaction volume on the plane x=w0

��ln F�. Thus the inter-
action volume has a square rather than circular cross section
and measures 2��ln F�w0 on a side. It is larger than VF by
approximately 30%.

Atoms are created in the ground state and returned to the
ground state when they leave the interaction volume. On
leaving an atom is disentangled from the system by compar-
ing its probability of excitation with a uniformly distributed
random number r, 0�r�1, and deciding whether or not it
will—anytime in the future—spontaneously emit; thus, the
system state is projected onto the excited state of the leaving
atom �the atom will emit� or its ground state �it will not emit�
and propagated forward in time.

Note that the effects of light forces and radiative heating
are neglected. At the thermal velocities considered, typically
the ratio of kinetic energy to recoil energy is of order 108,
while the maximum light shift �gmax �assuming one photon
in the cavity� is smaller than the kinetic energy by a factor of
107; even if the axial component of velocity only is consid-
ered, these ratios are as high as 104 and 103 with 

10 mrad, as in Figs. 10 and 11. In fact, the mean intracav-
ity photon number is considerably less than one �Sec. V�;
thus, for example, the majority of atoms traverse the cavity
without making a single spontaneous emission.

Under the atomic beam simulation, the atom number N�t�,
and locations r j�t�, j=1, . . . ,N�t�, are changing in time;
therefore, the atomic state basis is dynamic, growing and
shrinking with N�t�. We assume all atoms couple resonantly
to the cavity mode, which is coherently driven on resonance
with driving field amplitude E. Then, including spontaneous
emission and cavity loss, the system is described by the sto-
chastic master equation in the interaction picture

̇ = E�â† − â,� + �
j=1

N�t�

g„r j�t�…�â†�̂ j− − â�̂ j+,�

+
�

2 �
j=1

N�t�

�2�̂ j−�̂ j+ − �̂ j+�̂ j− − �̂ j+�̂ j−�

+ ��2ââ† − â†â − â†â� , �10�

with dipole coupling constants
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g„r j�t�… = gmax cos�kzj�t��exp�−
xj

2�t� + yj
2�t�

w0
2 � , �11�

where â† and â are creation and annihilation operators for the
cavity mode, and �̂ j+ and �̂ j−, j=1, . . . ,N�t�, are raising and
lowering operators for two-state atoms.

B. Quantum trajectory unraveling

In principle, the stochastic master equation might be
simulated directly, but it is impossible to do so in practice.

Table I lists effective numbers of atoms N̄eff=18 and N̄eff
=13. For cutoff parameter F=0.01 and an interaction volume
of approximately 1.3VF �see the discussion below Eq. �8��,
an estimate of the number of interacting atoms gives N�t�
1.3�18N̄eff�420 and 300, respectively, which means that
even in a two-quanta truncation the size of the atomic state
basis �105 states� is far too large to work with density
matrix elements. We therefore make a quantum trajectory
unraveling of Eq. �10� �42–46�, where, given our interest in
delayed photon coincidence measurements, conditioning of
the evolution upon direct photoelectron counting records is
appropriate: the �unnormalized� conditional state satisfies the
nonunitary Schrödinger equation

d��̄REC�
dt

=
1

i�
ĤB�t���̄REC� , �12�

with non-Hermitian Hamiltonian

ĤB�t�/i� = E�â† − â� + �
j=1

N�t�

g„r j�t�…�â†�̂ j− − â�̂ j+�

− �â†â −
�

2 �
j=1

N�t�

�̂ j+�̂ j−, �13�

and this continuous evolution is interrupted by quantum
jumps that account for photon scattering. There are N�t�+1
scattering channels and correspondingly N�t�+1 possible
jumps:

��̄REC� → â��̄REC� , �14a�

for forward scattering—i.e., the transmission of a photon by
the cavity—and

��̄REC� → �̂ j−��̄REC�, j = 1, . . . ,N�t� , �14b�

for scattering to the side �spontaneous emission�. These
jumps occur, in time step �t, with probabilities

Pforward = 2��â†â�REC�t , �15a�

and

Pside
�j� = ���̂ j+�̂ j−�REC�t, j = 1, . . . ,N�t� , �15b�

otherwise, with probability

1 − Pforward − �
j=1

N�t�

Pside
�j� ,

the evolution under Eq. �12� continues.

For simplicity, and without loss of generality, we assume
a negligible loss rate at the cavity input mirror compared
with that at the output mirror. Under this assumption, back-
ward scattering quantum jumps need not be considered. Note
that non-Hermitian Hamiltonian �13� is explicitly time de-
pendent and stochastic, due to the Monte Carlo simulation of
the atomic beam, and the normalized conditional state is

��REC� =
��̄REC�

���̄REC��̄REC�
. �16�

C. Two-quanta truncation

Even as a quantum trajectory simulation, a full implemen-
tation of our model faces difficulties. The Hilbert space is
enormous if we are to consider a few hundred two-state at-
oms, and a smaller collective-state basis is inappropriate, due
to spontaneous emission and the coupling of atoms to the
cavity mode at unequal strengths. If, on the other hand, the
coherent excitation is sufficiently weak, the Hilbert space
may be truncated at the two-quanta level. The conditional
state is expanded as

��REC�t�� = �00� + ��t��10� + �
j=1

N�t�

� j�t��0j� + ��t��20�

+ �
j=1

N�t�

� j�t��1j� + �
j�k=1

N�t�

� jk�t��0jk� , �17�

where the state �n0� has n=0,1 ,2 photons inside the cavity
and no atoms excited, �0j� has no photon inside the cavity
and the jth atom excited, �1j� has one photon inside the cav-
ity and the jth atom excited, and �0jk� is the two-quanta state
with no photons inside the cavity and the jth and kth atoms
excited.

