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Using coupled equations for the bosonic and fermionic order parameters, we construct families of gap
solitons �GSs� in a nearly one-dimensional Bose-Fermi mixture trapped in a periodic optical-lattice �OL�
potential, the boson and fermion components being in the states of the Bose-Einstein condensation and
Bardeen-Cooper-Schrieffer superfluid, respectively. Fundamental GSs are compact states trapped, essentially,
in a single cell of the lattice. Full families of such solutions are constructed in the first two band gaps of the
OL-induced spectrum, by means of variational and numerical methods, which are found to be in good agree-
ment. The families include both intragap and intergap solitons, with the chemical potentials of the boson and
fermion components falling in the same or different band gaps, respectively. Nonfundamental states, extended
over several lattice cells, are constructed too. The GSs are stable against strong perturbations.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion �BEC� �1� was followed by the creation of another ul-
tracold low-density quantum medium, viz., the degenerate
Fermi gas �DFG� �2�. Fermi gases cannot be directly pro-
duced by means of the evaporative cooling, due to the Pauli
blockade of interactions among spin-polarized fermions.
However, it has been possible to achieve the DFG state using
the sympathetic-cooling technique, in the presence of an-
other boson or fermion component in the gas. The use of this
technique has resulted in the observation �2–5� and related
experimental �6–8� and theoretical �9–12� studies of trapped
DFG-BEC mixtures composed of the following species:
7Li-6Li �4�, 23Na-6Li �5�, and 87Rb-40K �6,7�. New remark-
able experiments have made use of the Feshbach-resonance
tool to induce attraction between fermions in spin-up and
spin-down states, thus creating the Bardeen-Cooper-
Schrieffer �BCS� superfluid �13� in Fermi gases of 6Li �14�
and 40K �15� atoms. Actually, the attraction in these experi-
ments was varied from weak, appropriate to the BCS state
per se, to strong, appropriate to the formation of the BEC of
diatomic molecules, making it possible to explicitly study the
BCS-BEC crossover, as theoretically predicted in earlier
works �16� and analyzed in more recent ones �17� �a review
of experimental results can be found in Ref. �18�, and a brief
overview of the theory was given in Ref. �19��.

Among most fundamental matter-wave patterns observed
in BEC are bright solitons, see original works �20,21� and
reviews �22�. Further analysis has predicted the formation of
bright solitons in degenerate Bose-Fermi �23,24� and Fermi-
Fermi mixtures �25�, in the presence of attractive interspecies
interactions, which may overcome the effective Pauli repul-
sion between identical fermions �and possible repulsion in
the BEC component�.

On the other hand, gap solitons �GSs� have been predicted
�26� and further studied �27–32� in BEC with the repulsion
between atoms, trapped in the periodic potential induced by
an optical lattice �OL�. GSs are localized objects supported
by the balance between the self-repulsion and negative effec-
tive mass provided by the OL-induced matter-wave spec-
trum. The chemical potential of the GS must fall in a spec-
trum’s band gap, where delocalized Bloch-wave states
cannot exist.

The prediction of GSs in the BEC �26� was followed by
the creation of a GS formed by �250 atoms of 87Rb in a
“cigar-shaped” trap combined with the longitudinal OL po-
tential �33,34�. In the experiment, the BEC was pushed in a
state with the negative effective mass by means of accelera-
tion. Another possibility may be to add a strong parabolic
trap to the OL potential, thus squeezing the system into a
small region and then slowly relaxing the extra trap, to give
�a part of� the condensate a chance to remain in a squeezed
GS state �35�. Nonfundamental states, in the form of a
stretched “gap-wave” pattern, extending over many cells of
the OL, have also been observed �36� and interpreted theo-
retically as a segment of a nonlinear Bloch wave confined by
sharp fronts �37� �in fact, similar states were also predicted in
the self-attractive BEC �38��.

