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Spin squeezing of a nonlinear interaction model with Josephson-like coupling is studied to obtain the time
scale of maximal squeezing. Based upon two exactly solvable cases for two and three particles, we find that the
maximal-squeezing time depends on the level spacing between the ground state and its next-neighbor
eigenstate.
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I. INTRODUCTION

The phenomenon of spin squeezing in collective spin sys-
tems has attracted much attention for decades not only be-
cause of fundamental physical interests �1–9�, but also for its
possible applications in atomic clocks for reducing quantum
noise �2–5� and quantum information �10–14�. The occur-
rence of spin squeezing is due to quantum correlations
among individual spins, which requires at least two spins and
a nonlinear interaction between them. Kitagawa and Uea
have studied the spin squeezing generated by the so-called
one-axis twisting �OAT� model with Hamiltonian

ĤOAT=2�Ĵz
2 �1�. Possible realization of the OAT-type squeez-

ing in a two-component Bose-Einstein condensate �TBEC�
�10,15� and atomic ensemble system in a dispersive regime
�16� has been investigated recently. Sørensen et al. also pro-
posed that spin squeezing can be used as a measure of many-
particle quantum entanglement �10�.

So far, OAT-type spin squeezing was mainly studied
within the Heisenberg picture. As a result, an explicit expres-
sion of the spin-squeezed state �SSS� is unknown. Moreover,
the direction that spin squeezing is observed varies with time
�11�. Jaksch et al. have shown that an OAT-type SSS can be
stored for arbitrarily long time by removing the self-
interaction �17�. However, it might not be easy to handle in
experiment since precisely designed additional pulses are
crucially required. In Refs. �18,19�, the authors proposed the
constant-coupling scheme by introducing additional

Josephson-like coupling �Ĵx to the OAT model. It was
shown that the Josephson interaction results in an enhance-
ment of spin squeezing compared with that of the OAT.
Moreover, the strongest squeezing appears in the z direction
�18�, which, however, is valid only at the maximal-squeezing
time �MST�. Although some formulas of the MST for ex-
tremely small �1� or large coupling �18–22� are already
known, it is challenging to determine the MST within an
intermediate coupling 1�� /��N �where N is the total par-
ticle number�.

In this paper, we reconsider the constant-coupling scheme
�18,19� with the purpose to determine the MST. We find all
analytic solutions for two- and three-particle cases. Moti-

vated by exactly solvable cases, we show that the MST de-
pends on the level spacing between the ground state and its
next-neighbor eigenstate. We explain it by investigating the
spectral distribution of the spin state and find that only the
two lowest available levels are predominantly occupied. Our
paper is organized as follows. In Sec. II, we introduce theo-
retical model and derive some basic formulas. To proceed, in
Sec. III, we give some analytic expressions for the cases of
N=2 and N=3. In Sec. IV, we study spin squeezing for
many-particle cases and present an exact-diagonalization
method to obtain the MST. Moreover, we compare our result
with its analytic solution. Finally, a summary of our paper is
presented.

II. THEORETICAL MODEL

Formally, a two-level atom can be regarded as a
fictitious spin-1/2 particle with spin operators sz

�i�

= ��b�ii�b�− �a�ii�a�� /2 and s+
�i�= �s−

�i��†= �b�ii�a�, where �a�i and
�b�i are the internal states of the ith atom. We consider an
ensemble of N atoms with its dynamics described by a col-

lective spin operator: Ĵ=�i=1
N s�i�. Spin squeezing is quantified

by a parameter �1�:

� =
	2��Ĵn�min

j1/2 , �1�

where j=N /2 and ��Ĵn�min represents the smallest variance

of a spin component Ĵn= Ĵ ·n normal to the mean spin �Ĵ�.
For a coherent spin state �CSS�, the variance ��Ĵn�min

=	j /2 and �=1. In general, a spin state is called spin

squeezed state if the variance of the spin component, Ĵn, is
smaller than that of the CSS—i.e., ��1.

