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A scheme for coherent manipulation of collective atomic states is developed such that total subradiant states,
in which spontaneous emission is suppressed into all directions due to destructive interference between neigh-
bor atoms, can be created in an extended atomic ensemble. The optimal conditions for creation of such states
and suitability of them for quantum storage are discussed. It is shown that in order to achieve the maximum
signal-to-noise ratio the shape of a light pulse to be stored and reconstructed using a homogeneously broadened
absorption line of an atomic system should be a time-reversed regular part of the response function of the
system. In the limit of high optical density, such pulses allow one to prepare collective subradiant atomic states
with near flat spatial distribution of the atomic excitation in the medium.
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I. INTRODUCTION

The use of photons as quantum-information carriers in-
volves the elaboration of effective quantum memory devices
which are able to write, store, and reconstruct single photon
quantum states of the electromagnetic field. A promising ap-
proach to optical quantum state storage uses the interaction
of single photons with optically dense media. The current
activities focus on electromagnetically induced transparency
�EIT� �1–5�, stimulated Raman absorption �6�, and photon
echo �7–13� phenomena. Besides, there is a successful ex-
perimental demonstration of quantum memory for multipho-
ton quantum states using off-resonant interaction of light
with spin polarized atomic ensembles �14�. In �15,16� a
scheme of coherent manipulation of collective atomic states
was developed such that super-radiant states of the atomic
system can be converted into subradiant ones and vice versa
and possible applications of such a scheme for optical
quantum-state storage were discussed. The advantage of the
scheme is that storage and retrieval of a single-photon state
may in principle be implemented by means of phase modu-
lators only �16�, i.e., without any additional control fields or
pulses acting on the atomic system. On the other hand, the
rate of collective spontaneous emission in this case can be
suppressed only for a few collective modes, which means
that storage time is limited by incoherent spontaneous emis-
sion into other modes. In this paper the scheme is developed
such that total subradiant states, in which spontaneous emis-
sion into all directions is suppressed, can be created in an
extended atomic system. Such an approach involves using
homogeneously broadened absorption lines for storage and
retrieval of information in an optically dense medium. In
�16� it was pointed out that for high efficiency of such a
quantum memory the time shape of a single-photon wave
packet to be stored should be equal to the time-reversed re-
sponse function of the optically dense medium. Then the
shape of the emitted photon proves to be a time-reversed
replica of the initial one. In the present paper this statement
is discussed quantitatively and it is shown that such pulses

are optimal in the context of the signal-to-noise ratio. It
should be noted here that the connection between optimal
photon storage and time reversal has been made in �8,10� in
considering storage on inhomogeneously broadened transi-
tions. A comprehensive analysis of the question was pre-
sented recently in �17,18�, where optimal pulse shapes were
derived providing the maximum efficiency for different ap-
proaches to pulse storage. The results obtained here do not
contradict those presented in �17,18�, which will be dis-
cussed below in detail, but involve another point of view,
namely the maximization of the signal-to-noise ratio. Be-
sides, instead of a general iteration procedure which was
used by authors of these papers we use a more direct ap-
proach to the problem, where the main features of the pro-
posed scheme are explicitly taken into account: the absence
of a control field, homogeneous broadening of an absorption
line, and forward retrieval. Our approach is based on the
theory of matched filters �19�, which allows us to write down
the explicit expressions for the optimal pulse shape and total
efficiency of quantum memory in a straightforward manner.

The paper is organized as follows. In Sec. II, we present a
scheme for coherent manipulation of collective atomic states
that enables the creation of total subradiant states in an ex-
tended atomic system. In Sec. III, the basic equations de-
scribing propagation of single-photon wave packets in an
optically dense atomic medium are introduced and the pulse
shape which maximizes the signal-to-noise ratio upon read
out is determined.

