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We discuss techniques to engineer effective long-range interactions between polar molecules using external
static electric and microwave fields. We consider a setup where molecules are trapped in a two-dimensional
pancake geometry by a far-off-resonance optical trap, which ensures the stability of the dipolar collisions. We
detail how to modify the shape and the strength of the long-range part of interaction potentials, which can be
utilized to realize interesting quantum phases in the context of cold molecular gases.
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I. INTRODUCTION

The realization of Bose-Einstein condensates �BECs� and
quantum degenerate Fermi gases with cold atoms has been
one of the highlights of experimental atomic physics during
the last decade �1�, and in view of recent progress in prepar-
ing cold molecules we expect a similarly spectacular devel-
opment for molecular ensembles in the coming years �2–22�.
The outstanding features of the physics of cold atomic and
molecular gases are the microscopic knowledge of the many-
body Hamiltonians, as realized in the experiments, combined
with the possibility to control and tune system parameters via
external fields. Examples are the trapping of atoms and mol-
ecules with magnetic, electric, and optical traps, allowing for
the formation of quantum gases in one- �1D�, two- �2D�, and
three-dimensional �3D� geometries, and the tuning of contact
interparticle interactions by varying the scattering length via
Feshbach resonances �23,24�. This control is the key for the
experimental realization of fundamental quantum phases, as
illustrated by the superfluid–Mott-insulator quantum phase
transition with bosonic atoms in an optical lattice �25�, and
the BEC-BCS crossover in atomic Fermi gases �26–30�.

As discussed in our recent work �31�, polar molecules
prepared in the electronic and vibrational ground state offer
new possibilities to control interparticle interactions. In fact,
effective interactions with a given potential shape can be
engineered under conditions of tight 2D confinement, by ap-
plying static �dc� and microwave �ac� fields. The engineered
potentials can display both repulsive and/or attractive char-
acter. This control of the interactions—in combination with
low-dimensional trapping—opens the way to realizing novel
quantum phases and quantum phase transitions. As an ex-
ample, Ref. �31� discusses a quantum phase transition from a
superfluid to a self-assembled crystal for a gas of polar mol-
ecules in the strongly interacting limit, where the stability of
the collision processes is guaranteed by the confinement in a
2D geometry. It is the purpose of the present paper to present
in some detail the molecular aspects behind this engineering
of effective two-body interactions.

The interaction potential between atoms, in particular
alkali-metal atoms in their electronic ground state, is domi-

nated at large distances by an attractive C6 /r6 potential. In
the many-body Hamiltonian for a dilute quantum gas, this
gives rise to an effective two-body short-range interaction in
the form of a contact interaction with a scattering length as.
Polar molecules have strong permanent electric dipole mo-
ments in their electronic-vibrational ground-state manifold,
and pairs of molecules aligned by external dc or ac electric
fields will interact via �comparatively strong� dipole-dipole
interactions with characteristic long-range 1/r3 dependence
�2,32–35�. These dipole-dipole interactions will be attractive
or repulsive, depending on the relative orientation of the
dipoles.

The alignment of the dipoles corresponds to the dressing
of the lowest energy excitations of the internal molecular
degrees of freedom, which are related to rotations of the
molecule. The rotational dynamics can be manipulated using
external electric dc and ac �microwave� fields. This dressing
of rotational states by external fields together with the
dipole-dipole interaction forms the basis to shape the effec-
tive molecular interactions.

One example discussed in Ref. �31� deals with polar mol-
ecules confined in a 2D �pancake� trap �see Fig. 1�. The
molecular dipoles are aligned perpendicular to the plane by a
dc field. Thus, the effective 2D interactions are repulsive and
long range, Veff

2D���=C3 /�3, with �=r sin ��cos � , sin �� the
2D coordinate in the plane z=0 and �=r sin � �see Fig. 2,
solid line�. The interaction strength C3 is proportional to the
square of the induced dipole moment for the dressed rota-
tional ground state. Depending on the interaction strength,
we find the appearance of a crystalline phase, and an associ-
ated quantum melting to a superfluid phase as a function of
the square of the induced dipole moment. The corresponding
phase diagram is discussed in Ref. �31�, and it is reproduced
in Fig. 3 �see also Ref. �36��.

In the present work we present in detail the microscopic
molecular theory underlying this engineering of the interac-
tion potential for trapped polar molecules offered by dc and
ac microwave fields. We focus both on potentials that are
repulsive 1/r3 �dc field� and on potentials that have a marked
“steplike” character, that is, the character of the repulsive
potentials varies considerably in a small region of space �an
ac plus a dc field�. Three example cases of effective 2D
potentials Veff

2D��� are shown in Fig. 2. The use of multichro-*andrea.micheli@uibk.ac.at
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matic ac fields can lead to the realization of interesting po-
tentials �for example, the attractive potential of Fig. 2�; how-
ever, in this work we focus on monochromatic ac fields only.