Multicomponent GSs were predicted too. A straightfor-
ward possibility is to consider a symmetric model for a mix-
ture of two boson species with equal masses and coefficients
of the coupling to the OL potential, which may represent two
different hyperfine states of the same atom, with repulsion
between the species. As shown in Ref. �30�, this model gives
rise to stable two-dimensional �2D� and one-dimensional
�1D� gap solitons—first, in the most fundamental case when
the intraspecies repulsion is absent �as may be adjusted by
means of the Feshbach-resonance technique�, and the GSs
are supported, as symbiotic �39� states, solely by the inter-
species interaction. These two-component GSs may be of
intragap and intergap types, with the chemical potentials of
the components falling into a single band gap, or belonging
to different gaps, respectively �intergap solitons are essen-

*adhikari@ift.unesp.br; http://www.ift.unesp.br/users/adhikari
†malomed@eng.tau.ac.il; http://www.eng.tau.ac.il/ malomed/

PHYSICAL REVIEW A 76, 043626 �2007�

1050-2947/2007/76�4�/043626�9� ©2007 The American Physical Society043626-1

http://dx.doi.org/10.1103/PhysRevA.76.043626


tially less stable �30��. Also studied were three-component
GSs in the 1D model of a spinor BEC trapped in the OL �32�.

In this work we aim to study the possibility of the forma-
tion of fundamental GSs in a one-dimensional model of the
intrinsically repulsive superfluid Bose-Fermi mixture
�SBFM�, whose boson and fermion components are assumed
to be in the BEC and BCS superfluid phases, respectively.
Fundamental GSs, unless taken very close to edges of the
corresponding band gap, feature a compact shape, being es-
sentially localized in a single well of the OL potential, with-
out tangible undulating tails. Obviously, a localized pattern
cannot be a ground state of the gas with repulsive interac-
tions. Nevertheless, the GSs in intrinsically self-repulsive
BEC have been found to be stable against small or moderate
perturbations �27� �i.e., they are, generally speaking, meta-
stable states�, and, as mentioned above, they have been cre-
ated in experiment �33,34�. We also show that, in addition to
the compact fundamental GSs, one can find solutions for
nonfundamental solitons, which occupy several OL sites and
are dynamically stable too.

It is well known that a dilute BEC is very accurately
described by the Gross-Pitaevskii equation �GPE� for the
mean-field wave function, which, in particular, provides for a
reliable model for the dynamics of dark and bright solitons,
vortices, onset of collapse, etc. �1,22�. In the Bose-Fermi
mixture, the bosonic component is also treated by means of
the GPE �with an extra term taking into regard collisions
with fermions�, whereas the fermionic part should be, in
principle, described by a set of Schrödinger equations for
individual atoms �40�. However, with the increase of the
number of fermions such ab initio treatment becomes much
too complicated to implement. On the other hand, a simpli-
fied model of the BCS superfluid of the Ginzburg-Landau
type is widely accepted �13�. This approach describes the
fermion superfluid by a single complex order parameter,
which may be interpreted, at a semimicroscopic level, as the
wave function of composite bosons �Cooper pairs�. The
model based on nonlinearly coupled equations for the boson
and fermion order parameters has been used to study various
phenomena in Bose-Fermi mixtures, such as vortex forma-
tion, mixing-demixing transitions, and the onset of collapse
�11,41,42�. We will use these equations for the prediction of
compact GSs in the SBFM, which seems quite a relevant
approach to the description of these simple-shaped objects.

The so derived model for the SBFM in three dimensions
amounts to a system of nonlinear Schrödinger equations,
with the cubic nonlinearity for the bosons, and nonlinear
term of power 7/3 for the fermions �43,44�; the two equa-
tions are coupled by cubic terms. In the presence of a strong
transverse trap, this system can be reduced to coupled 1D
equations. We look for GS solutions and analyze their stabil-
ity within the framework of the 1D system. The simplicity of
the Gaussian-like profiles of the GSs suggests to apply the
variational approximation �VA� �45� to them, which produces
very accurate results, if compared to numerical findings.