II. QUANTUM STORAGE ON SUBRADIANT STATES

In addition to the implementation schemes proposed in
�16� we consider here another simple procedure for writing
and reconstructing single-photon states of light using subra-
diant states. Consider an extended system of identical three-
level atoms forming an optically dense resonant medium �see
Fig. 1�. We assume that the atoms are not moving as, for
example, impurities embedded in a solid state material. In
this case we may consider them to be distributed regularly in
space with an interatomic distance a along some axis, say x.
Moreover, since the parity of energy states in such a system
is usually indefinite �due to the low symmetry of impurity*kalachev@kfti.knc.ru
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sites�, we suppose that all transitions are dipole allowed. As-
sume that a single-photon wave packet which is resonant to
the transition �0�→ �1� propagates through the medium,
which has a phase relaxation time much longer than the du-
ration of the photon. At some moment of time the probability
of finding the medium in the excited state and the field in the
vacuum state is maximum and at this moment of time the
atomic system can be subjected to a short coherent � pulse at
the frequency of the transition �1�→ �2�, which corresponds
to the writing of information. This step is typical of different
quantum storage techniques involving a �-type medium with
inhomogeneously broadened transitions �8� as well as homo-
geneously broadened ones �17�. Now, the spatial distribution
of phase of the atomic state �2� in the medium that results
from the excitation is described by a wave vector k−kw,
where k and kw are wave vectors of the incoming photon and
� pulse �writing pulse�, respectively. If we put �k−kw�
=� /a, then the excited states �2� of adjacent atoms along the
axis x will be opposite in phase, provided that the vector k
−kw is directed along x. Consequently, if the wavelength of
the transition �2�→ �0�, �20, satisfies the condition 2� /�20

�
1
2 �k−kw�, i.e., �20�4a, then at least 23=8 atoms prove to

be located in the volume ��20/2�3, forming two equal groups
with opposite phases of the state �2�. As a result, a subradiant
state is created, the rate of spontaneous emission of photons
from which is suppressed for all directions. In this state the
quantum storage is possible during times which may be
much longer than the state-�2� radiative lifetime of a single
atom. In order to read out the information it is necessary to
apply a short � pulse �reading pulse� with the wave vector
kr= ±kw to the transition �2�→ �1�. The signs � and � cor-
respond to forward and backward retrieval.

Clearly the most promising materials for the creation of
the subradiant states are those in which homogeneous line-
width, �h, of the transition �2�→ �0� is mainly determined by
the spontaneous relaxation of the excited state. Linewidths
approaching the limit ���h�−1�T2=2T1, where T2 is the
phase memory time and T1 is the population lifetime, can be
seen in materials where all other dephasing processes have
been minimized, such as in rare-earth-metal-doped Y2SiO5
�20�, where a T2 of several ms has been observed. The dif-
ference 1/T2�=1/T2−1/2T1, corresponding to such dephas-
ing processes, determines the lifetime of the subradiant state,

which may be an order larger than T1 at cryogenic tempera-
tures. For example, for the 1D2�1�-3H4�1� transition in
Pr3+ :Y2SiO5 we have T1=0.222 ms and T2=0.377 ms �21�,
therefore T2�=2.5 ms. It should be noted that in such materi-
als at low temperatures the phase memory of the hyperfine
transitions, which are usually assumed to be used for storage
in a �-type medium, is limited by the same processes that
cause decoherence on the optical transitions, most notably
the magnetic interaction with spins in the host material.
Therefore, one can expect that the subradiant state lifetime is
of the order of the hyperfine coherence time. Increasing the
latter by applying, for example, a static magnetic field to the
crystal implies increasing the former to the same extent. On
the other hand, the frequency of the transition �2�→ �0� may
be much larger than 101–102 MHz typical of hyperfine tran-
sitions. Taking the interatomic distance, a=1.5�10, we obtain
�20�6�10, which corresponds to the frequency 	20�	10/6.