In all cases, the derivation of the effective 2D interactions
proceeds in two steps: First, we derive a set of Born-
Oppenheimer �BO� potentials by diagonalizing the Hamil-
tonian for the relative motion of two particles for fixed mo-
lecular positions. Within an adiabatic approximation, the
corresponding eigenvalues play the role of an effective 3D
interaction potential. Second, we obtain an effective 2D dy-

namics by integrating out the fast transverse motion of the
molecules along the direction of the tight parabolic confine-
ment.

The paper is organized as follows. In Sec. II we discuss
the Hamiltonian for a single rotating polar molecule dressed
by dc and ac �microwave� fields under conditions of strong
optical confinement. The collisions of two polar molecules
are considered in Sec. III. After reviewing the molecular col-
lisions in the absence of external fields, in Sec. III A we
consider the case of interactions in the presence of a dc elec-
tric field. In particular, the stabilizing effects of a parabolic
potential confining the particles to a 2D plane are analyzed in
Secs. III A 3 and III A 4, while the effective 2D interaction
potential Veff

2D���=C3 /�3 is derived in Sec. III A 5. The inter-
actions in the presence of an ac field are studied in Sec. III B.
In the absence of external confinement, this case is analo-
gous to the 3D optical shielding developed in the context of
ultracold collisions of neutral atoms �40–42�. As in the latter,
we find a strong dependence of the 3D shielding potential on
the polarization of the ac field. The presence of “holes” in the
3D shielding potential for certain polarizations and of several
degeneracies in the two-particle spectrum for all polariza-
tions render the pure ac-field case less appealing for realizing
stable collisional setups in 2D. In fact, both the former and
the latter processes open loss channels for the ground-state
interaction. In Sec. III C we analyze the interactions in com-
bined dc and ac fields, and we show that the dc field helps to
greatly suppress the presence of possible loss channels at
large distances, while an additional harmonic confinement
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FIG. 1. �Color online� System setup: Polar molecules are
trapped in the �x ,y� plane by an optical lattice made of two coun-
terpropagating laser beams with wave vectors ±kL= ±kLez �arrows
on the top and bottom�. The dipoles d j are aligned in the z direction
by a dc electric field Edc�Edcez �arrow on the left�. An ac �micro-
wave� field Eac is indicated �arrow on the right�. Inset: Definition of
polar ��� and azimuthal ��� angles for the relative orientation of the
intermolecular collision axis r with respect to a space-fixed frame
with axes �ex ,ey ,ez�.
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FIG. 2. �Color online� Qualitative sketch of effective 2D poten-
tials Veff

2D��� for polar molecules confined in a 2D �pancake� geom-
etry. Here, �=r sin ��cos � , sin �� is the 2D coordinate in the plane
z=0 and �=r sin � �see inset of Fig. 1�. Solid line: Repulsive dipo-
lar potential Veff

2D���=C3 /�3 induced by a dc electric field. Dash-
dotted line: Steplike potential induced by a single ac �microwave�
field and a weak dc field. Dashed line: Attractive potential induced
by the combination of several ac �microwave� fields and a weak dc
field. Here, the potentials Veff

2D��� and the separation � are given in
arbitrary units. For the steplike case �dash-dotted line� �=1 corre-
sponds to the Condon point rC of Sec. III C.
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FIG. 3. �Color online� Sketch of the phase diagram for a homo-
geneous 2D system of polar molecules interacting via the effective
2D repulsive potential Veff

2D���=C3 /�3. T is the temperature in units
of Td�C3 /kBa3, with a the average interparticle distance and kB the
Boltzmann constant. The symbol rd�Eint /Ekin=C3m /�2a is the in-
teraction �Eint=C3 /a3� to kinetic energy �Ekin=�2 /ma2� ratio. A
crystalline phase appears for large ratios rd�rQM and small tem-
peratures T�Tm. The critical ratio rQM�18±4 for the quantum
melting to a superfluid phase has been determined in Ref. �31�,
while the classical melting temperature Tm �dashed line� to a normal
gas phase has been calculated in Ref. �37�. The finite-temperature
superfluid to normal fluid phase transition is of the Berezinskii-
Kosterlitz-Thouless type �38,39� and it appears below the upper
bound TKT=��2 /2kBma2 �dash-dotted line�. The crossover to an
unstable regime for small repulsion and finite confinement in the z
direction �see Fig. 1� is indicated by a hatched region �see text, Sec.
III�.
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along z avoids populating the regions of space where “holes”
analogous to those of Sec. III B occur. Thus, by introducing
a tight optical confinement in the z direction, in this case it is
possible to realize stable two-dimensional collisional setups.
Two-dimensional interparticle interactions can be designed,
whose character varies markedly between long and short dis-
tances, allowing for much greater flexibility in tuning by
external fields than the pure dc case of Sec. III A.