Follow Refs. �23–30�, we consider a nonlinear spin sys-
tem governed by

Ĥ = �Ĵx + 2�Ĵz
2, �2�

which can be realized in the TBEC �31,32�. The first term is
Josephson-like coupling induced by a microwave �radio fre-
quency� field. The Rabi frequency � can be controlled by the
strength of the external field. The second term is the self-
interaction aroused from nonlinear collisions between atoms.
An initial coherent spin state �j ,−j�x=e−i�Jy/2�j ,−j� will be
considered in this paper. Physically, the Dicke state �j ,−j�
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represents all atoms occupying in the internal ground state
�a�. By applying a short � /2 pulse to the Dicke state, one can
obtain the CSS with each spin aligned along the negative x
direction �10�. After that, one switches on the Josephson-like
coupling � immediately; then, the dynamics of the spin sys-
tem is governed by the Hamiltonian �2�. Note that we will
consider only the positive � case. However, our results re-
main valid in the opposite case by using the initial

maximum-weight state of Ĵx—i.e., �j , j�x.
The state vector at any time t can be expanded in terms of

eigenstates of Ĵz: ���t��=�mcm�t��j ,m�, where −j�m� j.
The probability amplitudes cm�t� can be solved by the time-
dependent Schrödinger equation, obeying

iċm = Emcm + Xmcm−1 + X−mcm+1, �3�

where Em=2�m2 and Xm= �
2
	�j+m��j−m+1� with X−j =0

and X±m=X	m+1. The probability amplitudes of the initial
CSS,

cm�0� =
�− 1� j+m

2 j 	 �2j�!
�j − m� ! �j + m�!

, �4�

satisfy c−m�0�=cm�0� for even N and c−m�0�=−cm�0� for odd
N. Due to the symmetry properties of the elements X±m and
the initial amplitudes cm�0�, we obtain the simple expres-

sions c−m�t�= ±cm�t�, which in turn result in �Ĵy�= �Ĵz�=0 and

�Ĵx��0; i.e., the mean spin �Ĵ� is always along the x axis.

The spin component normal to the mean spin is Ĵn

= Ĵy sin 
+ Ĵz cos 
, and its variance is ��Ĵn�2= �Ĵn
2�− �Ĵn�2


 1
2C+ cos 2


2 A+ sin 2

2 B, where A= �Ĵz

2− Ĵy
2�, B= �ĴzĴy + ĴyĴz�,

and C= �Ĵz
2+ Ĵy

2�. By minimizing the variance ��Ĵn�2 with re-
spect to 
, we get the squeezing angle


min =
1

2
tan−1�B/A� �5�

and the smallest variance

��Ĵn�min
2 =

1

2
C −

1

2
	A2 + B2, �6�

from which one also obtains the squeezing parameter, Eq.
�1�. We consider spin squeezing in the intermediate-coupling
regime—namely, 1�� /��N—where no analytic solutions
are available for the nonlinear spin system �18,33�. However,
we can exactly solve two- and three-particle cases. Some of
the important physics can be extended to many-particle
cases.

III. EXACT SOLVABLE CASES

In this section, we study spin squeezing based on two
exactly solvable cases with N=2 and N=3. Though simple, it
is of general interest to investigate the relationship between
spin squeezing and quantum entanglement �10–13,34–37�.
Such a relationship for two-particle �two-qubit� �3,4,35,36�
and three-particle �5,37� cases has been studied recently.
Here, we focus on the dynamical behavior of the spin system

to show the conditions of the optimal squeezing and its time
scale.

A. Two-particle case

For the simplest case N=2 �j=1�, only three spin projec-
tions �m=−1,0 , +1� are involved. From Eq. �3�, we obtain

i�ṗ0
�+�

ṗ1
�+� � = �E0 2X1

X1 E1
��p0

�+�

p0
�+� � , �7�

where Em and Xm are defined in Eq. �3� and we have intro-
duced the linear combinations of the probability amplitudes
p1

�+��t�=c1�t�+c−1�t� and p0
�+��t�=2c0�t�, with the initial con-

ditions p1
�+��0�=1 and p0

�+��0�=−	2. Similarly, we also
introduce p1

�−��t�=c1�t�−c−1�t�. However, its solution
p1

�−��t�=e−i2�tp1
�−��0�
0 due to p1

�−��0�=0. Therefore, we ob-

tain c1�t�=c−1�t�
 p1
�+� /2, which gives �Ĵz�= �c+1�2− �c−1�2


0 and �Ĵ+�=	2�c−1c0
�+c0c1

��=2	2 Re�c0c1
��. Since �Ĵ+� is a

real function, �Ĵy�=0 and �Ĵx��0, which show that the mean
spin is always along the x direction. Such a result is valid for
arbitrary even N. Equation �7� can be solved exactly; then,
one obtains immediately the reduced variance