The truncation is carried out at the minimum level permit-
ted in a treatment of two-photon correlations. Since each
expansion coefficient need be calculated to dominant order
in E /� only, the non-Hermitian Hamiltonian �13� may be
simplified as

ĤB�t�/i� = Eâ† + �
j=1

N�t�

g„r j�t�…�â†�̂ j− − â�̂ j+�

− �â†â −
�

2 �
j=1

N�t�

�̂ j+�̂ j−, �18�

dropping the term −Eâ from the right-hand side. While this
self-consistent approximation is helpful in the analytical cal-
culations reviewed in Sec. III, we do not bother with it in the
numerical simulations.

Truncation at the two-quanta level may be justified by
expanding the density operator, along with the master equa-
tion, in powers of E /� �25,26,53�. One finds that, to domi-
nant order, the density operator factorizes as a pure state,
thus motivating the simplification used in all previous treat-
ments of photon correlations in many-atom cavity QED
�27,28�. The quantum trajectory formulation provides a clear
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statement of the physical conditions under which this ap-
proximation holds.

Consider first that there is a fixed number of atoms N and
their locations are also fixed. Under weak excitation, the
jump probabilities �15a� and �15b� are very small, and quan-
tum jumps are extremely rare. Then, in a time of order 2��
+� /2�−1, the continuous evolution �12� takes the conditional
state to a stationary state, satisfying

ĤB��ss� = 0, �19�

without being interrupted by quantum jumps. In view of the
overall rarity of these jumps, to a good approximation the
density operator is

ss = ��ss���ss� , �20�

or, if we recognize now the role of the atomic beam, the
continuous evolution reaches a quasistationary state, with
density operator

ss = ��qs�t����qs�t�� , �21�

where ��qs�t�� satisfies Eq. �12� �uninterrupted by quantum
jumps� and the overbar indicates an average over the fluc-
tuations of the atomic beam.

This picture of a quasistationary pure-state evolution re-
quires the time between quantum jumps to be much larger
than 2��+� /2�−1, the time to recover the quasistationary
state after a quantum jump has occurred. In terms of photon
scattering rates, we require

Rforward + Rside �
1

2
�� + �/2� , �22�

where

Rforward = 2��â†â�REC, �23a�

Rside = ��
j=1

N�t�

��̂ j+�̂ j−�REC. �23b�

When considering delayed photon coincidences, after a first
forward-scattered photon is detected, let us say at time tk, the
two-quanta truncation �Eq. �17�� is temporarily reduced by
the associated quantum jump to a one-quanta truncation as
follows:

��REC�tk�� → ��REC�tk
+�� ,

where

��REC�tk
+�� = �00� + ��tk

+��10� + �
j=1

N�tk�

� j�tk
+��0j� , �24�

with

��tk
+� =

�2��tk�
���tk��

, � j�tk
+� =

��tk�
���tk��

. �25�

Then the probability for a subsequent photon detection at tk
+� is

Pforward = 2����tk + ���2�t . �26�

Clearly, if this probability is to be computed accurately �to
dominant order� no more quantum jumps of any kind should
occur before the full two-quanta truncation has been recov-
ered in its quasistationary form; in the experiment a forward-
scattered “start” photon should be followed by a “stop” pho-
ton without any other scattering events in between. We
discuss how well this condition is met by Rempe et al. �29�
and Foster et al. �31� in Sec. V. Its presumed validity is the
basis for comparing their measurements with formulas de-
rived for the weak-field limit.

III. DELAYED PHOTON COINCIDENCES
FOR STATIONARY ATOMS

Before we move on to full quantum trajectory simula-
tions, including the Monte Carlo simulation of the atomic
beam, we review previous calculations of the delayed photon
coincidence rate for forward scattering with the atomic mo-
tion neglected. Beginning with the original calculation of
Carmichael et al. �27�, which assumes a fixed number of

atoms, denoted here by N̄eff, all coupled to the cavity mode at
strength gmax, we then relax the requirement for equal cou-
pling strengths �29�; finally, a Monte Carlo average over the
spatial configuration of atoms, at fixed density �, is taken.
The inadequacy of modeling at this level is shown by com-
paring the computed correlation functions with the reported
data sets.

A. Ideal collective coupling

For an ensemble of N̄eff atoms located on the cavity axis
and at antinodes of the standing wave, the non-Hermitian
Hamiltonian �18� is taken over in the form

ĤB/i� = Eâ† + gmax�â†Ĵ− − âĴ+� − �â†â −
�

4
�Ĵz + N̄eff� ,

�27�

where

Ĵ± � �
j=1

N̄eff

�̂ j±, Ĵz � �
j=1

N̄eff

�̂ jz �28�

are collective atomic operators, and we have written
2�̂ j+�̂ j−= �̂ jz+1. The conditional state in the two-quanta
truncation is now written more simply as

��REC�t�� = �00� + ��t��10� + ��t��01�

+ ��t��20� + ��t��11� + ��t��02� , �29�

where �nm� is the state with n photons in the cavity and m
atoms excited, the m-atom state being a collective state. Note
that, in principle, side-scattering denies the possibility of us-
ing a collective atomic state basis. While spontaneous emis-
sion from a particular atom results in the transition �n1�
→ �̂ j− �n1�→ �n0�, which remains within the collective
atomic basis, the state �̂ j− �n2� lies outside it; thus, side-
scattering works to degrade the atomic coherence induced by
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the interaction with the cavity mode. Nevertheless, its rate is
assumed negligible in the weak-field limit �Eq. �22��, and
therefore a calculation carried out entirely within the collec-
tive atomic basis is permitted.

The delayed photon coincidence rate obtained from
��REC�tk��= ��ss� and Eqs. �24� and �26� yields the second-
order correlation function �27,28,54�

g�2���� = �1 − 2C1
�

1 + �

2C

1 + 2C − 2C1�/�1 + ��

�e−�1/2���+�/2���cos���� +
1
2 �� + �/2�

�
sin������2

,

�30�

with vacuum Rabi frequency

� =�N̄effgmax
2 −

1

4
�� − �/2�2, �31�

where

� � 2�/� , �32�

and

C � N̄effC1, C1 � gmax
2 /�� . �33�

For N̄eff�1, as in parameter sets 1 and 2 �Table I�, the de-
viation from second-order coherence—i.e., g�2����=1—is set
by 2C1� / �1+�� and provides a measure of the single-atom
coupling strength. For small time delays the deviation is in
the negative direction, signifying a photon antibunching ef-
fect. It should be emphasized that while second-order coher-
ence serves as an unambiguous indicator of strong coupling
in the single-atom sense, vacuum Rabi splitting—the fre-
quency �—depends on the collective coupling strength
alone.