II. MOLECULAR HAMILTONIANS

The purpose of this section, which forms the basis of
discussion in the following sections, is to review the single-
molecule rotational spectroscopy. In particular we are inter-
ested in the rotational excitations of cold 	2S+1
�v� spinless
�S=0� polar molecules in their electronic �	=0� and vibra-
tional �v=0� ground state, with zero projection �
=0� of the
total angular momentum on the internuclear axis �43,44�.
The spectroscopic notation for the electronic-vibrational
ground state of these molecules is X 1��0�. Moreover, we are
interested in manipulating the rotational states of these mol-
ecules using dc and ac electric fields and in confining the
particles using a �optical� far-off-resonance trap �FORT�. The
application of these external fields will serve as a key ele-
ment to engineer effective interaction potentials between the
molecules.

Our goal in this section is to derive a low-energy effective
Hamiltonian for the external motion and internal rotational
excitations of a single molecule in its electronic-vibrational
ground state of the form

H�t� =
p2

2m
+ Hrot + Hdc + Hac�t� + Hopt�r� .

In the last equation, p2 /2m is the kinetic energy for the
center-of-mass motion of a molecule of mass m, while Hrot
accounts for the rotational degrees of freedom. The terms
Hdc, Hac�t�, and Hopt�r� refer to the interaction with electric
dc and ac �microwave� fields and to the optical trapping of
the molecule in the ground electronic-vibrational manifold,
respectively.

A. Rotational excitations of 1� molecules

We consider spinless polar molecules with � electronic
ground states in their electronic-vibrational ground state
X 1��v=0�. The low-energy internal excitations correspond
to the rotation of the internuclear axis of the molecules with
total internal angular momentum J �43–45�. The correspond-
ing Hamiltonian Hrot is the one of a rigid spherical rotor �43�

Hrot = BJ2. �1�

Here B is the rotational constant for the electronic-
vibrational ground state, which is of the order of B	h
�10 GHz �46�. We denote the energy eigenstates of Eq. �1�
by 
J ,M�, where J is the quantum number associated with
the total internal angular momentum and M is the quantum
number associated with its projection onto a space-fixed
quantization axis. The excitation spectrum is EJ=BJ�J+1�,

which is anharmonic. Each J level is �2J+1�-fold degener-
ate.

A polar molecule has an electric dipole moment d which
couples its internal rotational levels. This dipole moment
gives rise to the dipole-dipole interaction between two mol-
ecules. For � molecules the dipole operator is along the in-
ternuclear axis eab, i.e., d=deab. Here, d is the “permanent”
dipole moment of a molecule in its electronic-vibrational
ground state.

The spherical components of the dipole operator on a
space-fixed spherical basis �e−1 ,e0 ,e1�, with eq=0�ez and
e±1= 
 �ex± iey� /�2, are given by dq=eq ·d=dCq

�1��� ,��,
where Cq

�k��� ,�� are the unnormalized spherical harmonics
and � ��� is the polar �azimuthal� angle for the orientation of
the molecule in the space-fixed frame �43–45�, respectively.
We note that for a spherically symmetric system, e.g., in the
absence of external fields, the eigenstates of the rotor have
no net dipole moment, 
J ,M 
d 
J ,M�=0. On the other hand,
the component dq couples the rotational states 
J ,M� and

J±1,M +q� according to


J ± 1,M + q
dq
J,M� = d�J,M ;1,q
J ± 1,M + q�

� �J,0;1,0
J ± 1,0�� 2J + 1

2�J ± 1� + 1
,

where �J1 ,M1 ;J2 ,M2 
J ,M� are the Clebsch-Gordan coeffi-
cients.

In the following we are interested in the interaction of the
molecules with an external dc electric field along ez, Edc
=Edce0, and with ac microwave fields with either linear po-
larization �q=0� or circular polarization �q= ±1� relative to
ez, Eac�t�=Eace

−i�teq+c.c. These fields couple to a molecule
via the electric dipole interaction,

Hdc = − d · Edc = − d0Edc, �2a�

Hac�t� = − d · Eac�t� = − dqEace
−i�t + H.c., �2b�

which try to align the molecule along the field, while com-
peting with its rotation, as �J2 ,dq��0.