��Ĵn�min
2 =

1

2
−

�

S
�sin St�	1 −

�2

S2 sin2 St �8�

and the squeezing angle


min =
1

2
tan−1 S cos�St�

� sin�St�� , �9�

where 2S=E3−E1=2	�2+�2 is the level spacing between
the second excited state E3 and the ground state E1, obtained
by solving the eigenvalues of the coefficient matrix of
Eq. �7�. As shown in Fig. 1�a�, we find that at the
times tk

�=k� /S, � revives periodically to its initial value 1.
In fact, apart from a globe phase, the states at tk

�, ���tk
���

= �−1�ke−i�tk
�

�1,−1�x, are just the initial CSS.
From Eq. �9�, we find that the vanishing 
min occurs at

tk= �k+1/2�� /S and the state vector at tk reads

FIG. 1. �Color online� Time evolution of �a� the squeezing pa-
rameter and �b� the squeezing angle for N=2 and various Rabi
frequencies: �=5� �dashed red lines�, �=2� �dotted blue lines�,
and �=� �solid black lines�. The maximal-squeezing times t0 for
different � are indicated by the vertical lines.
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���tk�� = �− 1�kie−i�tk�sin����1,− 1�x − cos����1, + 1�x� ,

�10�

which corresponds to a superposition of two coherent spin
states �1,−1�x and �1, +1�x with mixing angle �
=tan−1�� /��. Obviously, if the coupling is very strong
�����, sin���=� /S→1 and cos���=� /S→0, so
���tk��→ �1,−1�x, which in turn leads to a very weak squeez-
ing at tk. On the other hand, if the coupling is very weak
�����, ���tk��→ �1,1�x, which also results in a weak
squeezing at tk. Therefore, we will study spin squeezing
within the intermediate-coupling regime.

In Fig. 1, the time evolutions of � and 
min are investi-
gated for the coupling ���. We observe that local minima
of � together with 
min=0 also occur periodically at times tk.
Moreover, with a decrease of �, the squeezing parameter at
tk becomes small—i.e., more squeezed. For the coupling
�=�, the spin system is optimally squeezed at tk, as
shown by the solid black lines in Fig. 1. In this case
sin���=cos���=1/	2 and the spin states at tk are

���tk�� = �− 1�k ie−i�tk

	2
��1,− 1�x − �1, + 1�x�

= i�− 1�k+1e−i�tk�j

= 1,m = 0� . �11�

Here, the state ��1,−1�x− �1, +1�x� /	2 is a maximally en-
tangled �or Bell� state, while the Dicke state �j=1,m=0� is a
maximally squeezed state �2�. For this state, both the mean

spin �Ĵx� and the variance ��Ĵn�min are equal to zero, which
makes it hard to define � as Eq. �1�. To avoid this problem,
Wineland et al. proposed another definition of the squeezing

parameter—namely, �→ �j / ��Ĵ����, which gives the smallest
squeezing 1/	2 for the N=2 case �2�.

B. Three-particle case

For the N=3 �j=3/2� case, we introduce linear combina-
tions of the amplitudes pm

�+��t�=cm�t�+c−m�t� with m
=1/2 ,3 /2. Since p3/2

�+��0�= p1/2
�+��0�=0, we get pm

�+��t�=0.
Therefore, the amplitudes obey cm�t�=−c−m�t�, from which
we can prove that the mean spin is always along the x direc-
tion. Such a result remains valid for any odd-N case. From
Eq. �3�, we obtain a coupled equation for the linear combi-
nations pm

�−��t�=cm�t�−c−m�t�:

i�ṗ1/2
�−�

ṗ3/2
�−� � = �E1/2� X3/2

X3/2 E3/2
��p1/2

�−�

p3/2
�−� � , �12�

where E1/2� =E1/2−X1/2. The initial conditions are p3/2
�−��0�

=−1/	2 and p1/2
�−��0�=	3/2. The dynamical evolution of the

three-spin system is determined solely by Eq. �12�. The ana-
lytic expression of the variance is

��Ĵn�min
2 =

3

4
+

3�2

S2 sin2 St −
3�

S
�sin St�	1 −

3�2

S2 sin2 St ,

�13�

and the squeezing angle is


min =
1

2
tan−1 S cos�St�

�� + ��sin�St�� , �14�

where 2S=E3−E1=2	�2+2��+4�2 is the level spacing for
the N=3 case and E3 and E1 correspond to two eigenvalues
of the coefficient matrix of Eq. �12�.