Both experiments of interest are firmly within the strong
coupling regime, with 2C1� / �1+��=1.2 for that of Rempe et
al. �29� �2C1=4.6�, and 2C1� / �1+��=4.0 for that of Foster
et al. �31� �2C1=5.6�. Figure 1 plots the correlation function
obtained from Eq. �30� for parameter sets 1 and 2. Note that
since the expression is a perfect square, the apparent photon
bunching of curve �b� is, in fact, an extrapolation of the

antibunching effect of curve �a�; the continued nonclassical-
ity of the correlation function is expressed through the first
two side peaks, which, being taller than the central peak, are
classically disallowed �26,30�. A measurement of the intra-
cavity electric field perturbation following a photon detection
�the square root of Eq. �30�� presents a more unified picture
of the development of the quantum fluctuations with increas-
ing 2C1� / �1+��. Such a measurement may be accomplished
through conditional homodyne detection �55–57�.

In Fig. 1 the magnitude of the antibunching effect—the
amplitude of the vacuum Rabi oscillation—is larger than ob-
served in the experiments by approximately an order of mag-
nitude �see Fig. 3�. Significant improvement is obtained by
taking into account the unequal coupling strengths of atoms
randomly distributed throughout the cavity mode.

B. Fixed atomic configuration

Rempe et al. �29� extended the above treatment to the
case of unequal coupling strengths, adopting the non-
Hermitian Hamiltonian �18� while keeping the number of
atoms and the atom locations fixed. For N atoms in a spatial
configuration 	r j
, the second-order correlation function
takes the same form as in Eq. �30�—still a perfect square—
but with a modified amplitude of oscillation �29,58� as fol-
lows:

g	rj

�2� ��� = �1 −

�1 + ��1 + C	rj

��S	rj


− 2C	rj


1 + �1 + �/2�S	rj


�e−�1/2���+�/2���cos���� +
1
2 �� + �/2�

�
sin������2

,

�34�

with

C	rj

� �

j=1

N

C1j, C1j � g2�r j�/�� , �35�

S	rj

� �

j=1

N
2C1j

1 + ��1 + C	rj

� − 2�C1j

, �36�

where the vacuum Rabi frequency is given by Eq. �31� with
an effective number of interacting atoms

N̄eff → Neff
	rj
 � �

j=1

N

g2�r j�/gmax
2 . �37�

C. Monte Carlo average and comparison
with experimental results

In reality the number of atoms and their configuration
both fluctuate in time. These fluctuations are readily taken
into account if the typical atomic motion is sufficiently slow;
one takes a stationary-atom Monte Carlo average over con-
figurations, adopting a finite interaction volume VF and com-
bining a Poisson average over the number of atoms N with
an average over their uniformly distributed positions r j, j
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(b)
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FIG. 1. Second-order correlation function for ideal coupling
�Eq. �30��: �a� parameter set 1, �b� parameter set 2.
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=1, . . . ,N. In particular, the effective number of interacting
atoms becomes

N̄eff = Neff
	rj
, �38�

where the overbar denotes the Monte Carlo average.
Although it is not justified by the velocities listed in Table

I, a stationary-atom approximation was adopted when mod-
eling the experimental results in Refs. �29,31�. The correla-
tion function was computed as the Monte Carlo average

g�2���� = g	rj

�2� ��� , �39�

with g	rj

�2� ��� given by Eq. �34�. In fact, taking a Monte Carlo

average over normalized correlation functions in this way is
not, strictly, correct. In practice, first the delayed photon co-
incidence rate is measured, as a separate average, then sub-
sequently normalized by the average photon counting rate.
The more appropriate averaging procedure is therefore

g�2���� =
�â†�0�â†���â���â�0��	rj


��â†â�	rj

�2

, �40�

or, in a form revealing more directly the relationship to Eq.
�34�, the average is to be weighted by the square of the
photon number as follows:

g�2���� =
��â†â�	rj


�2g	rj

�2� ���

��â†â�	rj

�2

, �41�

where

�â†â�	rj

= � E/�

1 + 2C	rj

�2

�42�

is the intracavity photon number expectation—in stationary
state ��ss� �Eq. �19��—for the configuration of atoms 	r j
.

Note that the statistical independence of forward-scat-
tering events that are widely separated in time yields the
limit

lim
�→�

g	rj

�2� ��� → 1, �43�

which clearly holds for the average �39� as well. Equation
�41�, on the other hand, yields

lim
�→�

g�2���� → ��â†â�	rj

�2/��â†â�	rj


�2 	 1. �44�

A value greater than unity arises because while there are
fluctuations in N and 	r j
, their correlation time is infinite
under the stationary-atom approximation; the expected decay
of the correlation function to unity is therefore not observed.

The two averaging schemes are compared in the plots of
Fig. 2, which suggest that atomic beam fluctuations should
have at least a small effect in the experiments; although, just
how important they turn out to be is not captured at all by the
figure. The actual disagreement between the model and the
data is displayed in Fig. 3. The measured photon antibunch-
ing effect is significantly smaller than predicted in both ex-

periments: smaller by a factor of 4 in Fig. 3�a�, as the authors
of Ref. �29� explicitly state, and by a factor of a little more
than 2 in Fig. 3�b�.

The rest of the paper is devoted to a resolution of this
disagreement. It certainly arises from a breakdown of the
stationary-atom approximation as suggested by Rempe et al.
�29�. Physics beyond the addition of a finite correlation time
for fluctuations of N�t� and 	r j�t�
 is needed, however. We
aim to show that the single most important factor is the
alignment of the atomic beam.