B. Coupling of rotational states by dc and ac electric fields

1. Coupling to a dc electric field

The effects of a dc electric field Edc on a single polar
molecule are �a� to split the �2J+1�-fold degeneracy in the
rotor spectrum, and �b� to align the molecule along the di-
rection of the field, which amounts to inducing a finite dipole
moment in each rotational state.

We choose the direction of the dc field as the quantization
axis, Edc�Edce0. Then, the internal Hamiltonian is that of a
rigid spherical pendulum �43,47�,

H = Hrot + Hdc = BJ2 − d0Edc, �3�

which conserves the projection of the angular momentum J
on the quantization axis, i.e., M is a good quantum number.
The energy eigenvalues and eigenstates of Eq. �3� are labeled
as EJ,M and 
�J,M�, respectively.
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We are interested in weak fields, Edc�B /d, where the
effects of the electric field are a quadratic dc Stark shift of
the rotational energy levels and a finite induced dipole mo-
ment along the axis of the field in each rotational state. For a
typical rotational constant B	h�10 GHz and a dipole mo-
ment d	9 D, this corresponds to considering dc fields
�much� weaker than B /d	2 kV/cm. To lowest order in �
�dEdc/B the energy eigenvalues and eigenstates are �43,47�

EJ,M/B = J�J + 1� +
�2

2

1 − 3M2/J�J + 1�
�2J − 1��2J + 3�

, �4a�


�J,M� = 
J,M� −
�

2J
�J2 − M2

4J2 − 1

J − 1,M�

+
�

2�J + 1�
��J + 1�2 − M2

4�J + 1�2− 1

J + 1,M� . �4b�

Thus, the ground-state energy is shifted downward by E0,0
=−B�2 /6, while the energies of the lowest excited states are
split by

�� � E1,0 − E1,±1 = 3B�2/20 �5�

�see the solid lines in Fig. 4�. The average energy separation
of the J=0 and J=1 manifolds is

��̄ = �
M=−1

1

�E1,M − E0,0�/3 = 2B + B�2/6. �6�

The induced dipole moments to lowest order in � are


�J,M
d
�J,M� = d�
3M2/J�J + 1� − 1

�2J − 1��2J + 3�
e0.

This equation shows that the ground state acquires a finite
dipole moment g0�
�0,0 
d0 
�0,0�=d� /3 along the field
axis, while the lowest excited states acquire a dipole moment

�1,M 
d0 
�1,M�=d�3M2−2�� /10. For later convenience, per-
turbative values in the small parameter � of the transition
and permanent dipole moments are reported in Table I for the
four single-particle states 
�J,M� with 
M 
 �J�1. The tran-
sition and permanent dipole moments are labeled as fn and
gn, respectively.

2. Coupling to an ac electric field

Similar to the case of a dc electric field, the basic effect of
an ac electric field Eac on a single molecule is to polarize it
by dressing its energy levels. The characteristic time depen-
dence of the ac field allows for �a� addressing individual
rotational transitions by applying one or several noninterfer-
ing microwave fields �multimode field�; �b� realizing dress-
ing fields that can be not only linearly, but also circularly
polarized. In this work, we consider the case of a single ac
microwave field with polarization q and frequency �,
Eac�r , t�=Eac�r�e−i�teq+c.c., and derive the dressed energy
levels for a molecule in the field. For the sake of
generality—and for later convenience—we consider the case
where the ac field is superimposed on a weak dc field, which
provides for a splitting of the first excited J=1 manifold, as
shown above.

Given a polarization q, the frequency � is chosen close to
the transition from the ground state to one state of the J=1
manifold, 
�0,0�↔ 
�1,q�, i.e., �	 �̄+��2/3−q2�, where the
states 
�J,M� are those of Eq. �4�. The corresponding wave-
length is of the order of centimeters, which greatly exceeds
the size of our system and therefore one can neglect the
position dependence of the microwave field, i.e., recoil ef-
fects, Eac�r��Eac. The electric dipole interaction of Eq. �2b�
reads

Hac�t� = − dqEace
−i�t + H.c. �7�

The Rabi frequency � and the detuning � are �
�Eac
�1,q 
dq 
�0,0� /�=Eacf 
q
 /� and ���− �E1,q−E0,0� /�

=�− ��̄+��2/3−q2��, respectively �see Fig. 4�.
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FIG. 4. �Color online� Solid lines: Energies EJ,M �left� and states

�J,M� �right� of Eq. �4� with J=0,1, for a molecule in a weak dc
electric field Edc=Edce0 with ��dEdc/B�1. The dc-field-induced
splitting �� and the average energy separation ��̄ are ��
=3B�2 /20 and ��̄=2B+B�2 /6, respectively. Dashed and dotted
lines: Energy levels for a molecule in combined dc and ac fields
�The ac Stark shifts of the dressed states are not shown�. Dashed
line: The ac field is monochromatic, with frequency �, linear po-
larization q=0, and detuning �=�− ��̄+2� /3��0. Dotted lines:
Schematics of energy levels for an ac field with polarization q
= ±1 and frequency ����.