In Fig. 2, we investigate time evolution of � and 
min for
the N=3 case. Similar to the previous N=2 case, our results
show that for ��2�, local minima of � together with

min=0 also occur at times Stk= �k+1/2��. As shown by the
solid black line of Fig. 2, we find that optimal squeezing can
be obtained at tk for the coupling �=2�. The maximally
squeezed state at tk reads

���tk�� =
i�− 1�k

	2
e−3i�tk/2��3

2
,
1

2
� − �3

2
,−

1

2
�� . �15�

Such a state gives the smallest squeezing parameter
��tk�=1/	3 that the three-particle system can reach. It is
worth mentioning that for ��2�, the vanishing 
min appear-
ing at tk no longer corresponds to local minima of �, as
shown by the dotted blue lines of Fig. 2. The time scale tk is
relevant to determine the MST only for � equal or larger
than the optimal coupling.

In short, we find some basic features for two exactly solv-
able cases. Local minima of � with 
min=0 occur at the MST
tk. This is no longer true if � is smaller than the optimal
coupling. The time scale tk depends on the level spacing 2S
between the ground state and the second excited state. Due to
the symmetric properties of the spin system, the first excited
eigenstate is an idle level �see below�. This is also the reason
why we can introduce linear combinations of the amplitudes
pm

�±�, with m=0,1 for N=2 and m=1/2 ,3 /2 for N=3. For
optimal coupling, the spin system will be evolved into the
maximally squeezed state at tk: �1,0� �for N=2� or
��3/2 ,1 /2�− �3/2 ,−1/2�� /	2 �for N=3�, which is just the

FIG. 2. �Color online� Time evolution of �a� the squeezing pa-
rameter and �b� the squeezing angle for the N=3 case with various
Rabi frequencies: �=5� �dashed red lines�, �=2� �solid black
lines�, and �=� �dotted blue lines�.
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ground state of 2�Ĵz
2. We will extend the above results to

many-particle cases.

IV. MANY-PARTICLE CASES: THE MAXIMAL-
SQUEEZING TIME

In this section, we study spin squeezing for many-particle
cases focusing on the time scale of maximal squeezing. For
instance, we consider a spin system with particle number N
=40 �1,16�. The numerical results are shown in Fig. 3. We
find that with an increase of �, the squeezing � and the mean

spin �Ĵx� show collapsed oscillations �33,38�. Local maxima

of the mean spin �Ĵx� always appear together with the van-
ishing 
min. We can prove this from the Heisenberg equation

of Ĵx and Eq. �5�: d�Ĵx� /dt��ĴzĴy + ĴyĴz��A tan�2
min�. If
the mean spin reaches its local maximum at a certain time t0,

then �d�Ĵx� /dt�t0 =0, which leads to 
min=0 at t0 provided that
A�0.

As shown in Fig. 3�b�, for a small coupling with �=�,
there are two time scales: t0 for the vanishing 
min and 0 for
the maximal squeezing. Note that the latter time scale 0
closes to that of the OAT result ��=0 case�—i.e., �0
�0.049 86. With an increase of �, these two time scales
become coincident, as shown in Figs. 3�c� and 3�d�. Unlike
exactly solvable cases, we find that the optimal coupling for
N=40 is not a fixed value, but can be arbitrary � in a region
4.239��R /��4.242. Figure 3�c� represents the optimal
squeezing case with the coupling �=4.24�. Starting from
the initial CSS, the spin system evolves into the maximally
squeezed state at �t0=0.09.