As for homogeneous absorption lines, the technique of
preparing of narrow absorbing peaks on a nonabsorbing
background, i.e., isolated spectral features corresponding to a
group of ions absorbing at a specific frequency, in rare-earth-
metal-ion-doped crystals �22–27� can be very useful. Such
specific structures can be created as follows. First, spectral
pits, i.e., wide frequency intervals within the inhomogeneous
absorption profile that are completely empty of all absorp-
tion, are created using hole-burning techniques. Then narrow
peaks of absorption are created by pumping ions absorbing
within a narrow spectral interval back into the emptied re-
gion. The peaks can have a width of the order of the homo-
geneous linewidth, if a laser with a sufficiently narrow line-
width is used for the preparation. Moreover, using two
noncollinear laser pulses instead of a single one it is possible
to prepare a periodic structure with a necessary spatial period
a, since the atoms will be pumped mainly within antinodes
of the laser field.

Finally, it should be noted that the total subradiant states
in a macroscopic atomic ensemble can be created in principle
by significantly changing the refractive index of the medium.
There are many proposals aimed at the enhancement of the
refractive index with vanishing absorption based on quantum
interference effects which trace back to the works by Scully
and colleagues �see �28� and references therein�. Bearing
them in mind we can consider the following procedure. Let
the initial value of the refractive index of the host material be
enhanced, so that the wavelength �10 satisfies the condition
a=3�10/2. Then rather than apply a short coherent � pulse,
we can reduce the refractive index at least by a factor of 6, so
that �10 becomes larger than 4a as in the previous case. As a
result, a total subradiant state is created. By combining both
techniques �applying the � pulse and changing the refractive
index� it is possible to lift the restriction 	20�	10/6.

III. OPTIMIZATION OF SIGNAL-TO-NOISE RATIO

The efficiency of the scheme considered above as well as
of those considered in �16� depends strongly on the possibil-
ity of full �at some moment of time� photon absorption in the
medium with a homogeneously broadened resonant transi-
tion and subsequent emission of the photon in the same di-

Input pulse Output pulse

Writing Reading

|0〉
|2〉

|1〉

Classical pulses or external fields

FIG. 1. �Color online� General scheme of quantum memory de-
vice based on a three-level extended atomic ensemble, collective
states of which are controlled by an external electric field or clas-
sical pulses.
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rection. This is possible only for a specific �optimal� time
shape of the pulses to be stored. The optimal pulse shape
which leads to the maximum efficiency of quantum storage
may be found numerically using an iteration optimization
procedure �17,18�. Here we consider the pulse shape which
leads to the maximum peak value of the retrieved signal,
given the energy of the pulse. Such pulses may be referred to
as optimal in respect to the signal-to-noise ratio, the criterion
generally employed in communications. It will be shown be-
low that such pulses create almost uniform distribution of
atomic excitation in the medium at some moment of time,
corresponding to the end of the incoming pulse. This mo-
ment is optimal for application of the short writing � pulse
creating a subradiant state. On the other hand, upon read out
the emitted field proves to be the time-reversed replica of the
initial field, which is the characteristic feature of the optimi-
zation �17,18�. Such a regime may be useful, for example,
for a long-distance quantum communication using quantum
repeaters �29�, when the qubits are only stored and recalled
once before being measured. Assuming, for example, that
time-bin qubits are used for carrying the information, each of
them should be a superposition of well-separated wave pack-
ets of the optimal shape, which provides high efficiency and
fidelity of quantum memory devices. The latter characterizes
reproducibility of the relative phase and amplitude ratio of
time-bin single-photon pulses during storage and retrieval.

In the simplest case, of an additive white noise, the maxi-
mization of the signal-to-noise ratio reduces to that of the
amplitude of the output signal at some moment of time,
given the energy of the input signal and transfer function of
the medium. Although such a procedure is performed usually
in the context of classical signals �19,30,31�, it works exactly
the same when a single photon should be detected at the
output of a memory device. The only difference is that the
amplitude and intensity of classical light are replaced by the
photon probability amplitude density and photon probability
density, respectively. A relevant situation may be the detec-
tion of single photons amid broadband background light in
free-space communication setups �32�. The maximization of
single-photon probability density at some moment of time
means shortening of the single-photon wave packet to be
stored and recalled using a given absorption line. This allows
one to minimize the time windows which are necessary for
the writing and read out of information and consequently to
minimize the probability of detection of stray photons in-
stead of information carriers. The same argument is true in
the context of noise due to the dark counts of single-photon
detectors.