IV. DELAYED PHOTON COINCIDENCES
FOR AN ATOMIC BEAM

We return now to the full atomic beam simulation out-
lined in Sec. II. With the beam perpendicular to the cavity
axis, the rate of change of the dipole coupling constants
might be characterized by the cavity-mode transit time, de-
termined from the mean atomic speed and the cavity-mode
waist. Taking the values of these quantities from Table I,
the experiment of Rempe et al. has w0 / v̄oven=182 nsec,
which should be compared with a vacuum-Rabi-oscillation
decay time 2��+� /2�−1=94 nsec, while Foster et al. have
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FIG. 2. Second-order correlation function with Monte Carlo av-
erage over number of atoms N and configuration 	r j
. The average
is taken according to Eq. �39� �thin line� and Eq. �41� �thick line�
for �a� parameter set 1 and �b� parameter set 2.
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FIG. 3. Second-order correlation function with Monte Carlo av-
erage, Eq. �41�, over number of atoms N and configuration 	r j

compared with the experimental data from �a� Fig. 4�a� of Ref. �29�
�parameter set 1� and �b� Fig. 4 of Ref. �31� �parameter set 2�.

EFFECT OF ATOMIC BEAM ALIGNMENT ON PHOTON… PHYSICAL REVIEW A 76, 043821 �2007�

043821-7



w0 / v̄oven=66 nsec and a decay time 2��+� /2�−1=29 nsec.
In both cases, the ratio between the transit time and decay
time is 2; thus, we might expect the internal state dynamics
to follow the atomic beam fluctuations adiabatically, to a
good approximation at least, thus providing a justifying for
the stationary-atom approximation. Figure 3 suggests that
this is not so. Our first task, then, is to see how well in
practice the adiabatic following assertion holds.

A. Monte Carlo simulation of the atomic beam:
Effect of beam misalignment

Atomic beam fluctuations induce fluctuations of the intra-
cavity photon number expectation, as illustrated by the ex-
amples in Figs. 4 and 5. Consider the two curves �a� in these
figures first, where the atomic beam is aligned perpendicular
to the cavity axis. The ringing at regular intervals along these
curves is the transient response to enforced cavity-mode
quantum jumps—jumps enforced to sample the quantum
fluctuations efficiently �see Sec. IV B�. Ignoring these pertur-
bations for the present, we see that with the atomic beam
aligned perpendicular to the cavity axis the fluctuations
evolve more slowly than the vacuum Rabi oscillation—at a
similar rate, in fact, to the vacuum Rabi oscillation decay. As
anticipated, an approximate adiabatic following is plausible.

Consider now the two curves �b�; these introduce a
9.6 mrad misalignment of the atomic beam, following up on
the comment of Foster et al. �31� that misalignments as large
as 1° �17.45 mrad� might occur. The changes in the fluctua-
tions are dramatic. First, their size increases, though by less

on average than it might appear. The altered distributions of
intracavity photon numbers are shown in Fig. 6. The means
are not so greatly changed, but the variances �measured rela-
tive to the square of the mean� increase by a factor of 2.25 in
Fig. 4 and 1.45 in Fig. 5. Notably, the distribution is asym-
metric, so the most probable photon number lies below the
mean. The asymmetry is accentuated by the tilt, especially
for parameter set 1 �Fig. 6�a��.

More important than the change in amplitude of the fluc-
tuations, though, is the increase in their frequency. Again, the
most significant effect occurs for parameter set 1 �Fig. 4�,
where the frequency with a 9.6 mrad tilt approaches that of
the vacuum Rabi oscillation itself; clearly, there can be no
adiabatic following under these conditions. Indeed, the net
result of the changes from Fig. 4�a� to Fig. 4�b� is that the
quantum fluctuations, initiated in the simulation by quantum
jumps, are completely lost in a background of classical noise
generated by the atomic beam. It is clear that an atomic beam
misalignment of sufficient size will drastically reduce the
photon antibunching effect observed.

For a more quantitative characterization of its effect, we
carried out quantum trajectory simulations in a one-quantum
truncation �without quantum jumps� and computed the semi-
classical photon number correlation function

gsc
�2���� =

��â†â��t��REC��â†â��t + ���REC

���â†â��t��REC�2
, �45�

where the overbar denotes a time average �in practice an
average over an ensemble of sampling times tk�. The photon
number expectation was calculated in two ways: first, by
assuming that the conditional state adiabatically follows the
fluctuations of the atomic beam, in which case, from Eq.
�42�, we may write

��â†â��t��REC = � E/�

1 + 2C	rj�t�

�2

, �46�

and second, without the adiabatic assumption, in which case
the photon number expectation was calculated from the state
vector in the normal way.
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FIG. 4. Typical trajectory of the intracavity photon number ex-
pectation for parameter set 1: �a� atomic beam aligned perpendicu-
lar to the cavity axis, �b� with a 9.6 mrad tilt of the atomic beam.
The driving field strength is E /�=2.5�10−2.
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FIG. 5. As in Fig. 4 but for parameter set 2.
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FIG. 6. Distribution of intracavity photon number expectation
with the atom beam perpendicular to the cavity axis �thin line� and
a 9.6 mrad tilt of the atomic beam �thick line�: �a� parameter set 1
and �b� parameter set 2.
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Correlation functions computed for different atomic beam
tilts according to this scheme are plotted in Figs. 7 and 8. In
each case the curves shown in the left column assume adia-
batic following while those in the right column do not. The
uppermost curves �frames �a� and �e�� hold for a beam
aligned perpendicular to the cavity axis and those below
�frames �b�–�d� and �f�–�h�� show the effects of increasing
misalignment of the atomic beam.