To investigate the maximally SSS at t0, we calculate the
quasiprobability distribution �QPD, or the Husimi function�
Q�
 ,�� on the Bloch sphere �3�:

Q�
,�� = ��
,����t���2, �16�

where �
 ,��=exp�−i
�Ĵx sin �− Ĵy cos ����j ,−j� is the gen-
eralized coherent spin state �39,40�. The initial state is a par-
ticular case of the CSS—namely, �j ,−j�x= �
=� /2 ,�=��.
The QPD can be used to simulate the variation of spin un-
certainties. The circle in Fig. 4�a� represents an isotropic spin
variance for the initial CSS, while the shaded ellipse parts in
Figs. 4�b� and 4�c� are that of the SSS at times about t0 /2 and
t0, respectively. Unlike the OAT result �1,16�, the maximal
variance reduction appears along the z axis with 
min=0 �18�.
In Fig. 4, we also calculate the probability distribution

FIG. 3. �Color online� Time
evolution of � �thick solid lines�,

min �dashed blue lines�, and

�Ĵx� / j �thin red lines� for N=40
�j=20� and various Rabi frequen-
cies: �a� �=0, �b� �=�, �c� �
=4.24� �the optimal coupling�,
and �d� �=20�. The time scale t0

for different � are indicated by
the vertical lines.
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FIG. 4. �Color online� Time evolution of the quasiprobability
distribution Q�
 ,�� �top� and the probability distribution �cm�2 �bot-
tom� at times �a� �t=0, �b� �t=0.04, and �c� �t=0.09 �the MST�.
The QPD is normalized such that Q�� /2 ,��=1. In �b�, the spin

component normal to the x axis is defined as Ĵn= Ĵ ·n with n
= �0,sin 
 , cos 
�. Other parameters are taken as those of Fig. 3�c�.
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�cm�2= ��j ,m ���t���2 of the spin state for N=40 and the opti-
mal coupling �=4.24�. Compared with the initial CSS, we
find that the maximally SSS at t0 has a very sharp probability
distribution with a large amplitude of the lowest spin
projection—i.e., m=0 �for even N� or m= ±1/2 �for odd N�
�41�. Such a sharp probability distribution of the SSS can be
explained qualitatively by considering the familiar phase
model �42� �see also references therein�.

In order to determine the time scale t0, we employ nu-
merical diagonalization of the Hamiltonian �2� to obtain a set
of eigenenergies �En , n=1,2 ,3 , . . .�, where n=1 denotes the
ground state, n=2 the first excited state, and n=3 the second
excited state, etc. Thus,

Ĥ��n� = En��n� , �17�

where En and ��n� with n=1,2 ,3 , . . . , �2j+1� depend on the
parameters N and � �43�. As shown in Fig. 5�a�, we plot
parts of En for j=20 �N=40� as a function of the coupling �.
Similar to previous two- and three-particle cases, we suppose
that the MST t0 depends on the level spacing between n=1
and n=3—namely, t0=� / �2S� with 2S=E3−E1. To check it,
in Table I, we compare exactly numerical results of time t0
with � / �2S� for various N and �. Our diagonalization
method gives an accurate prediction of the time t0. We re-
mark that for the N=2 and N=3 cases, both results are ex-
actly the same.

To explain the above agreement between the MST t0 and
� / �2S�, we calculate the spectral distribution of the spin
state—i.e., ���n ���t���2 in Figs. 5�b�–5�d� for N=40 and vari-

ous �. Physically, the spectral distribution measures the
population distribution of the state vector ���t�� on the eigen-
states ��n� �44�. For fixed parameters N and �, the spectral
distribution ���n ���t���2 is time independent. In fact, one can
expand the spin state in terms of ���n��: ���t��=�ndn�t���n�
with amplitudes dn�t�=exp�−iEnt�dn�0�. Here the initial am-
plitudes dn�0� depend only on the initial condition �4�; there-
fore, the spectral distribution ���n ���t���2= �dn�t��2
�dn�0��2

and is time independent for fixed N and �. From our numeri-
cal calculations, Figs. 5�b�–5�d�, we find that total occupa-
tion of the spin state ���t�� on the eigenstates n=1 and n
=3 is over 80%. This is the reason why the MST depends on
the level spacing between these two levels. Moreover, we
find that the even n eigenstates are in fact the idle levels, just
as previous N=2 and N=3 cases.