It is relevant to mention that states of the GS type in a
Bose-Fermi mixture were also investigated in Ref. �40�, us-
ing a microscopic description of the fermion component. Un-
like the compact GSs studied in the present work, the soli-
tons found in Ref. �40� typically occupy several OL cells,

and feature a sophisticated shape with undulating tails. An-
other difference is that Ref. �40� was chiefly dealing with the
attractive Bose-Fermi interaction, whereas in our system
both the Bose-Fermi and Bose-Bose interactions could be
repulsive as well as attractive.

The paper is organized as follows. In Sec. II we derive the
basic equations from the underlying Lagrangian density. Sec-
tion III is dealing with the VA based on the Gaussian ansatz
for the wave functions. In Sec. IV we report numerical re-
sults for intragap and intergap GS families in the first two
band gaps, and compare them to the VA predictions, conclud-
ing that the agreement between the numerical and variational
methods is very good. We also verify the stability of the GSs
by means of direct simulations. Section V summarizes the
work.

II. COUPLED EQUATIONS FOR THE SUPERFLUID
BOSE-FERMI MIXTURE

A. Three-dimensional equations

We consider a degenerate mixture of NB bosons and NF

fermions with spin 1
2 , whose masses are mB and mF, at zero

temperature. The boson and fermion components of the mix-
ture are assumed to be condensed into the BEC and a BCS
superfluid, respectively. Accordingly, a weakly attractive un-
derlying �hidden� interaction between spin-up and spin-down
fermions is implied, while the explicit fermion-boson and
boson-boson interactions are repulsive, which is the most
natural case for any atomic gas.

The derivation of the model starts with the effective La-
grangian density for the SBFM,

L = LB + LF + LBF, �1�

with the usual expression for the boson component �1�,

LB =
i�

2
��B

��B
�

�t
− �B

� ��B

�t
� +

�2

2mB
���B�2 + VB�r���B�2

+
1

2
GB��B�4, �2�

where �B is the mean-field order parameter �single-atom
wave function� of the BEC, the density of the boson atoms
being nB= ��B�2, and VB�r� is the trapping potential for the
bosons. The strength of the boson-boson repulsive interac-
tion is GB=4��2aBB /mB, with aBB�0 the respective scatter-
ing length.

To derive the Lagrangian density of the fermion compo-
nent, we use the known energy density of the BCS superfluid
�SF� �46–48�,

ESF = �3/5�nF�F, �3�

where �F=�2kF
2 / �2m� is the Fermi energy, �kF is the Fermi

momentum, and nF is the density of the fermion atoms. This
energy density was first derived by Lee and Yang �47� in the
weak-coupling BCS limit. Modifications to this expression
for the description of the BCS-BEC crossover �with the
gradual increase of the strength of the attraction between
spin-up and spin-down fermions� have also been considered
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�48�. With regard to the pairing of the fermions with opposite
spin orientations, the total fermion density is given by nF
=2�2��−3	0

kF4�k2dk
�F
3/2 /A3/2, with A
�3�2�2/3�2 / �2mF�,

which yields the expression for the Fermi energy in terms of
the density: �F=A�nF /2�2/3. Then, the energy density in Eq.
�3� is expressed as ESF= �3/5�AnF

5/3, and the respective fer-
mionic Lagrangian density in Eq. �1� becomes

LF =
i�

2
��F

��F
�

�t
− �F

� ��F

�t
� +

�2

2m̃F

���F�2 + VF�r���F�2

+
3

5
A��F�10/3, �4�

where �F is the above-mentioned complex order parameter
of the fermionic BCS condensate, which determines its den-
sity, nF= ��F�2, VF�r� is the potential trapping the fermion
atoms, and m̃F is an effective mass of the superfluid flow �it
is natural to expect that in a weakly coupled superfluid m̃F is
close to 2mF�.

