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Models of two-dimensional (2D) traps, with double-well structure in the third direction, for Bose-Einstein
condensates are introduced with attractive or repulsive interactions between atoms. The models are based on
systems of linearly coupled 2D Gross-Pitaevskii equations, where the coupling accounts for tunneling between
the wells. Each well carries an optical lattice (OL) (stable 2D solitons cannot exist without OLs). The linear
coupling splits each finite band gap in the spectrum of the single-component model into two subgaps. The main
subject of the work is spontaneous symmetry breaking (SSB) in two-component 2D solitons and localized
vortices (SSB was not considered before in 2D settings). Using variational approximation (VA) and numerical
methods, we demonstrate that, in a system with attraction or repulsion, SSB occurs in families of symmetric or
antisymmetric solitons (or vortices), respectively. The corresponding bifurcation destabilizes the original so-
lution branch and gives rise to a stable branch of asymmetric solitons or vortices. The VA provides for an
accurate description of the emerging branch of asymmetric solitons. In the model with attraction, all stable
branches eventually terminate due to the onset of collapse. Stable asymmetric solitons in higher finite band
gaps and vortices with a multiple topological charge are found too. The models also give rise to first examples
of embedded solitons and embedded vortices (the states located inside Bloch bands) in two dimensions. In the
linearly coupled system with opposite signs of the nonlinearity in the two cores, two distinct types of stable
solitons and vortices are found, dominated by either the self-attractive component or the self-repulsive one. In
the system with a mismatch between the two OLs, a pseudobifurcation is found: when the mismatch attains its
largest value (), the bifurcation does not happen, as branches of different solutions asymptotically approach

each other, but fail to merge.
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I. INTRODUCTION

A great variety of dynamical patterns in Bose-Einstein
condensates (BECs) can be supported by optical lattices
(OLs)—i.e., spatially periodic potentials induced by laser
beams illuminating the BEC [1]. A well-known species of
such patterns are gap solitons in condensates composed of
repulsively interacting atoms. Gap solitons in BECs were
predicted theoretically [2—-4] and then created in a “cigar-
shaped” [i.e., nearly one-dimensional (ID)] crossed-beam
optical trap [5] to which a longitudinal OL was added. In
self-attractive media, the OL potential makes it possible to
trap a usual soliton at a required position and generates
stable multisoliton complexes [6]. In the case of a very deep
OL, the corresponding Gross-Pitaevskii equation (GPE) [7]
reduces to a discrete nonlinear Schrédinger (NLS) equation
[8], which supports well-known solitons, including staggered
ones [9].

Another topic which has drawn a great deal of interest, in
terms of BECs [10] and nonlinear optics [11] alike, is spon-
taneous symmetry breaking (SSB) in matter waves or optical
beams trapped in settings based on double-well potentials
(using the terminology widely adopted in optics [11], the
medium corresponding to each potential well is sometimes
called a “core” below). If two parallel cigar-shaped traps are
strong enough, the system may be described by a pair of
one-dimensional GPEs with linear coupling between them
[12]; hence, the destabilization of symmetric solitons and
spontaneous transition to asymmetric ones in the double
cigar-shaped trap, filled with self-attractive condensate, is

1050-2947/2007/76(4)/043623(15)

043623-1

PACS number(s): 03.75.Lm, 05.45.Yv, 42.65.Tg, 47.20.Ky

described in the same way as the formation of asymmetric
solitons in the well-studied model of dual-core nonlinear op-
tical fibers [13] (in nonlinear optics, the SSB of 1D solitons
was also studied in dual-core models with non-Kerr nonlin-
earities, such as quadratic [14] and cubic-quintic [15]). On
the other hand, if the dual-core BEC waveguide is realized as
a set of two parallel finite-width potential troughs, separated
by a finite buffer layer, which are embedded in a 2D (hori-
zontal) trap and tightly confined in the transverse (vertical)
direction, the SSB in the respective double-core solitons can
be examined in the framework of the full 2D GPE (i.e., con-
sidering the tunneling across the buffer layer explicitly,
rather than approximating it by the linear coupling between
the two 1D equations) [16]. Both models predict a subcriti-
cal symmetry-breaking bifurcation for solitons in the self-
attractive condensate [which means that branches of asym-
metric solutions emerge as unstable ones at the SSB point
and originally go backward (for which reason the bifurcation
is also called a backward one), but then turn forward, stabi-
lizing themselves at the turning point].

The objective of the present work is to find symmetric,
antisymmetric, and asymmetric families of 2D BEC solitons
and similar families of localized vortices (alias vortex soli-
tons) in the system built as a stacked pair of “pancake-
shaped” traps, each carrying a two-dimensional OL. The
traps are linearly coupled by tunneling across the buffer layer
separating them. This model is a natural extension of a
double-trap system recently studied in the 1D setting [12] (in
optics, spontaneous symmetry breaking in 1D multicompo-
nent gap solitons was studied in models of dual-core [17]
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and triple-core [18] fiber Bragg gratings). Generalization to a
higher dimension is significant, because 2D solitons are dras-
tically different from their 1D counterparts [ 19], especially in
the case of the self-attractive nonlinearity (the existence of
the respective 2D solitons is fundamentally restricted by the
possibility of collapse). Besides that, a new species of vortex
solitons is possible in 2D geometry [19].