A. Basic equations

Consider a system of N
1 identical two-level atoms,
with positions r j �j=1, . . . ,N� and resonance frequency 	0,
interacting among themselves and with the external world
only through the electromagnetic field. We are interested in
the interaction of the atomic system with a single-photon
wave packet. In a one-dimensional light propagation model it
is usually assumed that the excitation volume may be ap-
proximated by a cylinder with the cross section S and the

length L, the Fresnel number of the excitation volume F
=S�L��−1�1, a single-photon wave packet propagates in the
z direction, and the wave front of the packet is planar inside
the excitation volume. Let us divide the medium into n iden-
tical slices of mean position zp= pL /n �p=1,2 , . . . ,n�. The
length of each slice �z is large compared to the wavelength
�=2�c	0

−1, but small compared to L. We assume that each
slice contains a large number Np=N /n of atoms, but has a
small optical density �z�1, where  is a resonant absorp-
tion coefficient. Therefore, hereafter we assume that slowly
time-varying envelopes of the field and atomic probability
amplitudes are constant in each slice and consider “coarse-
grained” functions on coordinate z. Besides, we assume that
the time of propagation of photons through the system L /c is
negligibly short compared to the evolution time of the slowly
time-varying envelopes.

Let us denote the ground and excited states of the jth
atom by �0 j� and �1 j�. The Hamiltonian of the system, in the
interaction picture and rotating-wave approximation, reads

H = �
j,k,s

�gk,s
* bj

†ak,se
ik·rjei�	0−	�t + H.c. �1�

Here gk,s= i
�

� �	
2�0V �1/2�d ·�k,s� is the atom-field coupling con-

stant, bj = �0 j�	1 j� is the atomic transition operator, ak,s is the
photon annihilation operator in the radiation field mode with
the frequency 	=kc and polarization unit vector �k,s �s
=1,2�, V is the quantization volume of the radiation field
�we take V much larger than the volume of the atomic sys-
tem�, and d is the dipole moment of the atomic transition.
For the sake of simplicity we assume that the vectors �k,s and
d are real.

First, consider the system of a slice of atoms and electro-
magnetic field. For each slice with coordinate zp we can de-
fine the following collective atomic operators:

Rp = �
j=1

Np

bje
−ik0·rj , �2�

where k0 is directed along the z axis and �k0�=	0 /c, and the
general form of the state of the system can be written as

���t,zp�� = �
k,s

fk,s�t,zp��0��1k,s� + c�t,zp��1��vac� �3�

with normalization condition �k,s�fk,s�t ,zp��2+ �c�t ,zp��2=1,
where �0�= �01 ,02 , . . . ,0Np

� is the ground state of the slice’s
atomic system, �vac� is the vacuum state of the radiation
field, �1k,s�=ak,s

† �vac�, and �1�=Np
−1/2Rp

†�0�. It should be noted
that the normalization condition right after Eq. �3� is written
for the system consisting of only one slice and the emf. This
normalization condition will not be used when considering
the whole atomic system.

Substituting Eqs. �1� and �3� in the Schrödinger equation
we obtain

�fk,s�t,zp�
�t

= − igk,s

Np��k0 − k�c�t,zp�e−i�	0−	�t, �4�
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�c�t,zp�
�t

= − i
Np�
k,s

gk,s
* �*�k0 − k�fk,s�t,zp�ei�	0−	�t, �5�

where ��x�=Np
−1� j exp�ix ·r j� is the diffraction function.