Last, the Bose-Fermi repulsive interaction is accounted
for by the corresponding term in the Lagrangian density,

LBF = GBF��B�2��F�2, �5�

where GBF=2��2aBF /mR, with the respective reduced mass
mR=mBmF / �mB+mF�, and scattering length aBF. Substituting
expressions �2�, �4�, and �5� in full Lagrangian density �1�,
we derive the following Euler-Lagrange equations, cf. Ref.
�12�:

�− i�
�

�t
−

�2

2mB
�r

2 + VB�r� + GB��B�2 + GBF��F�2��B�r,t� = 0,

�6�

�− i�
�

�t
−

�2�r
2

2m̃F

+ VF�r� + A��F�4/3 + GBF��B�2��F�r,t� = 0,

�7�

which are supplemented with normalizations

� � � ��B,F�x,y,z��2dxdydz = NB,F �8�

�these two norms are dynamical invariants of Eqs. �6� and
�7��.

Dynamical Eqs. �6� and �7� can also be derived in a dif-
ferent physical context, viz., in a DFG in the hydrodynamic
limit �49�. Indeed, using the known energy density for the
DFG, and a kinetic energy term �2���F�2 / �2mF� for the hy-
drodynamic flow in the Lagrangian density �here, mF is an
effective mass�, one arrives at Eqs. �6� and �7� with the dif-
ference that the term A= �3�2�2/3�2 / �2mF� therein is replaced
by �6�2�2/3�2 / �2mF�; the difference in the factor of 2 is due
to the formation of Cooper pairs in the superfluid. Hence the
present analysis and conclusions for the stationary GSs
should also apply to the DFG. However, this analogy may
be questionable for nonstationary states, as the above-
mentioned description of the DFG does not define the phase
of the fermion order parameter.

B. Reduction to one-dimensional equations

As mentioned above, the presence of a strongly elongated
�cigar-shaped� trap suggests to reduce the three-dimensional
�3D� equations to a 1D system. In the usual GPE with the
cubic nonlinearity, the reduction of the full 3D equation to its
1D counterpart was performed, in different ways, in Refs.
�50,51�. In the simplest situation, the reduction of the 3D
equation to one dimension starts with the factorization of the
3D wave function,

�B,F�x,y,z,t� = �B,F�x,t�exp�− i����B,Ft −
y2 + z2

2�aHO�B,F
2 � ,

�9�

where the second multiplier represents the ground state of
the transverse 2D harmonic oscillator, with �aHO�B,F

=�� / �mB,F����B,F� the harmonic-oscillator lengths for the
bosons and fermions, and ����B,F the corresponding trans-
verse trap frequencies. The normalization of functions
�B,F�x�, which were introduced in Eq. �9�, must comply with
the underlying 3D normalization conditions �8�. The substi-
tution of ansatz �9� in Eqs. �6� and �7� and averaging of the
3D equation in the transverse plane �y ,z� lead to the follow-
ing 1D equations:

i�
��B

�t
= −

�2

2mB

�2�B

�x2 +
1

2
GB��B�2�B +

1

2
GBF��F�2�B

− �B cos�4�

	
x��B, �10�

i�
��F

�t
= −

�2

2m̃F

�2�F

�x2 +
3

5
A��F�4/3�F +

1

2
GBF��B�2�F

− �F cos�4�

	
x��F, �11�

where we have introduced the periodic OL potential with
period 	 /2 and amplitudes −�B,F, acting on the Bose and
Fermi components �the amplitudes are taken negative to set a
local minimum of the potential at point x=0, where the cen-
ter of the solitons will be placed�. Below, results are pre-
sented assuming equal boson and fermion masses and equal
constants of the coupling to the OL, m̃F=mB
m, �B=�F

�. For a Bose-Fermi superfluid mixture this situation may
approximately correspond to the existing 40K-87Rb mixture
�2�, where m̃F2mFmB.