We will examine different physically relevant versions of
the model, with attractive or repulsive nonlinearity in each
trap [following Ref. [12], they are referred to as “attractive-
attractive” (AA) and “repulsive-repulsive” (RR) systems]. In
the AA system, the solitons originate in the semi-infinite gap
of the linear spectrum, while in the RR system one may
expect to find solitons in finite band gaps induced by the OL
(we will consider the first two gaps, each of them being split
into two subgaps under the action of the linear coupling
between the traps). In some cases (similar to what was found
in the 1D model [12]), families of solitons and vortices ex-
tend across Bloch bands separating the (sub)gaps, thus be-
coming embedded solitons [20]. As a matter of fact, the
present paper reports the first examples of 2D embedded
solitons (and vortices).

A mixed (AR) system, with self-attraction in one trap and
self-repulsion in the parallel one, will be considered too. As
is known, the sign of the interaction between atoms can be
reversed by means of the Feshbach resonance imposed by
external magnetic field [21]; accordingly, the signs may be
made opposite in the two traps by applying the magnetic
field which is inhomogeneous across the “pancake” stack.
Solitons in 1D settings of the latter type, but without OLs,
were elaborated in Ref. [22]; a 2D generalization was con-
sidered too (with no OLs either) [23], but it does not give
rise to stable solitons.

In the normalized form, 2D models considered in this
work are based on a system of linearly coupled GPEs for the
mean-field wave functions in the two flat traps, ¢(x,y,t) and

dx,y,1),
i, + V2 + g[cos(2x) + cos(2y) [+ N | 4>+ kp =0,
(1a)

i+ Vi +e[cos(2x + A) + cos(2y + Ay) ]+ \o| p>d + ki
=0, (1b)

where x and y are planar coordinates, V2= &/ x>+ &*/dy?,
Ai,=+1 and -1 correspond to the attractive and repulsive
nonlinearity in the cores, the real linear-coupling coefficient
K is proportional to the rate of tunneling across the potential
barrier separating the parallel traps (“cores”), and € is the
strength of the OLs, whose period is scaled to be 7. We
assume equal depths of the OLs in both traps, while asym-
metry between the lattices may be introduced by mismatches
(phase shifts) in the x and y directions, and A, and A,. We
will chiefly deal with the symmetric system—i.e., A;=A,
=0; nevertheless, effects produced by the mismatches will be
addressed too (in fact, we will consider the case of the largest
possible mismatch in the diagonal or horizontal direction,—
ie., Aj=A,=m or A\=m, A,=0, respectively). In optical
models, various effects of the mismatch between linearly
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coupled Bragg gratings on gap solitons supported by the
gratings were studied in Ref. [24].

The 2D form of Egs. (la) and (1b) implies that the
pancake-shaped traps are tightly confined in the transverse
(Z) direction, which allows one to reduce the underlying 3D
GPE to two dimensions, as performed, in the general form,
in Ref. [25]. Together with normalizations of the OL period
and nonlinearity constants adopted in Egs. (1a) and (1b), this
implies that the variables ¢ and (x,y) in Egs. (1a) and (1b) are
related to physical time T and coordinates (X,Y) by

h
j= T (x,y)zg(x,n, (2)

2md* "’

where m is the atomic mass, and d the OL period in physical
units, while the scaled wave functions are related to their
counterparts W and @ in 3D space as follows:

vx.v.zT) | 1 \/I 1)
OX,Y.2T) | 2 Vla]d*| (x.1)
i m

Xexp(— EwLT— 7

22>. (3)

Here w, is the transverse trapping frequency and a, the
s-wave scattering length of atomic collisions (a,<0 for at-
tractive interactions). Due to the normalizations, the lattice
strength is represented by &=2&/E,.., where &,
=(mh)?/(md?) is the lattice recoil energy and £ the depth of
the periodic potential in physical units.

The AA and RR systems may be experimentally realized
in "Li [26] or ®Rb [27] and ¥’Rb [1] condensates, respec-
tively. In this work, the analysis is presented in the range of
k~1 in Egs. (la) and (1b). With regard to Egs. (2), the
corresponding normalized tunnel-coupling time  Zqqyp
=7/(2k) translates, for d~1 um, into physical time Ty,
~10 us and 100 wus for lithium and rubidium, respectively.
A prediction most essential to the experiment is the number
of atoms expected in stable solitons. Assuming an experi-
mentally relevant value of the trapping frequency—for in-
stance, w, =27 X100 Hz for the rubidium condensate
(then, the corresponding transverse-confinement size is esti-
mated to be ~1 um—i.e., comparable to the OL period)—
and translating the results reported below into physical units,
we conclude that the symmetry-breaking 2D solitons are
built of ~10% atoms. In vortex solitons, the number of atoms
is larger, roughly, by a factor of 10.