The photon density for the incoming wave packet at the
slice reads

Fin�t,zp� =
1

L3/2�
k,s

fk,s�− �,zp�ei�	0−	�t, �6�

and for the emitted radiation we have the analogous equation
with Fin�t ,zp� and fk,s�−� ,zp� replaced by F�t ,zp� and
fk,s�t ,zp�, respectively. Then the solution of Eqs. �4� and �5�
may be written as

c�t,zp� = c�− �,zp�e−�Np�+1�t/2T1

−
Np�

T1
�

0

�

d� Fin�t − �,zp�e−�Np�+1��/2T1, �7�

F�t,zp� = Fin�t,zp� +
Np�

T1
c�t,zp� . �8�

Here �=3�2�8�S�−1 is a geometrical factor �33�, which de-
scribes the result of the integration

� d�k�
s

�d · �k,s�2�2�k0 − k� =
8�

3
�� +

1

Np
d2 �9�

for identical dipole moments oriented perpendicular to the z
axis, and

1

T1
=

1

4��0

4d2	0
3

3�c3 . �10�

If we consider the case when c�−� ,zp�=0 and substitute
Eq. �7� into Eq. �8�, we obtain a solution for super-radiant
resonant forward scattering of photons by an optically thin
atomic medium �34,35�,

F�t,zp� = Fin�t,zp� − b��z��
0

�

d� Fin�t − �,zp�e−�/T2,

�11�

where b�x�=x /2T2, T2=2T1, =4�Np /�z is the resonant
absorption coefficient, and we have omitted Np��1 from
the exponential.

The solution �11� can be written in terms of the impulse-
response function or transfer function of the slice. If we de-
fine

Fin�	� =
1


2�
�

−�

�

dt Fin�t�ei	t, �12�

then

F�t,zp� = �
−�

�

d� Fin��,zp�H�t − ��

=
1


2�
�

−�

�

d	 Fin�	,zp�H�	�e−i	t, �13�

where

H�t� = ��t� − b��z���t�e−t/T2, �14�

H�	� = 1 − b��z�
i

	 + i/T2
. �15�

Here ��t� is equal to 0 for t�0,1 for t�0, and 1/2 for t
=0.

Now we return to the case of an optically dense medium
considered as a sequence of optically thin slices, each of
them characterized by the impulse-response �14� or transfer
�15� function. In this case we can consider the quantity
c��t ,z�=lim�z→0 c�t ,zp� /
�z as a probability amplitude den-
sity and assume that z� �0,L�. For an optically thick me-
dium the transfer function becomes

H�	,L� = lim
n→�

�1 − b�L

n
 i

	 + i/T2
�n

= exp�− b�L�
i

	 + i/T2
 . �16�

By expanding the exponential in Eq. �16� in power series and
performing the Fourier transformation we obtain the follow-
ing impulse-response function of a resonant medium with
arbitrary optical density �35�:

H�t,L� = ��t� − ��t� ,

��t� = b�L�
J1„2
b�L�t…


b�L�t
��t�e−t/T2. �17�

Here J1�x� is the Bessel function of the first kind. Taking into
account the coordinate dependence F�t ,z� for the optically
thick sample, Eq. �13� should be written as

F�t,L� = �
−�

�

d� Fin��,0�H�t − �,L�

=
1


2�
�

−�

�

d	 Fin�	,0�H�	,L�e−i	t. �18�

B. Optimal pulse shape

First, find a shape of single-photon wave packets to be
stored, which maximizes the signal-to-noise ratio �SNR� at
the retrieval. In the theory of linear filters �19� it is well
known that the maximum SNR is achieved for so-called
matched filters, the impulse-response function of which is a
time-reversed replica of an input �detected� signal, provided
that the signal is read through a white noise. In that case the
maximum peak value of the output signal, given energy of
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the input signal, is achieved at some moment of time. In the
present case of a homogeneously broadened absorption line,
it is necessary to obtain the highest possible peak value of
the photon density