A number of comments are in order. Consider first the
aligned atomic beam. Correlation times read from the figures
are in approximate agreement with the cavity-mode transit
times computed above: the numbers are 191 and 167 nsec
from frames �a� and �e�, respectively, of Fig. 7, compared
with w0 / v̄oven=182 nsec; and 68 and 53 nsec from frames �a�
and �e� of Fig. 8, respectively, compared with w0 / v̄oven
=66 nsec. The numbers show a small decrease in the corre-
lation time when the adiabatic following assumption is lifted
�by 10–20 %� but no dramatic change; and there is a corre-
sponding small increase in the fluctuation amplitude.

Consider now the effect of an atomic beam tilt. Here the
changes are significant. They are most evident in frames �d�
and �h� of each figure, but clear already in frames �c� and �g�
of Fig. 7, and frames �b� and �f� of Fig. 8, where the tilts are
close to the tilt used to generate Figs. 4�b� and 5�b� �also to
those used for the data fits in Sec. IV B�. There is first an
increase in the magnitude of the fluctuations—the factors
2.25 and 1.45 noted above—but, more significant, a separa-
tion of the decay into two pieces: a central component, with
short correlation time, and a much broader component with
correlation time larger than w0 / v̄oven. Thus, for a misaligned
atomic beam, the dynamics become notably nonadiabatic.

Our explanation of the nonadiabaticity begins with the
observation that any tilt introduces a velocity component

along the standing wave, with transit times through a quarter
wavelength of � /4v̄oven sin 
=86 nsec in the Rempe et al.
�29� experiment and � /4v̄oven sin 
=60 nsec in the Foster et
al. �31� experiment. Compared with the transit time w0 / v̄oven,
these numbers have moved closer to the decay times of the
vacuum Rabi oscillation—94 and 29 nsec, respectively. Note
that the distances traveled through the standing wave during
the cavity-mode transit, in time w0 / v̄oven, are w0 sin 

=0.53� �parameter set 1� and w0 sin 
=0.28� �parameter set
2�. It is difficult to explain the detailed shape of the correla-
tion function under these conditions. Speaking broadly,
though, fast atoms produce the central component, the short
correlation time associated with nonadiabatic dynamics,
while slow atoms produce the background component with
its long correlation time, which follows from an adiabatic
response. Increased tilt brings greater separation between the
responses to fast and slow atoms.

Simple functional fits to the curves in frame �g� of Fig. 7
and frame �f� of Fig. 8 yield short correlation times of 40–50
and 20 nsec, respectively. Consistent numbers are recovered
by adding the decay rate of the vacuum Rabi oscillation to
the inverse travel time through a quarter wavelength; thus,
�1/94+1/86�−1 nsec=45 nsec and �1/29+1/60�−1 nsec
=20 nsec, respectively, in good agreement with the correla-
tion times deduced from the figures.

The last and possibly most important thing to note is the
oscillation in frames �g� and �h� of Fig. 7 and frame �h� of
Fig. 8. Its frequency is the vacuum Rabi frequency, which
shows unambiguously that the oscillation is caused by a
nonadiabatic response of the intracavity photon number to
the fluctuations of the atomic beam. For the tilt used in frame
�g� of Fig. 7, the transit time through a quarter wavelength is
approximately equal to the vacuum-Rabi-oscillation decay
time, while it is twice that in frame �f� of Fig. 8. As the tilts
used are close to those giving the best data fits in Sec. IV B,
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FIG. 8. As in Fig. 7 but for parameter set 2 and atomic beam
tilts of ��a� and �e�� 0 mrad, ��b� and �f�� 10 mrad, ��c� and �g��
17 mrad, and ��d� and �h�� 34 mrad.

g(2)
sc

κτ

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

1.15

1

1.15

1

1.35

1

1.35

1

40-4 40-4

FIG. 7. Semiclassical correlation function for parameter set 1,
with adiabatic following of the photon number �left column� and
without adiabatic following �right column�; for atomic beam tilts of
��a� and �e�� 0 mrad, ��b� and �f�� 4 mrad, ��c� and �g�� 9 mrad, and
��d� and �h�� 13 mrad.
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this would suggest that atomic beam misalignment places the
experiment of Rempe et al. �29� further into the nonadiabatic
regime than that of Foster et al. �31�, though the tilt is similar
in the two cases. The observation is consistent with the
greater contamination by classical noise in Fig. 4�b� than in
Fig. 5�b� and with the larger departure of the Rempe et al.
data from the stationary-atom model in Fig. 3.

B. Simulation results and data fits

The correlation functions in the right-hand column of
Figs. 7 and 8 account for atomic-beam-induced classical
fluctuations of the intracavity photon number. While some
exhibit a vacuum Rabi oscillation, the signals are, of course,
photon bunched; a correlation function like that of Fig. 7�g�
provides evidence of collective strong coupling, but not of
strong coupling of the one-atom kind, for which a photon
antibunching effect is needed. We now carry out full quan-
tum trajectory simulations in a two-quanta truncation to re-
cover the photon antibunching effect—i.e., we bring back the
quantum jumps.

In the weak-field limit the normalized photon correlation
function is independent of the amplitude of the driving field
E �Eqs. �30� and �34��. The forward photon scattering rate
itself is proportional to �E /��2 �Eq. �42��, and must be set in
the simulations to a value very much smaller than the inverse
vacuum-Rabi-oscillation decay time �Eq. �22��. Typical val-
ues of the intracavity photon number were 10−7−10−6. It is
impractical, under these conditions, to wait for the natural
occurrence of forward-scattering quantum jumps. Instead,
cavity-mode quantum jumps are enforced at regular sample
times tk �see Figs. 4�a� and 5�a��. Denoting the record with
enforced cavity-mode jumps by REC, the second-order cor-
relation function is then computed as the ratio of ensemble
averages

g�2���� =
��â†â��tk��REC��â†â��tk + ���REC

���â†â��tl��REC�2
, �47�

where the sample times in the denominator, tl, are chosen to
avoid the intervals—of duration a few correlation times—
immediately after the jump times tk; this ensures that both
ensemble averages are taken in the steady state. With the
cutoff parameter �Eq. �6�� set to F=0.01, the number of at-
oms within the interaction volume typically fluctuates around
N�t�400–450 atoms for parameter set 1 and N�t�280–
320 atoms for parameter set 2; in a two-quanta truncation,
the corresponding numbers of state amplitudes are 90 000
�parameter set 1� and 45 000 �parameter set 2�.