The paper is organized as follows. In Sec. II, we focus on
relevant mathematical formulations, which include the linear
spectrum of the coupled system, stationary equations for
solitons, and the setting for the variational approximation
(VA) describing symmetric and asymmetric solitons in the
AA and RR systems. Systematic numerical results for soli-
tons in symmetric AA and RR systems (and comparison with
predictions of the VA) are reported in Sec. III, while Sec. IV
reports numerical results for vortex solitons, in the same sys-
tems. Findings for asymmetric systems (of the AR type, as
well as ones with mismatched OLs) are collected in Sec. V.
Section VI concludes the paper.
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FIG. 1. The spectrum of the linearized 2D system with aligned
optical lattices (A;=A,=0). Throughout the paper, all numerically
obtained results are given for =8, which makes it possible to dis-
play the findings in a generic form. Here and in figures following
below, Bloch bands are shaded. (a) The uncoupled system, x=0,
and (b) the coupled one with k=1 (unless specified otherwise, all
figures in the paper pertain to k=1).

II. FORMULATIONS: LINEAR SPECTRUM, STATIONARY
EQUATIONS, AND VARIATIONAL APPROXIMATION

A. Linear spectra

Before looking for soliton solutions, it is necessary to
identify the system’s spectrum within the framework of the
linearized equations. First, we consider the symmetric sys-
tem, with A;=A,=0, and look for solutions with chemical
potential wu as

{g(x,y.0), p(x,y.0)} = [alx,y) £ Blx,y)]e™. 4)

Substituting this in the linearized version of Egs. (la) and
(Ib), we arrive at a 2D eigenvalue problem based on the
decoupled equations
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FIG. 2. (Color online) The dependence of chemical potential u
on quasimomentum k (in the diagonal direction; see text) in the
uncoupled system, k=0 (a), and in the coupled one, k=1 (b). In
both cases, A;=A,=0 and £=8. The new nearly flat branch of the
dependence, observed around u=-7.5, explains the splitting of gap
1 into subgaps la and 1b in Fig. 1.

V2a(x,y) + e[cos(2x) + cos(2y) Jalx,y) = — (u + k) a(x,y),
(5a)

V2B(x,y) + elcos(2x) + cos(2y)1B(x,y) = = (1 = ©) Bx,y).
(5b)

Each one of these equations is tantamount to the eigenvalue
problem for the single GPE with a 2D lattice and effective
chemical potential ' =u+ «. The spectrum generated by the
linearization of the single-component GPE is well known
(see Ref. [3] and references therein). Figure 1 shows a typi-
cal example of the spectrum of the 2D coupled system with
the zero mismatch. We observe that the linear coupling in
Egs. (la) and (1b) splits the finite gaps of the single-
component model BEC into pairs of subgaps, which is simi-
lar to what was observed, under the action of the linear cou-
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FIG. 3. The change of the linear spectrum with the increase of
diagonal mismatch A between the lattices in the coupled traps for
k=2.

pling, in the 1D counterpart of the present system [12].

To show in detail how the gaps split into subgaps, in Fig.
2 we display the dependence of the chemical potential on
vectorial quasimomentum (k,,k,) in the diagonal direction
(k,=k,=k), in the uncoupled system and in its coupled
counterpart with k=1, both pertaining to £=8. The new,
nearly flat, branch of the u(k) dependence, which appears in
the latter case around w=-7.5, explains the splitting of
former gap 1 into subgaps la and 1b by a new very narrow
Bloch band (cf. Fig. 1). At other values of &, the splitting
mechanism is quite similar.

Figure 2 and all others in this paper display numerical
results for OL strength £=8 (a moderately deep lattice),
which corresponds to the most typical situation. As for cou-
pling constant «, the results are displayed for k=1 (which
also helps to presents generic findings), unless a different
value of « is indicated.

As shown in Fig. 3, we also examined the transformation
of the linear spectrum under the action of the diagonal mis-
match between the OLs in the two traps, assuming A;=A,
=A. In this case, the linearized equations cannot be decou-
pled; nevertheless, the computation is straightforward, as we
can use the separability of the linear operator to construct
eigenfunctions of the 2D model as products of eigenfunc-
tions of the corresponding 1D models [12]. Figure 3 demon-
strates that, with the increase of A, the subgaps generated by
the coupling-induced splitting tend to shrink, which re-
sembles the trend observed in the 1D model [12].

B. Stationary equations

Stationary solutions to the full nonlinear system of equa-
tions (la) and (lb) are looked for as {i,dd}
={u(x,y),v(x,y)}e”"*, with real functions u and v to be
found from the equations

it + VZu + g[cos(2x) + cos(2y) Ju + A u’ + kv =0,
(6a)
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FIG. 4. (Color online) Families of 2D solitons found in the
symmetric attraction-attraction model (\;=X,=1, A;=A,=0). Sym-
metric, antisymmetric, and asymmetric solutions are labeled by “s,”
“an,” and “as,” respectively. Dashed-dotted lines represent solutions
(of all the three types) produced by the variational approximation,
while solid and dotted lines depict, respectively, numerically found
stable and unstable solutions. (a) The soliton’s total power versus
the chemical potential and (b) ratio ® [see Eq. (9)] for the family of
asymmetric solitons. The same conventions for labeling solution
families of different types (variational-numerical, stable-unstable,
symmetric-antisymmetric-asymmetric) are adopted in other figures.

wv + V20 + g[cos(2x + A}) +cos(2y + Ar) v + A’ + ku = 0.
(6b)