By means of the rescalings �here we set m=mF=mB and
�B=�F
��,

�B,F 
�2

	
aHO

−1 �̃B,F, t 

m

�
� 	

2�
�2

t̃, x 

	

2�
x̃ ,

� = �̃
�2���2

	2m
, �12�

Eqs. �10� and �11� are cast in the following dimensionless
form:
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i
��B

�t
= −

1

2

��B

�x2 + gB��B�2�B + gBF��F�2�B − � cos�2x��B,

�13�

i
��F

�t
= −

1

2

��F

�x2 + gF��F�4/3�F + gBF��B�2�F − � cos�2x��F,

�14�

with gB
aBB	 / ��aHO
2 �, gBF=aBF	 / ��aHO

2 �, and gF

= �3/10��3	2 /4�aHO
2 �2/3 �tildes are dropped here�, the res-

caled 1D wave functions being subject to normalization con-
ditions

�
−


+


��B,F�x��2dx = NB,F. �15�

Stationary solutions to Eqs. �13� and �14� are looked for in
the ordinary form, �B,F=exp�−i�B,Ft�uB,F�x�, with real
chemical potentials �B and �F, and real functions uB,F�x�
obeying equations �with u�
d2u /dx2�

�BuB = −
uB�

2
+ gBuB

3 + gBFuF
2uB − � cos�2x�uB, �16�

�FuF = −
uF�

2
+ gFuF

7/3 + gBFuB
2uF − � cos�2x�uF. �17�

Our main objective is to construct families of fundamental
GS solutions to Eqs. �16� and �17�, with �B,F belonging to
the first two finite band gaps in the model’s linear spectrum
�the band gaps are induced by the dimensionless potential,
−� cos�2x�, common to both components�.

III. VARIATIONAL APPROXIMATION

To derive the VA �45� for the fundamental GS solutions to
stationary Eqs. �16� and �17�, we use the obvious fact that
these equations, along with normalization conditions �15�,
can be derived from Lagrangian

L = �
−


+
 ��BuB
2 + �FuF

2 −
1

2
�uB��2 −

1

2
�uF��2

+ � cos�2x��uB
2 + uF

2� −
1

2
gBuB

4 −
3

5
gFuF

10/3 − gBFuB
2uF

2�dx

− �BNB − �FNF, �18�

where �B and �F play the role of Lagrange multipliers asso-
ciated with conditions �15�. Aiming to find the solitons with
a compact profile, we adopt the Gaussian ansatz �45�,

uB,F�x� = �−1/4�NB,F�B,F

wB,F
exp�−

x2

2wB,F
2 � , �19�

where the variational parameters are the soliton widths wB,F
and reduced norms �B,F, as well as chemical potentials �B,F.
The substitution of the ansatz in Lagrangian �18� yields

L = �BNB�B + �FNF�F −
NB�B

4wB
2 −

NF�F

4wF
2 + �NB�Be−wB

2

+ �NF�Fe−wF
2

−
gB

�1/223/2

NB
2�B

2

wB
−

gF

�1/3�5/3�3/2

NF
5/3�F

5/3

wF
2/3

−
gBFNBNF�B�F

���wB
2 + wF

2�
− �BNB − �FNF. �20�

The first pair of the variational equations following from Eq.
�20�, �L /��B,N=0, yield �B=�F=1 �which implies that the
norms of the two components of ansatz �19� are NB and NF,
in accordance with Eq. �15��. Therefore, �B=�F=1 is substi-
tuted in other equations below. The other pair of the varia-
tional equations, �L /�wB,N=0, can be written as

1 +
gBNB

�2��1/2wB +
2gBFNFwB

4

���wB
2 + wF

2�3/2
= 4�wB

4e−wB
2
, �21�

1 +
4�3gFNF

2/3

5�5�1/3
wF

4/3 +
2gBFNBwF

4

���wB
2 + wF

2�3/2
= 4�wF

4e−wF
2
. �22�

The remaining equations, �L /��B,F=0, yield expressions for
chemical potentials �B,F of the boson and fermion compo-
nents of the fundamental GS as functions of the interaction
coefficients, gB, gF, and gBF,