Figure 9 shows the computed correlation functions for
various atomic beam tilts. We select from a series of such
results the one that fits the measured correlation function
most closely. Optimum tilts are found to be 9.7 mrad for the
Rempe et al. �29� experiment and 9.55 mrad for the experi-
ment of Foster et al. �31�. The best fits are displayed in Fig.
10. In the case of the Foster et al. data the fit is extremely
good. The only obvious disagreement is that the fitted fre-
quency of the vacuum Rabi oscillation is possibly a little
low. This could be corrected by a small increase in atomic

beam density—the parameter N̄eff—which is only known ap-
proximately from the experiment, in fact by fitting the for-
mula �31� to the data.

The fit to the data of Rempe et al. �29� is not quite so
good, but still convincing with some qualifications. Note, in
particular, that the tilt used for the fit might be judged a little
too large, since the three central minima in Fig. 10�a� are
almost flat, while the data suggest they should more closely
follow the curve of a damped oscillation. As the thin line in
the figure shows, increasing the tilt raises the central mini-
mum relative to the two on the side; thus, although a better
fit around ��=0 is obtained, the overall fit becomes worse.
This trend results from the sharp maximum in the semiclas-
sical correlation function of Fig. 7�g�, which becomes more
and more prominent as the atomic beam tilt is increased.

The fit of Fig. 10�b� is extremely good, and, although it is
not perfect, the thick line in Fig. 10�a�, with a 9.7 mrad tilt,
agrees moderately well with the data once the uncertainty set
by shot noise is included, i.e., adding error bars of a few
percent �see Fig. 13�. Thus, leaving aside possible adjust-
ments due to omitted noise sources, such as spontaneous
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FIG. 9. Second-order correlation function from full quantum
trajectory simulations with a two-quanta truncation: �a� parameter
set 1 and 
=0 mrad �thick line�, 7 mrad �medium line�, 12 mrad
�thin line�; �b� parameter set 2 and 
=0 mrad �thick line�, 10 mrad
�medium line�, 17 mrad �thin line�.
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FIG. 10. Best fits to experimental results: �a� data from Fig. 4�a�
of Ref. �29� are fitted with parameter set 1 and 
=9.7 mrad �thick
line� and 10 mrad �thin line�; �b� data from Fig. 4 of Ref. �31� are
fitted with parameter set 2 and 
=9.55 mrad. Averages of �a�
200 000 and �b� 50 000 samples were taken with a cavity-mode
cutoff F=0.01.
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emission—to which we return in Sec. V—and atomic and
cavity detunings, the results of this and the last section pro-
vide strong support for the proposal that the disagreement
between theory and experiment presented in Fig. 3 arises
from an atomic beam misalignment of approximately 0.5°.

One final observation should be made regarding the fit to
the Rempe et al. �29� data. Figure 11 replots the comparison
made in Fig. 10�a� for a larger range of time delays. Frame
�a� plots the result of our simulation for a perfectly aligned
atomic beam, and frames �b� and �c� show the results, plotted
in Fig. 10�a�, corresponding to atomic beam tilts of 
=9.7
and 10 mrad, respectively. The latter two plots are overlaid
by the experimental data. Aside from the reduced amplitude
of the vacuum Rabi oscillation, in the presence of the tilt the
correlation function exhibits a broad background arising
from atomic beam fluctuations. Notably, the background is
entirely absent when the atomic beam is aligned. The experi-
mental data exhibit just such a background �Fig. 3�a� of Ref.
�29��; moreover, an estimate, from Fig. 11, of the back-
ground correlation time yields approximately 400 nsec, con-
sistent with the experimental measurement. It is significant
that this number is more than twice the transit time,
w0 / v̄oven=182 nsec, and therefore not explained by a perpen-
dicular transit across the cavity mode. In fact the background
mimics the feature noted for larger tilts in Figs. 7 and 8; as
mentioned there, it appears to find its origin in the separation
of an adiabatic �slowest atoms� from a nonadiabatic �fastest
atoms� response to the density fluctuations of the atomic
beam.

Note, however, that a correlation time of 400 nsec appears
to be consistent with a perpendicular transit across the cavity
when the cavity-mode transit time is defined as 2w0 / v̄oven
=364 nsec, or, using the peak rather than average velocity, as
4w0 /��v̄oven=411 nsec; the latter definition was used to ar-
rive at the 400 nsec quoted in Ref. �29�. There is, of course,
some ambiguity in how a transit time should be defined. We
are assuming that the time to replace an ensemble of inter-
acting atoms with a statistically independent one—which ul-

timately is what determines the correlation time—is closer to
w0 / v̄oven than 2w0 / v̄oven. In support of the assumption we
recall that the number obtained in this way agrees with the
semiclassical correlation function for an aligned atomic
beam �Figs. 7 and 8, frame �a��.

C. Mean-Doppler-shift compensation

Foster et al. �31�, in an attempt to account for the dis-
agreement of their measurements and the stationary-atom
model, extended the results of Sec. III B to include an atomic
detuning. They then fitted the data using the following pro-
cedure: �i� the component of atomic velocity along the cavity
axis is viewed as a Doppler shift from the stationary-atom
resonance, �ii� the mean shift is assumed to be offset by an
adjustment of the driving field frequency �tuning to moving
atoms� at the time the data are taken, and �iii� an average
over residual detunings—deviations from the mean—is
taken in the model, i.e., the detuning-dependent generaliza-
tion of Eq. �34�. The approach yields a reasonable fit to the
data �Fig. 6 of Ref. �31��.