In the symmetric models—i.e., the AA and RR ones (\;
=N\,==1) with zero mismatch (A;=A,=0)—symmetric (u
=v) and antisymmetric (#=-v) solutions can be expressed in
terms of a stationary solution of the single-component GPE
with chemical potential w, to be denoted as iy(x,y; w):

u(x,y;p) = £olx,y;u) =dp(x,y; u+ k). (7)

Similar to the situation in the 1D model [12], we conclude
from Eq. (7) that, when the gap splitting occurs, the symmet-
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FIG. 5. (Color online) Comparison of profiles of the 2D soliton
in the attraction-attraction model as found from the numerical solu-
tion and predicted by the variational approximation (solid and
dashed curves, respectively). Shown are cross sections of the soli-
ton along x and y axes for u=-12. Norms of the two components of
the soliton are N,=~4.5, N,~0.4.

ric and antisymmetric solitons will be moved to the lower
and upper subgaps, respectively. In some cases, they may
end up in Bloch bands separating the subgaps, thus becom-
ing embedded solitons, examples of which are presented be-
low.

To find general asymmetric soliton solutions and SSB bi-
furcations linking them to their symmetric and antisymmetric
counterparts, we solved the full system of stationary equa-
tions (6a) and (6b) numerically. The stability of all solitons
was examined by direct simulations of Egs. (la) and (1b).

[ul,Iv]
[ul, V]
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Soliton families are characterized (see below) by norms of
the two components and the total norm,

{N,N,}= f f {u?(x,y),v%(x,y)}dx dy,

N=N,+N,. (®)

For asymmetric solutions, we define the asymmetry ratio
[12] as

O =|N,—N,/(N,+N,). )

The total norm and the energy are dynamical invariants of
Egs. (1a) and (1b).

C. Variational approximation for the symmetric system

The symmetric version of Egs. (6a) and (6b) (A\;=\, =\,
A;=A,=0) can be derived from the following Lagrangian:

L:ff{’u“q”'z*|U|2)‘(|V’42+|Vv|2)+8[008(2x)

+cos(2y)1(Jul* +[v]*) + (V2) (ul* + [v]*) + (u'v + uv™)}.
(10)

A simple real isotropic Gaussian ansatz [28], with single
width W, but different amplitudes A and B pertaining to the
two components, may be adopted for the solitons:

2 2
(u,0) = (A,B)exp(— %) (11)

The total norm of this expression is [see Eq. (8)]

N=mW*A%+B?). (12)

FIG. 6. (Color online) Evolu-
tion of an antisymmetric 2D soli-
ton (with u=-16) in the
attraction-attraction model, which
is destabilized by the collapse. (a)
The initial state at =0, (b) the for-
mation of an asymmetric state at
t=4, (c) the collapse of the high-
amplitude component and decay
of the low-amplitude one at =6,
and (d) the evolution of the entire
pattern in the cross section along
x=0. Here and in similar figures
presented below, panels display
the side-by-side juxtaposition of
the two components |u| and |v].

6 -10 y
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FIG. 7. (Color online) The same as in Fig. 4, but for families of
solitons in the symmetric repulsion-repulsion model (\;=\,=-1,
A=0). The portion of the asymmetric-soliton branch in subgap 2a is
an artifact of the variational approximation.

The substitution of ansatz (11) in Lagrangian (10) yields
the corresponding effective Lagrangian

Legdm= (A2 + BYW? — (A2 + B2) + 26(A% + B W2
+(N4)(A* + BYW? + 2kABW?. (13)
Variational equations following from this Lagrangian can be
conveniently written as
Lot I(A% + B?) = ILoii/ (AB) = IL i/ d(W?) =0. (14)

For symmetric and antisymmetric solitons, defined by A
=sB with s==1, Eq. (14) amounts to a set of two equations

N=27W?A?=8m\(1 - 28W4€_W2), (15)

wtsk=—W2-2se (1 - 2W2). (16)

In the attractive model (\=+1), Egs. (15) and (16) are tan-
tamount to those analyzed in the framework of the VA in
Refs. [28] and [29]. It was demonstrated that the norm of the
2D soliton takes values in the following intervals:
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FIG. 8. (Color online) Comparison of profiles of asymmetric
solitons as predicted by the VA and found in the numerical form
(dashed and solid lines, respectively) in the symmetric repulsive-
repulsive model. In this case, u=—4 and N,~10.5, N,=0.6.

O<N<N(anr)58,ﬂ_’

max

if e>e,=e%8~092, (17)

N =8r(1 —gle,) <N<8m, if e6<e,. (18)
Note that Nfﬁ:i):SW corresponds, in terms of the VA [30], to
the norm of the Townes soliton—i.e., the localized solution of
the 2D NLS equation in free space, which is unstable against
collapse [31] (while the OL stabilizes 2D solitons [28,32]).
In fact, the vanishing of Nl(sit:) at e >g. in Egs. (17) and (18)
is an artifact of the VA [28], explained by the fact that the
Gaussian ansatz (11) is not appropriate for multipeaked soli-
tons supported by the strong OL.

ul,lv]

Il-
IR W““\‘ I“‘
I
i il
i) \

20

20 0

FIG. 9. (Color online) Evolution of a perturbed symmetric em-
bedded soliton in the symmetric repulsion-repulsion model is
shown in the cross section along x=0. The chemical potential of the
unperturbed soliton is w=-7.54, placing it into the Bloch zone
separating subgaps la and 1b. The norm of the soliton is N=~8. The
soliton is obviously stable.