�F�t,L��2 = ��
−�

�

d� Fin��,0�H�t − �,L��2

= Fin
2 �t,0� − 2Fin�t,0��

−�

�

d� Fin��,0���t − �,L�

+ ��
−�

�

d� Fin��,0���t − �,L��2

�19�

at some moment of time t�0, assuming that the incoming
pulse terminates at t=0 and Fin�t ,0� is a real function. The
field generated after the moment t=0 is determined only by
the last term in Eq. �19�, the maximum peak value of which
is achieved at the moment t=0 provided that Fin�� ,0�
���−� ,L�, which follows from the Cauchy-Bunyakowsky-
Schwartz inequality. So, taking into account Eq. �17�, we
suggest the following single-photon wave packet:

Fin
L �t,0� = − A�L���− t�

=
1


2�
�

−�

�

d	
A�L�

2�

�H�− 	,L� − 1�e−i	t �20�

as an optimal one from the standpoint of the SNR criterion.
Here A�L�= �b�L�(1−g�L�)�−1/2 is the normalization constant,
g�x�=e−x/2�I0�x /2�+ I1�x /2��, In�x� is the modified
Bessel function of the first kind. The pulse begins at t=−�
and terminates at t=0, but in fact almost all energy is con-
centrated in several last oscillations of its amplitude. Substi-
tuting Eq. �20� in Eq. �18� and using Eq. �16� or Eq. �17� we
obtain

F�t,L� = ��t,L� − Fin
L �− t,0� , �21�

where

��t,L� = A�L�
��t�
2T2

�
m=1

�
�L/2T2�m

m!�m − 1�!
�t�m−1

��Im−1/2��t�/T2� − I−m+1/2��t�/T2�� �22�

is a near bell-shaped function, which in the case L
1 is
approximated by

��t,x� = − 
b�x�
g�x�


1 − g�x�
exp�− �t�
x/T2� , �23�

and in the limit L→0 takes the form ��t�=−
2/T2

�exp�−�t � /T2�. In the last case the optimal shape of the in-
coming pulse becomes Fin�t�=−
2/T2��−t�exp�t /T2�, there-
fore from Eq. �21� it follows that the super-radiant forward
scattering is negligible as expected. In the opposite case
L→� the role of the function ��t ,L� on the right-hand side
of Eq. �21� tends to zero since �−�

� ���t ,L��2dt=2��
L�−1, so
that no field goes through the medium until t�0 �see Fig. 2�.
At the moment t=0 corresponding to the end of the incoming
pulse the atomic system starts to emit the outcoming pulse

F�t ,L�=−Fin
L �−t ,0�, which is the time-reversed �and opposite

in phase� replica of the input pulse. Thus the moment t=0 is
optimal for instantaneous creation of a subradiant state and
mapping a single-photon state onto the collective atomic one.

Now, consider the efficiency of the proposed quantum
memory scheme, defined by

E �
�

0

�

�Fout�t��2dt − �
−�

0

�Fout�t��2dt

�
−�

0

�Fin�t��2dt

. �24�

The denominator is equal to unity by definition and the sec-
ond term in the numerator corresponds to the probability of
the photon loss due to its emission before the moment t=0,
corresponding to the end of the incoming pulse and creation
of a subradiant state. Substituting Eqs. �20�, �21�, and �23�
we obtain

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−6

−4

−2

0

2

4

6

8

F (t)
√

T2

F (t)
√

T2

t/T2

t/T2

FIG. 2. �Color online� The amplitudes Fin�t ,0� �dashed line� and
F�t ,L� �solid line� as functions of time t for L=10 �above� and
L=100 �below�.

QUANTUM STORAGE ON SUBRADIANT STATES IN AN … PHYSICAL REVIEW A 76, 043812 �2007�

043812-5



E = 1 −
4


�L
. �25�

As expected, the efficiency tends to unity in the limit L
→� according to a square-root law, which is typical of
propagation effects in homogeneously broadened resonant
systems. The main source of the photon loss is its leakage
through the sample and incoherent emission in transverse
modes during the whole process of writing and read out. It
should be noted also that with increasing of L the duration
of the optimal single-photon wave packet decreases.