The principal difficulty with this approach is that a
standing-wave cavity presents an atom with two Doppler
shifts, not one. It seems unlikely, then, that adjusting the
driving field frequency to offset one shift and not the other
could compensate for even the average effect of the atomic
beam tilt. This difficulty is absent in a ring cavity, though, so
we first assess the performance of the outlined prescription in
the ring-cavity case.

In a ring cavity, the spatial dependence of the coupling
constant �Eq. �11�� is replaced by

g„r j�t�… =
gmax

�2
exp�ikzj�t��exp�−

xj
2�t� + yj

2�t�
w0

2 � , �48�

where the factor �2 ensures that the collective coupling
strength and vacuum Rabi frequency remain the same. Fig-
ure 12�a� shows the result of a numerical implementation of
the proposed mean-Doppler-shift compensation for an

(a)

(b)

(c)

g(2)

κτ

1.3

1.1

0.9
52.50-2.5-5

1.3

1.1

0.9

1.7

1.0

0.3

FIG. 11. Second-order correlation function from full quantum
trajectory simulations with a two-quanta basis for parameter set 1
and �a� 
=0 mrad, �b� 
=9.7 mrad, and �c� 
=10 mrad. Averages
of �a� 15 000, and �b� and �c� 200 000 samples were taken with a
cavity-mode cutoff F=0.01.
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FIG. 12. Doppler-shift compensation for a misaligned atomic
beam in �a� ring and �b� standing-wave cavities �parameter set 2�.
The second-order correlation function is computed with the atomic
beam perpendicular to the cavity axis �thin line�, a 17.3 mrad tilt of
the atomic beam �medium line�, and a 17.3 mrad tilt plus compen-
sating detuning of the cavity and stationary atom resonances
�� /�=kv̄oven sin 
 /�=0.916 �thick line�.
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atomic beam tilt of 17.3 mrad, as used in Fig. 6 of Ref. �31�.
It works rather well. The compensated curve �thick line� al-
most recovers the full photon antibunching effect that would
be seen with an aligned atomic beam �thin line�. The degra-
dation that remains is due to the uncompensated dispersion
of velocities �Doppler shifts� in the atomic beam.

For the case of a standing-wave cavity, on the other hand,
the outcome is entirely different. This is shown by Fig. 12�b�.
There, offsetting one of the two Doppler shifts only makes
the degradation of the photon antibunching effect worse. In
fact, we find that any significant detuning of the driving field
from the stationary atom resonance is highly detrimental to
the photon antibunching effect and inconsistent with the Fos-
ter et al. data.

V. INTRACAVITY PHOTON NUMBER

The best fits displayed in Fig. 10 were obtained from
simulations with a two-quanta truncation and premised upon
the measurements being made in the weak-field limit. The
strict requirement of the limit sets a severe constraint on the
intracavity photon number. We consider now whether the
requirement is met in the experiments.

Working from Eqs. �23a� and �23b�, and the solution to
Eq. �19�, a fixed configuration 	r j
 of N atoms �Sec. III B�
yields photon scattering rates �27,28,53�

Rforward = 2��â†â�REC = 2�� E/�

1 + 2C	rj

�2

, �49a�

and

Rside = ��
k=1

N

��̂k+�̂k−� = ��
k=1

N �g�rk�
�/2

E/�

1 + 2C	rj

�2

= 2C	rj

2��â†â�REC, �49b�

with ratio

Rside

Rforward
= 2C	rj


=
2Neff

	rj
gmax
2

��


2N̄effgmax
2

��
. �50�

The weak-field limit �Eq. �22�� requires that the greater of
the two rates be much smaller than 1

2 ��+� /2�; it is not nec-
essarily sufficient that the forward-scattering rate be low. The
side-scattering �spontaneous emission� rate is larger than the
forward-scattering rate in both of the experiments being
considered—larger by a large factor of 70–80. Thus, from
Eqs. �49a� and �50�, the constraint on intracavity photon
number may be written as

�â†â� �
1 + �/2�

8N̄effgmax
2 /��

, �51�

where, from Table I, the right-hand side evaluates as 1.2
�10−2 for parameter set 1 and 4.7�10−3 for parameter set 2,
while the intracavity photon numbers inferred from the ex-
perimental count rates are 3.8�10−2 �29� and 7.6�10−3

�31�. It seems that neither experiment satisfies condition
�51�. As an important final step we should therefore relax the

weak-driving-field assumption �photon number 10−7–10−6

in the simulations� and assess what effect this has on the data
fits; can the simulations fit the inferred intracavity photon
numbers as well?

To address this question we extended our simulations to a
three-quanta truncation of the Hilbert space with cavity-
mode cutoff changed from F=0.01 to F=0.1. With the
changed cutoff the typical number of atoms in the interaction
volume is halved: N�t�180–220 atoms for parameter set 1
and N�t�150–170 atoms for parameter set 2, from which
the numbers of state amplitudes �including three-quanta
states� increase to 1 300 000 and 700 000, respectively. The

new cutoff introduces a small error in N̄eff, hence in the
vacuum Rabi frequency, but the error is no larger than one or
two percent.

At this point an additional approximation must be made.
At the excitation levels of the experiments, even a three-
quanta truncation is not entirely adequate. Clumps of three or
more side-scattering quantum jumps can occur, and these are
inaccurately described in a three-quanta basis. In an attempt
to minimize the error, we artificially restrict �through a veto�
the number of quantum jumps permitted within some pre-
scribed interval of time. The accepted number was set at two
and the time interval to 1�−1 for parameter set 1 and 3�−1 for
parameter set 2 �the correlation time measured in cavity life-
times is longer for parameter set 2�. With these settings ap-
proximately 10% of the side-scattering jumps were neglected
at the highest excitation levels considered.