043623-6



SPONTANEOUS SOLITON SYMMETRY BREAKING IN...

lul. vl

FIG. 10. (Color online) Spontaneous transformation of an un-
stable antisymmetric soliton (with w=-3.5) into a persistent
breather in the symmetric repulsion-repulsion model (\;=\,=-1,
A=0).

In the repulsive model (A=-1), the variational equations
(15) and (16), which, essentially, pertain to the single-
component setting, predict solitons only if the OL is strong
enough [29]. Indeed, a straightforward consideration of Eq.
(16) demonstrates that, in this case, solutions exist only for
&> g, the norm of the solution family being limited to the
interval

0<N<N™ =8n(e/e,, — 1) (19)

max

[e, is the same as in Egs. (17) and (18)]. Comparison of Eq.
(19) with known numerical results for 2D gap solitons [3,33]
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FIG. 11. (Color online) An example of a stable asymmetric soli-
ton found in the symmetric repulsion-repulsion system in subgap 2a
with u=1.

demonstrates that the nonexistence of solitons in the repul-
sive model at £ < sg) is another artifact of the VA, signaling
that gap solitons cannot be approximated by simple Gaussian
ansatz (11) for e<e,,.

For asymmetric solitons, with A2# B?, Eq. (14) can be
cast in the following form:

A2+ B2 =AW = 26 W2e ™)

VW2 —2eW2e )2 1242, (20)

AB=2\k, (21)

FIG. 12. (Color online) Local-
ized vortices with topological
charge S=1 in the single-
component model with attraction
(A=1). (a) Three solution families
(unstable  single-peak  crater-
shaped vortices and stable four-
and eight-peak vortex complexes)
are represented by the dependence
of their norm on the chemical po-
tential. (b)—(d) Examples of the
three species of localized vortices
with (u=-4.5, N=20), (u=-20,
N=76), and (u=-12, N=178),
respectively.
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FIG. 13. (Color online) Four-peak vortices with topological
charge S=1 in the symmetric attraction-attraction system with
=2. (a) Families of the symmetric, antisymmetric, and asymmetric
vortex solutions represented by N(u) curves and (b) an example of
a stable asymmetric vortex for u=—18 and N=36.5.

n=- 286_W2(1 -W?) - 7\\/(W_2 - 2£er_Wz)2 +2K°.
(22)

With regard to Eq. (20), the norm (12) of the asymmetric
solitons becomes

N=2#\(1 - 28W4€_W2) + \/(1 - 28W4e‘wz)2 +262WH.
(23)

Variational solutions for the asymmetric solitons are mean-
ingful if they satisfy an obvious condition A%+B*>=2|AB|. In
fact, the asymmetric solitons bifurcate from symmetric or
antisymmetric ones [if, respectively, \=+1 or —1, as follows
from Eq. (21)] precisely at point A%+B?=2|AB|. Soliton
families predicted by the VA—i.e., those obtained by nu-
merical solution of Egs. (20)—(23)—are represented by the
corresponding dependences N=N(u) in Figs. 4 and 7, along
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FIG. 14. (Color online) The same as in Fig. 13, but for eight-
peak vortices. In panel (b), an example of the stable asymmetric
vortex is displayed for u=—18, N=73.5.

with their counterparts found from the numerical solution of
the full stationary equations (6a) and (6b).

III. NUMERICAL RESULTS: SOLITONS
A. Symmetric attraction-attraction system

In Fig. 4, we display a generic example of families of
antisymmetric, symmetric, and asymmetric stationary soli-
tons in the AA model with zero mismatch between the lat-
tices (A=0). The families were found from systematic nu-
merical solutions of Egs. (6a) and (6b). Figure 4 also
includes the solution families as predicted, for the same case,
by the VA, which demonstrates good agreement between the
variational and numerical results, for all three types of soli-
tons (at small values of the norm, the variational branches
are indistinguishable from their numerical counterparts). A
typical example of a comparison of the profiles of asymmet-
ric solitons produced by the numerical solution and VA is
presented in Fig. 5.
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FIG. 15. (Color online) Localized vortices in the single-component model with repulsion (\=—1). (a) Norm versus the chemical potential
for three species of vortex solitons: single-peak, four-peak, and eight-peak ones. (b)—(d) Examples of vortices of these types with (u=1.5,

N=35), (u==2.5, N=135), and (u=-3.5, N=208), respectively.