Finally, we consider the spatial distribution of probability
amplitude density c��t ,z� at t=0. From Eq. �18� it follows
that the incoming pulse �20� after propagation of distance z
�L takes the form

F�t,z� =
A�L�

A�z�A�L − z��−�

�

d� ��t − �,z�Fin
L−z��,0�

+
A�L�
A�z�

��t,z� +
A�L�

A�L − z�
Fin

L−z�t,0� −
A�L�
A�z�

Fin
z �− t,0� .

�26�

On the other hand from Eqs. �7� and �18� we can write

c��0,z� =
 

2T2
�

−�

�

d	 Fin
L �	,0�H�	,z�

i

2��	 + i/T2�

= −
2T2



�F�0,z�
�z

. �27�

Using the approximation �23� we obtain from Eq. �26�

F�0,z� = A�L��− b�z�g�z�exp�−
b�L − z�T2

1 + 
z


−
b�L − z�

2
+

b�z�
2 � , �28�

therefore

c��0,z� = −
A�L�
b�L�


L
�1 −

1

�

exp�−
�L − z�
2
L

� ,

�29�

provided that L
1.
We conclude that in the case of an optically thick sample

the energy of the incoming wave packet, having optimal
pulse shape, is distributed almost uniformly in the medium at
the moment t=0 except for the far end of the sample �z
=L� with the thickness �z /L�2 ln 2/
L �see Fig. 3�. The
probability of photon absorption at the moment t=0 is equal
to

pabs�t = 0� = �
0

L

�c��0,z��2dz = 1 −
2


�L
+

1

�
L
.

�30�

The second term on the right-hand side of Eq. �30� corre-
sponds to the photon loss before the moment t=0, which is

half of the total photon loss probability in Eq. �25�.
When our results are compared with those of �17,18�, it is

apparent that the pulse shape �20� does not provide the maxi-
mum of efficiency �24�. The latter needs the maximization of
the total probability �0

�dt��d���t−� ,L�Fin�� ,0��2 instead of
the value ��d���−� ,L�Fin�� ,0��2. As a result the discontinui-
ties of the amplitude of the atomic excitation at the edges of
the sample arise and the error scales as one over square root
of optical depth �see Eq. �25��. On the other hand, the pulse
shape considered here gives the maximum peak value of the
probability density of the retrieved single-photon wave
packet. Numerics show that in the case L
1 the first burst
of the output pulse contains about 90% of total photon prob-
ability, whereas that of the pulse optimized in respect to the
efficiency is only about 70% having approximately the same
duration �36�.

IV. CONCLUSION

In summary, the quantum storage on a subradiant state in
a macroscopic atomic ensemble is analyzed, provided that on
a homogeneously broadened absorption line, no control field
and forward retrieval are used. In possession of the impulse-
response function of the sample it is possible to optimize the
process of photon storage and retrieval from the standpoint
of the signal-to-noise ratio and write down an explicit ex-
pression for the optimal pulse shape, which may be useful in
the context of its experimental preparation. The light pulse to
be stored should have a shape which is a time-reversed rep-
lica of the impulse-response function �to be more precise, of
its regular part� of the atomic system. At the moment of time
corresponding to the end of the absorbed pulse and the be-
ginning of the emitted pulse the probability of excitation in
the medium is distributed almost uniformly along the propa-
gation direction. Therefore this is the optimal moment of
time for coherent manipulation of the collective atomic state
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0000
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0.80.80.80.8
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z/Lz/Lz/Lz/L

||||cccc����(0(0(0(0, z, z, z, z))))||||√√√√LLLL

FIG. 3. �Color online� The amplitude density �c��0,z�� as a func-
tion of coordinate z for L=10 �dotted line�, L=100 �dashed line�,
and L=1000 �solid line�. The results of numerical calculation us-
ing Eq. �27�.
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aimed at the capture of the photon �16� or preparation of the
subradiant state in an extended atomic ensemble. Obviously,
the results obtained here can be easily generalized for ab-
sorption systems with another impulse-response function and
for different kinds of noise, if the conditions for the linear
response theory are fulfilled.
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