�B =
1

4wB
2 +

gB

�2�

NB

wB
+

gBFNF

���wB
2 + wF

2�
− �e−wB

2
, �23�

�F =
1

4wF
2 +

�3gF

�1/3�5

NF
2/3

wF
2/3 +

gBFNB

���wB
2 + wF

2�
− �e−wF

2
. �24�

In the limit of gB,F, gBF→0, Eqs. �21� and �22� reduce to a
single equation,

4�wB,F
4 exp�− wB,F

2 � = 1, �25�

which has real solutions for ��e2 /80.92. Formally, solu-
tions of Eq. �25� predict localized solutions to Eqs. �16� and
�17� in the linear system, while, as is commonly known, the
linear Schrödinger equation with a periodic potential does
not support any localized solution. However, the actual
meaning of the limit case of gB,F, gBF→0 is that, with solu-
tions to Eq. �25� substituted in Eqs. �23� and �24�, the latter
equations predict a cutoff value, ��0�1, for both chemical
potentials, �B and �F, below which fundamental GSs do not
exist, i.e., as a matter of fact, ��0�1 is the left edge of the first
�lowest� band gap. A numerically computed position of the
left edge agrees very well with the variational prediction. For
instance, for �=5 �numerical results are displayed below for
this value of ��, the VA yields ��0�1−2.894, which almost
exactly coincides with its numerically found counterpart,
��0�1

�num�−2.893.

IV. NUMERICAL RESULTS

A. Families of fundamental gap solitons

For the numerical solution, Eqs. �13� and �14� were dis-
cretized using the Crank-Nicholson scheme �52� and solved
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�in real time� until the solution would converge to a station-
ary wave form that provides a real solution to Eqs. �16� and
�17�. The numerical simulation was carried out with time
step 0.0005 and space step 0.025, in domain −20x20. To
find the GSs, the simulations started with an initial configu-
ration chosen as the ground state, ��x�= ��2c /��1/4 exp�
−�c /2x2�, of the quantum-mechanical linear oscillator with
potential cx2 �with large c, typically from 5 to 200�. The OL
potential was slowly introduced in the course of numerical
simulation, while the strong harmonic potential kept the lo-
calized state squeezed into a single cell of the OL. After
reaching a stationary bound state in the nonlinear equation
containing the combined OL and harmonic potential, the lat-
ter term was slowly switched off, allowing the establishment
of a well-defined stationary GS �a similar approach to the
creation of GSs in the single-component BEC was proposed
in Ref. �35��.

Families of the fundamental GSs predicted by the VA may
be characterized by dependences NB,F���. The same depen-
dences were found from the numerical solution outlined
above. In this section, we display numerical results obtained
for compact GSs, without conspicuous “tails.”

The effective nonlinearities, gBNB and gFNF
2/3, for the bo-

son and fermion components of the GS families are shown,
against the corresponding chemical potentials, in Figs. 1�a�
and 1�b�, fixing �=5 and gBF=0.004. In panel �a�, we also fix
gF=0.05 and NB=1000, while the bosonic-nonlinearity coef-
ficient, gB, varies from 0 to 0.015, and the results are dis-
played for different fixed values of NF �in particular, NF=0
corresponds to the ordinary GSs in the self-repulsive BEC�.
The families of variational solutions displayed in Fig. 1�a�
commence at �−2.894 �as mentioned above, it almost ex-
actly coincides with the actual left edge of the first band
gap�. In panel �b� of Fig. 1, we fix gB=0.01 and NF=0.05,
while the fermion-nonlinearity coefficient, gF, varies from 0
to 0.1, the results being shown for several different fixed
values of NB �the case of NB=0 corresponds to pure fermi-
onic GSs in the BCS superfluid�. The agreement between the
VA and numerical results is very good, with a caveat that the
VA ignores the presence of the Bloch band separating the
two gaps �i.e., the VA-generated solution branches extend
across the band�.