We observe in Fig. 4(a) that the symmetric-soliton branch
undergoes a supercritical bifurcation at some critical value
of the norm, giving rise to the branch of asymmetric solitons,
which is the manifestation of the SSB in this setting (note
that the bifurcation point is very accurately predicted by the
VA). Symmetric solitons are stable before the bifurcation and
unstable afterwards, while asymmetric solitons emerge as
stable solutions [recall the stability of the solutions was iden-
tified by direct simulations of Egs. (1a) and (1b)]. On the
other hand, the family of antisymmetric solitons never bifur-
cates; i.e., it never gets destabilized through SSB. As a con-
sequence of that, the system features bistability when the
antisymmetric solutions are stable simultaneously with either
symmetric or asymmetric ones (below or above the bifurca-
tion point, respectively). It is worthy to note that all branches

of the solutions satisfy the Vakhitov-Kolokolov (VK) crite-
rion dN/du <0, which is a necessary stability condition
[31,34]. Tt is also noteworthy that the stable branch of anti-
symmetric solitons displayed in Fig. 4(a) continues across
the (narrow) Bloch band separating the semi-infinite gap and
subgap la. Inside the narrow band, this family represents 2D
embedded solitons (which are stable in direct simulations).
The above results resemble findings recently reported in
the 1D system [12]. However, in the 2D case we observe an
additional destabilization mechanism in the AA system,
through collapse of the soliton of any type, when its norm
becomes too large. In particular, the antisymmetric branch,
which would be totally stable in the 1D case, loses its stabil-
ity in the 2D system when the soliton’s norm exceeds the
corresponding collapse threshold. Direct simulations demon-
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FIG. 16. (Color online) The phase pattern in the four-peak vor-
tex complex in the single-component repulsive model whose den-
sity profile is displayed in Fig. 15(c).

strate that, in this situation, the unstable antisymmetric soli-
ton is first transformed into a strongly asymmetric structure;
eventually, the high-amplitude component collapses, forming
a singularity, while its counterpart with the lower amplitude
decays into quasilinear waves, as shown in Fig. 6.
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FIG. 17. (Color online) Families of four-peak (a) and eight-peak
(b) vortices in the symmetric repulsion-repulsion system.
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FIG. 18. (Color online) A stable asymmetric vortex with topo-
logical charge S=2 found in the symmetric repulsion-repulsion sys-
tem. In this case, u=1 (which falls in subgap 2a). Norms of the
components are N, ~272, N, =~ 13. Note the difference in the x- and
y-scales in the figure (in fact, the vortex is invariant with respect to
x<y).

The evolution of symmetric solitons destabilized by the
SSB bifurcation is not affected by the collapse. Similar to
what was reported in the study of the 1D model [12], the
unstable symmetric solitons clearly tend to rearrange them-
selves into stable asymmetric counterparts (examples are not
shown here, as they are not essentially different from what
was observed in the 1D system). The branch of the asymmet-
ric solitons is also subject to the collapse, but this happens on
a remote portion of the N(w) curve, which could not be
shown in Fig. 4.

B. Symmetric repulsion-repulsion system

A generic example of families of solitons found in the RR
model is shown in Fig. 7. In subgap 1b, the VA predicts the
solutions very accurately. For this case, the comparison of
numerical and variational asymmetric soliton profiles is dis-
played in Fig. 8. On the other hand, the VA also predicts
asymmetric solutions in subgap 2a, where such solutions
could not be found in the numerical form; therefore, the ex-
tension of the asymmetric branch into the latter subgap is an
artifact of the variational method. It is noteworthy too that
the stable branch of symmetric solitons crosses the Bloch
band separating subgaps la and 1b, thus providing for the
first example of 2D embedded solitons in a self-defocusing
medium. These embedded solitons are stable, as illustrated
by an example of the evolution of a perturbed soliton shown
in Fig. 9.

The situation in the RR system is closer to what was
found for its 1D counterpart in Ref. [12] (because collapse
does not occur with repulsive nonlinearity): the antisymmet-
ric branch undergoes a supercritical bifurcation, which gives
rise to stable asymmetric solitons, while the symmetric
branch does not bifurcate and remains always stable (the VK
criterion does not apply to gap solitons in models with the
repulsive nonlinearity). Note that, like in Fig. 4, the bifurca-
tion point is very accurately predicted by the VA. The asym-
metric solitons are stable whenever they exist; hence, the
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bistability between symmetric and antisymmetric or asym-
metric solitons takes place here. The antisymmetric solitons,
destabilized by the SSB bifurcation, transform themselves
into persistent localized breathers (see the example in Fig.
10). The breather features oscillations in its two components,
with equal amplitudes and phase shift 77/2 between them.

Last, stable asymmetric solitons have also been found in
higher band gaps, an example of which is given in Fig. 11.
Typically, the solitons in higher band gaps are less tightly
bound, featuring well-pronounced sidelobes.

IV. NUMERICAL RESULTS: VORTICES
A. Symmetric attraction-attraction system

In the model based on the single-component GPE in two
dimensions with the OL and attractive nonlinearity, stable
solutions in the form of localized vortices with topological
charge (“spin”) S=1 were reported in Refs. [28] and [32] and
their (also stable) counterparts with S>2 were found in Ref.
[35]. Before proceeding to the new problem of the SSB in
two-component vortices, it is relevant to recapitulate basic
results obtained for vortex solitons in the single-component
model. Figure 12 shows a generic example of families of
vortex-soliton solutions with S=1 in this model. The most
compact “crater-shaped” vortices, which feature a single
peak with a hole in the center, are always unstable. However,
the vortices built as four- and eight-peak complexes, with
phase shifts, respectively, w/2 or 7/4 between the peaks
(which corresponds to a net phase circulation of 27—i.e.,
S=1), constitute entirely stable families (Fig. 12 includes
examples of all the three species of localized vortices). These
complexes are quite similar to examples of stable vortices
reported in Refs. [28] and [32].