The results of our three-quanta simulations appear in Fig.
13; they use the optimal atomic beam tilts of Fig. 10. Figure
13�a� compares the simulation with the data of Rempe et al.
�29� at an intracavity photon number that is approximately
six times smaller than what we estimate for the experiment �a
more realistic simulation requires a higher level of truncation
and is impossible for us to handle numerically�. The overall
fit in Fig. 13 is as good as that in Fig. 10, with a slight
improvement in the relative depths of the three central
minima. A small systematic disagreement does remain, how-
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FIG. 13. Second-order correlation function from full quantum
trajectory simulations with a three-quanta truncation and atomic
beam tilts as in Fig. 10: �a� parameter set 1, mean intracavity photon
number �a†a�=6.7�10−3; �b� parameter set 2, mean intracavity
photon numbers �a†a�=2.2�10−4, 5.7�10−4, 1.1�10−3, and 1.7
�10−3 �thickest curve to thinnest curve�. Averages of 20 000
samples were taken with a cavity-mode cutoff F=0.1. Shot noise
error bars are added to the data taken from Ref. �29�.
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ever. We suspect that the atomic beam tilt used is actually a
little large, while the contribution to the decoherence of the
vacuum Rabi oscillation from spontaneous emission should
be somewhat more. We are satisfied, nevertheless, that the
data of Rempe et al. �29� are adequately explained by our
model.

Results for the experiment of Foster et al. �31� lead in a
rather different direction. They are displayed in Fig. 13�b�,
where four different intracavity photon numbers are consid-
ered. The lowest, �â†â�=2.2�10−4, reproduces the weak-
field result of Fig. 10�b�. As the photon number is increased,
the fit becomes progressively worse. Even at the very low
value of 5.7�10−4 intracavity photons, spontaneous emis-
sion raises the correlation function for zero delay by a no-
ticeable amount. Then we obtain g�2��0��1 at the largest
photon number considered. Somewhat surprisingly, even this
photon number, �â†â�=1.7�10−3, is smaller than that esti-
mated for the experiment—smaller by a factor of five. Our
simulations therefore disagree significantly with the mea-
surements, despite the near perfect fit of Fig. 10�b�. The sim-
plest resolution would be for the estimated photon number to
be too high. A reduction by more than an order of magnitude
is needed, however, implying an unlikely error, considering
the relatively straightforward method of inference from pho-
ton counting rates. This anomaly, for the present, remains
unresolved.

VI. CONCLUSIONS

Spatial variation of the dipole coupling strength has for
many years been a particular difficulty for cavity QED at
optical frequencies. The small spatial scale set by the optical
wavelength makes any approach to a resolution a formidable
challenge. There has nevertheless been progress made with
cooled and trapped atoms �13,14,32,59–61�, and in semicon-
ductor systems �15–17� where the participating “atoms” are
fixed.

The earliest demonstrations of strong coupling at optical
frequencies employed standing-wave cavities and thermal
atomic beams, where control over spatial degrees of freedom
is limited to the alignment of the atomic beam. Of particular
note are the measurements of photon antibunching in for-
ward scattering �29–31�. They provide a definitive demon-
stration of strong coupling at the one-atom level; although
many atoms might couple to the cavity mode at any time, a
significant photon antibunching effect occurs only when in-
dividual atoms are strongly coupled.

Spatial effects pose difficulties of a theoretical nature as
well. Models that ignore them can point the direction for
experiments, but fail, ultimately, to account for experimental
results. In this paper we have addressed a longstanding dis-
agreement of this kind—disagreement between the theory of
photon antibunching in forward scattering for stationary at-
oms in a cavity �25–29� and the aforementioned experiments

�29–31�. Ab initio quantum trajectory simulations of the ex-
periments have been carried out, including a Monte Carlo
simulation of the atomic beam. Importantly, we allow for a
misalignment of the atomic beam, since this was recognized
as a critical issue in Ref. �31�. We conclude that atomic beam
misalignment is, indeed, the most likely reason for the deg-
radation of the measured photon antibunching effect from
predicted results. Working first with a two-quanta truncation,
suitable for the weak-field limit, data sets measured by
Rempe et al. �29� and Foster et al. �31� were fitted best by
atomic beam tilts from perpendicular to the cavity axis of 9.7
and 9.55 mrad, respectively.

Atomic motion is recognized as a source of decorrelation
omitted from the model used to fit the measurements in Ref.
�29�. We found that the mechanism is more complex than
suggested there, however. An atomic beam tilt of sufficient
size results in a nonadiabatic response of the intracavity pho-
ton number to the inevitable density fluctuations of the beam.
Thus classical noise is written onto the forward-scattered
photon flux, obscuring the antibunched quantum fluctuations.
The parameters of Ref. �29� are particularly unfortunate in
this regard, since the nonadiabatic response excites a
bunched vacuum Rabi oscillation, which all but cancels out
the antibunched oscillation one aims to measure.

Although both of the experiments modeled operate at
relatively low forward-scattering rates, neither is strictly in
the weak-field limit. We have therefore extended our
simulations—subject to some numerical constraints—to as-
sess the effects of spontaneous emission. The fit to the
Rempe et al. data �29� was slightly improved. We noted that
the optimum fit might plausibly be obtained by adopting a
marginally smaller atomic beam tilt and allowing for greater
decorrelation from spontaneous emission, though a more ef-
ficient numerical method would be required to verify this
possibility. The fit to the Foster et al. data �31� was highly
sensitive to spontaneous emission. Even for an intracavity
photon number five times smaller than the estimate for the
experiment, a large disagreement with the measurement ap-
peared. No explanation of the anomaly has been found.

We have shown that cavity QED experiments can call for
elaborate and numerically intensive modeling before a full
understanding, at the quantitative level, is reached. Using
quantum trajectory methods, we have significantly increased
the scope for realistic modeling of cavity QED with atomic
beams. While we have shown that atomic beam misalign-
ment has significantly degraded the measurements in an im-
portant set of experiments in the field, this observation leads
equally to a positive conclusion: potentially, nonclassical
photon correlations in cavity QED can be observed at a level
at least ten times higher than so far achieved.
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