In Fig. 2, typical shapes of the numerically found GSs are
compared with their counterparts predicted by the VA at the
following sets of parameter values: �a� NF=1000, NB
=500, gB=0.01; �b� NF=200, NB=1000, gB=0.001; �c�
NF=100, NB=700, gB=0.01; �d� NF=100, NB=500, gB
=0.01. In all four cases, gF=0.05 and gBF=0.004 are fixed.
As written in the caption to Fig. 2, these parameters are
chosen to represent four different cases, as concerns the lo-
cation of the two chemical potentials, �B and �F, in the two
lowest band gaps of the OL-induced linear spectrum: panels
�a� and �d� represent the two-component solitons of the in-
tragap type, while �b� and �c� represent intergap solitons, in
terms of Ref. �30�. The agreement between the numerical
and variational results is, again, quite noteworthy.

In Fig. 2 all the nonlinearities are taken as positive �repul-
sive�. Another problem of interest is to investigate if GSs in
the first two band gaps can be found in both components
when one of the nonlinearities �gB or gBF� becomes attrac-

tive. �We recall that when gBF is sufficiently attractive, bright
Bose and Fermi solitons can be generated without the OL
potential �24�. Such bright solitons will not have the chemi-
cal potential in the first two band gaps and hence are not
GSs.� We find that GSs in the first two band gaps indeed
exist when either gB or gBF turns negative. We show typical
results for this case in Figs. 3�a� and 3�b�, where we illustrate
that by adjusting the parameters such GSs can be placed in
the first or the second band gap. These are intergap solitons.
In addition intragap solitons can also be created in this case
�not shown in Fig. 3�. The solitons shown in Fig. 3 are also
stable, despite the fact that one nonlinearity coefficient
changed its sign to an attractive value.

B. Nonfundamental solitons

The fundamental GSs presented by Figs. 1 and 2 are com-
pact objects with a nearly Gaussian shape, trapped in a single
cell of the OL. On the other hand, it is well known �26� that
the GSs in self-repulsive repulsive BEC frequently demon-
strate structures extended over many cells. Stable nonfunda-
mental solitons featuring similar profiles can be found in the
present model too, see examples in Fig. 4. They may be
considered as bound complexes built of a central GS and
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FIG. 1. �Color online� The effective nonlinearity coefficients,
gBNB for bosons �a� and gFNF

2/3 for fermions �b� versus the chemical
potentials of the boson and fermion components, �B and �F, re-
spectively, for families of the fundamental compact gap solitons in
the first and second band gaps of periodic potential � cos�2x� �nu-
merical results are presented in this and other figures for �=5�. As
indicated in the figure, continuous curves and chains of symbols
display, respectively, results obtained from the numerical solution
�“num”� and variational approximation �“var”�. Shaded vertical ar-
eas represent Bloch bands which separate the gaps.
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additional pulses located in adjacent cells of the OL. Similar
to the patterns shown Fig. 4, which extend over three lattice
cells, at smaller values of the chemical potentials it is pos-
sible to find dynamically stable localized structures which
are stretched still wider.

C. Stability

The way the fundamental and nonfundamental GSs have
been found, as a limit form to which solutions of underlying
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FIG. 2. �Color online� Profiles of the probability density,
��B,F�x��2 �subject to normalization 	



��B,F�x��2=1� in the boson
�“bos”� and fermion �“fer”� components of the fundamental gap
solitons, in four different cases with �a� both components of the
soliton having their chemical potentials, �B and �F, in the second
band gap, �b� �B and �F in the first and second gaps, respectively;
�c� vice versa to �b�; �d� both components of the first band gap. In
terms of Ref. �30�, the two-component gap solitons in panels �a�
and �d� are of the intragap type, while the ones in �b� and �c� are
intergap solitons. The thin dotted lines, here and in other figures,
represent the OL potential, �−cos�2x�.
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FIG. 3. �Color online� Same as in Fig. 2 with �a� intraspecies
attraction among bosonic atoms corresponding to a negative gB and
�b� interspecies attraction between bosons and fermions correspond-
ing to a negative gBF. In �a� the bosonic GS is in the first band gap
and fermionic GS is in the second band gap, in �b� vice versa to �a�.
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FIG. 4. �Color online� Profiles labeled I, II, III �normalized ac-
cording to 	