We have found the SSB of two-component vortex solitons
in the symmetric AA system (A\;=\,=+1, A=0). Families of
four- and eight-peak vortices of the symmetric, antisymmet-
ric and asymmetric types, found in the coupled system, are
shown in Figs. 13 and 14, along with examples of respective
stable asymmetric vortices.

The stability of these solutions was identified, as above,
by direct simulations. Symmetric vortices get destabilized by
the bifurcation and tend to spontaneously rearrange into
asymmetric ones, which emerge as stable solutions, while
antisymmetric vortices do not bifurcate. At large values of
the norm, the localized vortices are subject to collapse.

B. Symmetric repulsion-repulsion system

In the repulsive model with the OL, localized vortices
may be treated as a species of 2D solitons of the gap type
[4,33]. First, in Fig. 15 we present families of vortex solitons
in the single-component model. Similar to what was shown
above for the attractive model, the single-peak (crater-
shaped) vortices are unstable, while multiple-peak vortical
complexes are stable. However, in the repulsive model only
the (unstable) single-peak and (stable) eight-peak structures
carry topological charge S=1, while the four-peak entity is a
complex bound state of several vortices. Indeed, the phase
distribution in the latter state, displayed in Fig. 16, suggests
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FIG. 19. (Color online) Stable solitons in the coupled attraction-
repulsion system (\;=—A,=1, A;,=0). The solitons’ profiles are
even functions of x and y, and are invariant with respect to trans-
formation x<y. (a) A soliton with the dominant self-attractive
component. It has u=—13 (which falls in the semi-infinite gap) and
N,=~5.7, N,~0.26. (b) A soliton with the dominant self-repulsive
component found with p=-5.7 (which belongs to subgap 1a) and
N,=0.55, N,~5.35.

that it may be interpreted as a structure built of five vortices:
one, with S=1, is located in the center, being surrounded by
four constituent vortices, each carrying charge S=-1.

In the coupled (two-component) RR system, we observed
SSB in both types of stable vortex states, four-peak and
eight-peak ones, as shown in Fig. 17. Similar to what was
demonstrated above for the solitons, the asymmetric branch
bifurcates from the antisymmetric one, while the family of
the symmetric vortices does not bifurcate and remains en-
tirely stable, thus giving rise to the bistability, together with
the stable asymmetric vortices. Antisymmetric two-
component vortices destabilized by the SSB bifurcation de-
velop into persistent breathers. A noteworthy feature of Fig.
17 is the fact that the branch of symmetric solutions (both
four- and eight-peak ones) crosses the Bloch band between
subgaps la and 1b, which provides for the first example of
(stable) embedded vortex solitons.

Stable asymmetric vortices residing in higher band gaps,
as well as stable vortices with higher vorticity, S>1, have
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FIG. 20. (Color online) Soliton profiles in the attraction-
attraction model with the maximum diagonal mismatch between the
lattices in the cores, A;=A,=1r, for k=10, and N=5. (a) A stable
asymmetric soliton and (b) an unstable quasisymmetric soliton.

been found too. In particular, Fig. 18 displays an example of
a stable eight-peaked vortex with S=2, found in subgap 2a.

V. ASYMMETRIC MODELS

As explained in the Introduction, the symmetry of the
coupled equations (1a) and (Ib) may be broken by opposite
signs of the nonlinearity in the two cores (in the AR system,
with \;=—\,=+1) or by mismatches between the lattices in
them, A,,#0. We did not aim to perform an exhaustive
analysis of the asymmetric models, but examples of stable
solitons in these models have been found.

Figure 19 shows stable solitons in the AR system. Solu-
tions of two types have been found in it: one with a dominant
self-repulsive component sitting in subgap la, and another
one with the dominant self-attractive component found, as
should be expected, in the semi-infinite gap. Stability of the
solitons have been verified by direct simulations.

Stable-eight-peak vortices with S=1 have also been found
in the AR model. Vortices with dominant self-attractive and
self-repulsive components are located in the semi-infinite
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FIG. 21. (Color online) The asymmetry ratio, defined as per Eq.
(9), as a function of the linear-coupling constant in the misaligned (
A=, A,=0) attraction-attraction model with fixed total norm of
the two-component soliton, N=35. (a) The pseudobifurcation and (b)
the termination of the family of asymmetric soliton solutions.

gap and subgap la, respectively. Their examples are not
shown here, as they are very similar to the eight-peak asym-
metric solitons found in the AA and RR models, which were
reported above.