Except for N=2 and N=3, exact solutions for the nonlin-
ear spin system within the small-coupling regime
�1�� /��N� do not exist �18,33�. In our previous work
�41�, however, we have obtained an analytic expression of
the MST based upon the phase model:

�t0 �
�

2
	 �

2�N
, �18�

which is valid for large N ��103�. Our analytic solution of
the MST is derived by the prediction t0�T /4, where
T=2� /�eff is the period of the pendulum near the bottom of
a periodic potential �41�. In fact, for large N the spin system
behaves as a pendulum rotating with oscillating frequency
�eff=	2��RN. As shown in Table I, we compare � / �2S�, the
analytic solutions of Eq. �18�, and the exact numerical results
of the MST for various parameters � and N. It is shown that
our analytical expression �18� works very well for the large
N ��103�, which implies that the oscillating frequency
�eff has its physical meaning as half the level spacing
S= �E3−E1� / �2��. Note that the phase model or Eq. �18� is
valid for large N, while � / �2S� is not limited by this. From
this sense, we believe that the diagonalization method pre-
sented here provides a very comprehensive way to measure
the maximal-squeezing time.

V. CONCLUSIONS

In summary, we have studied the maximal-squeezing time
of a nonlinear spin system, which can be realized in the
two-component BEC or other spin system similar to that of
Takeuchi et al. �16�. Motivated by two exactly solvable cases

TABLE I. Comparison of exactly numerical t0, � / �2S�, and analytic results of Eq. �18� for different N and
�. The times are in units of �100��−1.

N=40 N=200 N=1000

� /� 1 4.24 20 1 6.7 25 1 10.8 50

Exact num. 18.28 9.065 3.604 8.192 3.184 1.549 3.665 1.104 0.4945

� / �2S� 19.02 8.615 3.573 8.143 3.048 1.533 3.571 1.071 0.4916

Equation �18� 17.56 8.529 3.927 7.854 3.034 1.571 3.512 1.069 0.4967

FIG. 5. �Color online� �a� Part of the eigenenergies En as a
function of � for N=40. The spectral distribution ���n ���t���2 for
�b� �=�, �c� �=4.24�, and �d� �=20�.
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for N=2 and N=3, we show that time scale of the maximal
squeezing depends on the level spacing between n=1 and
n=3 eigenstates. We explain it by calculating the probability
distribution of the spin state on the eigenstates of the Hamil-
tonian and find that the above two states are occupied pre-
dominantly. Such results remain valid for arbitrary N and a
wide range of coupling strength.

ACKNOWLEDGMENTS

We thank Professor C. K. Kim, Professor K. Nahm, Pro-
fessor C. P. Sun, Professor W. M. Liu, Professor S. Yi, and
Professor X. Wang for helpful discussions. This work was
supported by Korea Research Foundation Grants Nos. KRF-
2006-005-J02804 and KRF-2006-312-C00543.

�1� M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 �1993�.
�2� D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and

D. J. Heinzen, Phys. Rev. A 46, R6797 �1992�; D. J. Wineland,
J. J. Bollinger, W. M. Itano, and D. J. Heinzen, ibid. 50, 67
�1994�.

�3� Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D.
Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, Phys.
Rev. Lett. 81, 3631 �1998�.

�4� V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M.
Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett. 86,
5870 �2001�.

�5� D. Leibfried et al., Science 304, 1476 �2004�.
�6� A. Kuzmich, K. Molmer, and E. S. Polzik, Phys. Rev. Lett. 79,

4782 �1997�.
�7� J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Phys. Rev.

Lett. 83, 1319 �1999�.
�8� J. M. Geremia, J. K. Stockton, and H. Mabuchi, Science 304,

270 �2004�.
�9� A. G. Rojo, Phys. Rev. A 68, 013807 �2003�.

�10� A. Sørensen, L. M. Duan, I. Cirac, and P. Zoller, Nature �Lon-
don� 409, 63 �2001�.

�11� K. Helmerson and L. You, Phys. Rev. Lett. 87, 170402 �2001�;
Ö. E. Müstecaplioğlu, M. Zhang, and L. You, Phys. Rev. A 66,
033611 �2002�; M. Zhang, K. Helmerson, and L. You, ibid. 68,
043622 �2003�.

�12� X. Wang and B. C. Sanders, Phys. Rev. A 68, 012101 �2003�.
�13� J. K. Korbicz, J. I. Cirac, and M. Lewenstein, Phys. Rev. Lett.

95, 120502 �2005�; J. K. Korbicz, O. Gühne, M. Lewenstein,
H. Häffner, C. F. Roos, and R. Blatt, Phys. Rev. A 74, 052319
�2006�.