��B,F�x��2=1� represent the bosonic �a� and fermionic
�b� components of three distinct stable nonfundamental gap soli-
tons, extended over several lattice cells, for the same parameters
�except for �B,F� as in Fig. 2�a�. The corresponding values of the
chemical potentials are indicated in the panels.
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dynamical Eqs. �13� and �14� relax at large values of t,
strongly suggests that all these solutions are stable. Their
stability was additionally tested by adding strong perturba-
tions to them. It was thus verified that the entire families of
the GSs presented above are stable, as well as the nonfunda-
mental solitons displayed in Fig. 4. For example, the nonfun-
damental soliton labeled III in Fig. 4, after it was obtained as
a steady state to which the evolution of a certain initial con-
figuration converged, was suddenly multiplied by a perturb-
ing factor, �B,F�x�→1.1�B,F�x�. The perturbed solution dem-
onstrates oscillations without any onset of instability, as
shown in Fig. 5.

A typical example of the stability test for fundamental
GSs is presented in Fig. 6, for the soliton shown in Fig. 2�a�.
At t=10, it was also “shaken,” multiplying it by a factor 1.1.
The subsequent evolution makes the absence of any instabil-
ity evident.

V. CONCLUSION

We have studied the possibility of generation of one-
dimensional GSs �gap solitons� in a Bose-Fermi mixture
trapped in a periodic OL potential, assuming that the bosons
are in the BEC phase, and fermions are condensed into the
BCS superfluid. A dynamical model of the mixture was de-
rived from the system’s Lagrangian. The resultant coupled

equations feature the cubic nonlinearity in the boson compo-
nent, and the nonlinear term of power 7/3 in the equation for
the fermion order parameter, with a cubic coupling between
the equations, all the nonlinearities being repulsive.

Families of solutions for compact GSs, trapped, essen-
tially, in the single lattice cell, were obtained by means of the
VA �variational approximation� based on the Gaussian an-
satz, and in the numerical form, in the two lowest band gaps
of the OL-induced spectrum. For a wide range of values of
the interaction strengths and numbers of boson and fermions
in the mixture, the VA predictions for the GS profiles and
their chemical potentials agree very well with the respective
numerical results. The GS families include both intragap and
intergap solitons, with the chemical potentials of the boson
and fermion components falling, respectively, in the same or
different band gaps. In addition to the fundamental GSs, we
have also found �in the numerical form� nonfundamental lo-
calized structures, extended over several lattice sites. The
entire families of the fundamental GSs, as well as the non-
fundamental extended states, were checked to be robust
against strong perturbations.

This work can be naturally extended in various directions.
One possibility is to look for GSs in 2D and 3D models of
the same type, study the possibility of the existence and sta-
bility of the two-component boson-fermion gap solitons, and
investigate their properties. Another prospective direction
would be to study gap solitons in a boson-fermion mixture
with mixed repulsive-attractive interactions in a systematic
form, while in this paper we gave only a few examples. One
can also seek for mixed bound states, in which the boson
component belongs to the semi-infinite gap, while the fermi-
onic chemical potential still belongs to a finite band gap and
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FIG. 5. �Color online� The evolution of the boson �a� and fer-
mion �b� components of the nonfundamental gap soliton, labeled III
in Fig. 4, with �B=−0.80 and �F=−0.60. A rather strong perturba-
tion was applied to the soliton at t=10, in the form of �B,F�x�
→1.1�B,F�x�. The perturbed soliton remains stable as long as the
simulation was running.
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FIG. 6. �Color online� The same stability test as shown in Fig. 5
for the fundamental soliton from Fig. 2�a�.
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vice versa. Last, it may happen that the coefficients which
couple the bosons and fermions to the OL have opposite
signs �one species is red-detuned, while the other one feels
blue detuning�, that may give rise to nontrivial stability lim-
its for two-components GSs.

Here we used a set of mean-field equations for the study
of GSs in Bose-Fermi mixtures. A rigorous treatment of this
problem might be performed using a many-body Slater-
determinant wave function �40�, as was done, for example, in
the case of many-electron scattering �53�.
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