We have also studied the system with the mismatch be-
tween the OLs, concentrating on two most interesting cases,
with A;=m, A,=0, or A;=A,=7 in Egs. (1a) and (1b). In
either case, the phase mismatch was given the largest pos-
sible value (7). As in the 1D model with nonzero mismatch
[12], quasisymmetric and asymmetric solutions have been
identified, as states with N,=N, and N, # N, respectively. In
the mismatched system, asymmetric solitons have peaks in
the two components located at the same position, while in
quasisymmetric solutions the peaks are slightly separated.
Typical profiles of quasisymmetric and asymmetric solutions
in the misaligned AA system are shown in Fig. 20 for A,
=A, =7 (this choice corresponds to the largest diagonal mis-
match). Direct simulations demonstrate that the quasisym-
metric solitons are always unstable in this case (an explana-
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FIG. 22. (Color online) A stable soliton in the diagonally mis-
matched (A;=A,=m) attraction-attraction system. In this case u
=-9 and N,=0.8, N,=1.6.

tion of this feature is given below), while the asymmetric
solitons are stable, beneath the collapse threshold.

Further, Fig. 21 depicts the dependence of the asymmetry
ratio, defined as per Eq. (9), on coupling coefficient «. In the
case of the maximum horizontal mismatch, A; =1, A,=0, we
observe that the bifurcation which breaks the (quasi)symme-
try of solitons at a critical value of « is replaced by the
pseudo-bifurcation; i.e., the branch of asymmetric solutions
asymptotically approaches its quasisymmetric counterpart
with an increase of «, but the bifurcation does not happen,
since the two branches never merge. A similar phenomenon
was reported in the 1D model with A= [12]. The replace-
ment of bifurcation by pseudobifurcation is observed only in
the case of the largest mismatch, A; =7 and/or A,=1r, and it
explains the above-mentioned total instability of the family
of quasisymmetric solitons, as the corresponding branch
never has a chance to get stabilized by the inverse bifurcation
(if one considers the evolution of the solutions with an in-
crease of « at fixed total norm N).

A new feature specific to the 2D system is that, in the
system with the largest diagonal mismatch, A;=A,=1r, the
numerical procedure suddenly ceases to converge at some
critical value of k and no asymmetric solitons are found past
this point. For instance, at k=15.485 a stable asymmetric
soliton with a regular profile can be found, but when the
coupling increases to x=15.490, the soliton is lost. The
shape of the ®(«) dependence in Fig. 21(b) strongly suggests
that the branch of asymmetric solitons terminates, in this
case, due to a tangent bifurcation, which results from colli-
sion and mutual annihilation of the branch with an additional
branch of unstable solutions, which we did not aim to find.

Other types of stable solitons and vortices have also been
found in the misaligned system of the AA type. In particular,
an example of a soliton with two peaks in one component
and a single peak in the other is shown in Fig. 22.

Stable asymmetric solitons in the RR system with mis-
aligned lattices have been found too. A typical stable asym-
metric soliton in this system is shown in Fig. 23.
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FIG. 23. (Color online) An example of a strongly asymmetric
stable soliton in the diagonally mismatched (A;=A,=1r) repulsion-
repulsion system with k=10. This soliton has u=-11 and N,=4.4,
N,=1.6.

VI. CONCLUSION

We have introduced experimentally relevant models of
two stacked flat BEC traps, with attractive or repulsive inter-
actions between atoms. Each flat trap carries an OL (optical
lattice), stable 2D solitons being impossible without it. First,
it was demonstrated that the linear coupling splits every fi-
nite band gap in the linear spectrum of the single-component
model into two subgaps, which are separated by narrow
Bloch bands. The main issue, addressed in this work by
means of the variational approximation and numerical meth-
ods, is spontaneous symmetry breaking in families of soli-
tons and localized vortices as a result of the competition of
three factors: the attractive or repulsive nonlinearity in each
core, the action of the OL potential, and the linear coupling
between the cores. Similar to what was found in the zero-
dimensional setting [10] (this means a double-well potential
without any transverse dimension) and one-dimensional
models [12,16], SSB occurs in families of symmetric or an-
tisymmetric states in the case of the attractive or repulsive
nonlinearity, respectively. In either case, the corresponding
bifurcation destabilizes the branch of symmetric or antisym-
metric solitons or vortices, giving rise to a stable branch of
asymmetric solutions. The VA, based on the Gaussian ansatz,
yields an accurate prediction for the bifurcation and the
branch of asymmetric solitons generated by the bifurcation.
A feature specific to the 2D setting is the termination of all
stable branches in the AA (attraction-attraction) system due
to the onset of collapse.

Stable asymmetric solitons sitting in higher finite band
gaps and localized vortices with multiple values of the topo-
logical charge have been found too. In addition, the models
considered in this work give rise to examples of (stable)
embedded solitons and embedded vortices (localized states
found inside Bloch bands separating the subgaps) in any 2D
setting.

Solitons and localized vortices were also considered in the
linearly coupled systems whose symmetry is broken by op-
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posite signs of the nonlinearity in the two traps, or by a
mismatch between the OLs in them. In the former case, the
system gives rise to two distinct types of stable solitons and
vortices, which are dominated by either a self-attractive com-
ponent or self-repulsive one, which sit, respectively, in the
semi-infinite gap or in a finite band gap. In the system with
mismatched lattices, the phenomenon of pseudobifurcation
(which was recently reported in the 1D system [12]) was
found: when the mismatch takes the largest value (7r) in any
direction (horizontal or diagonal), the SSB bifurcation fails

PHYSICAL REVIEW A 76, 043623 (2007)

to happen, as branches of asymmetric and quasisymmetric
(or quasiantisymmetric) solutions asymptotically approach
each other, but never merge.
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