�14� S. Yi and H. Pu, Phys. Rev. A 73, 023602 �2006�.
�15� U. V. Poulsen and K. Molmer, Phys. Rev. A 64, 013616

�2001�.
�16� M. Takeuchi, S. Ichihara, T. Takano, M. Kumakura, T.

Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 94, 023003
�2005�.

�17� D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. A 65, 033625
�2002�.

�18� C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63,
055601 �2001�.

�19� S. Raghavan, H. Pu, P. Meystre, and N. P. Bigelow, Opt. Com-
mun. 188, 149 �2001�.

�20� S. D. Jenkins and T. A. Brian Kennedy, Phys. Rev. A 66,
043621 �2002�.

�21� S. Choi and N. P. Bigelow, Phys. Rev. A 72, 033612 �2005�.
�22� Z.-D. Chen, J.-Q. Liang, S.-Q. Shen, and W.-F. Xie, Phys. Rev.

A 69, 023611 �2004�.
�23� G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.

Rev. A 55, 4318 �1997�; G. L. Salmond, C. A. Holmes, and G.
J. Milburn, ibid. 65, 033623 �2002�.

�24� A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 �1997�; S. Raghavan, A. Smerzi, S. Fan-
toni, and S. R. Shenoy, Phys. Rev. A 59, 620 �1999�.

�25� P. Villain, M. Lewenstein, R. Dum, Y. Castin, L. You, A. Ima-
moglu, and T. A. B. Kennedy, J. Mod. Opt. 44, 1775 �1997�.

�26� J. I. Cirac, M. Lewenstein, K. Molmer, and P. Zoller, Phys.
Rev. A 57, 1208 �1998�.

�27� M. J. Steel and M. J. Collett, Phys. Rev. A 57, 2920 �1998�.
�28� E. M. Wright, D. F. Walls, and J. C. Garrison, Phys. Rev. Lett.

77, 2158 �1996�; E. M. Wright, T. Wong, M. J. Collett, S. M.
Tan, and D. F. Walls, Phys. Rev. A 56, 591 �1997�.

�29� D. Gordon and C. M. Savage, Phys. Rev. A 59, 4623 �1999�.
�30� L. M. Kuang and Z. W. Ouyang, Phys. Rev. A 61, 023604

�2000�; L. M. Kuang and L. Zhou, ibid. 68, 043606 �2003�.
�31� D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and

E. A. Cornell, Phys. Rev. Lett. 81, 1539 �1998�; 81, 1543
�1998�.

�32� J. Stenger et al., Nature �London� 396, 345 �1998�.
�33� G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 �1989�.
�34� L. Zhou, H. S. Song, and C. Li, J. Opt. B: Quantum Semiclas-

sical Opt. 4, 425 �2002�.
�35� E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune,

J.-M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 �1997�.
�36� A. Messikh, Z. Ficek, and M. R. B. Wahiddin, Phys. Rev. A

68, 064301 �2003�.
�37� B. Zeng, D. L. Zhou, Z. Xu, and L. You, Phys. Rev. A 71,

042317 �2005�.
�38� G. R. Jin and W. M. Liu, Phys. Rev. A 70, 013803 �2004�; G.

R. Jin, Z. X. Liang, and W. M. Liu, J. Opt. B: Quantum Semi-
classical Opt. 6, 296 �2004�.

�39� J. M. Radcliffe, J. Phys. A 4, 313 �1971�.
�40� F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.

Rev. A 6, 2211 �1972�.
�41� G. R. Jin and S. W. Kim, Phys. Rev. Lett. �to be published�.
�42� D. Jaksch, S. A. Gardiner, K. Schulze, J. I. Cirac, and P. Zoller,

Phys. Rev. Lett. 86, 4733 �2001�; C. Menotti, J. R. Anglin, J.
I. Cirac, and P. Zoller, Phys. Rev. A 63, 023601 �2001�; A.
Micheli, D. Jaksch, J. I. Cirac, and P. Zoller, ibid. 67, 013607
�2003�.

�43� Except for Table I, we choose a fixed scatting strength �=1
throughout our paper, so the time scale is in units of �−1.

�44� C. Lee, Phys. Rev. Lett. 97, 150402 �2006�.

GUANG-RI JIN AND SANG WOOK KIM PHYSICAL REVIEW A 76, 043621 �2007�

043621-6