TABLE I. Permanent �gn� and transition �fn� dipole moments of
the four states belonging to the rotational J=0,1 manifolds, in the
presence of a weak polarizing dc field Edc=Edce0. Here, �
=dEdc/B�1 is the ratio of the electrostatic energy and rotational
constant, and the dipole moments are given up to third order in �.

g0 
�0,0 
d0 
�0,0� �d� /3��1−11�2 /90�
g1 
�1,±1 
d0 
�1,±1� �d� /10� / �1−19�2 /1400�
g2 
�1,0 
d0 
�1,0� −�d� /5��1−73�2 /350�
f0 
�1,0 
d0 
�0,0� �d /�3��1−43�2 /360�
f1 
�1,±1 
d±1 
�0,0� �d /�3��1−49�2 /1440�
f2 
�1,0 
d
1 
�1,±1� �3d� /20��1−577�2 /5600�
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In Sec. III we consider a specific setup where the ac field
has linear polarization, q=0. Here we illustrate how to obtain
the dressed energy levels of a molecule in this field by di-
agonalizing the Hamiltonian H=Hrot+Hdc+Hac�t� in a Flo-
quet picture. First, we expand the Hamiltonian on the basis

�J,M�, which diagonalizes the time-independent part of H as
Hrot+Hdc=�J,M 
�J,M�EJ,M
�J,M
. Then, we consider the ef-
fect of the ac field driving the 
�0,0�↔ 
�1,0� transition with
Rabi frequency �� f0Eac /��dEac /�3� and detuning �=�
− �E1,0−E0,0� /�=�−2B�1+2�2 /15� /�.

A transformation to the Floquet picture is obtained by
expanding the time-dependent wave function in a Fourier
series in the ac frequency �. After applying a rotating wave
approximation, i.e., keeping only the energy-conserving

terms, we obtain the time-independent Hamiltonian H̃, which
describes the coupled two-level system in the basis
�
�0,0� , 
�1,0�� as

H̃ = − �� 0 �

� �
� + E0,0.

The corresponding dressed energy eigenvalues of H̃ for the
ground state and excited state �minus one photon energy ���
are given by

Ẽ0,0 − E0,0 = −
��

2
+

��

2
�1 +

4�2

�2 � +
��2

�
,

Ẽ1,0 − E0,0 = −
��

2
−

��

2
�1 +

4�2

�2 � − �� −
��2

�
,

respectively. We note that the ac field induces an ac Stark
shift �±��2 /�, on the ground and the excited states, re-
spectively. Thus, the shift depends on the detuning �, and in
particular on its sign, and on the Rabi frequency �.

C. Optical trap

An essential ingredient of our setup is the tight confine-
ment of the molecules in a 2D plane. This is realized, for
example, by a far-off-resonant optical trap �see Fig. 1�. The
latter drives far-off-resonance transitions from X��0� to the
electronically excited states 	
�v�. The goal of this section is
to obtain the resulting trapping potentials for the lowest ro-
tational excitations, J=0,1.

A detailed discussion of the complex nature of molecular
electronic excitations �43,44� is beyond the scope of the
present discussion. For a detailed treatment of an example
case, we refer to Ref. �48�. We consider here a simple model,
where the fine and hyperfine interactions are neglected. Then
the basic molecular structure is obtained as follows. In the
adiabatic approximation one diagonalizes the Hamiltonian
for the electrons and the two nuclei as a function of the
internuclear separation rab, thus obtaining a set of Born-
Oppenheimer potentials E	
�rab�. Here 	 is the main elec-
tronic quantum number, while 
 denotes the quantum num-
ber associated with the operator for the total angular
momentum component of the molecules along the internu-
clear axis, eab ·J. The latter gives rise to a large splitting of

the electronic manifolds 	A	 


2, where A	=�2 / Ie is the
inverse of the �small� moment of inertia of the electrons �43�.
Then, the vibration of the nuclei in the BO potentials yields
a series of bound states v=0,1 ,2 , . . . with energy E	
�v�.

Deep optical traps are obtained as follows. The laser,
Eopt�r , t�=Eopt�r�e−i�Lt+c.c., drives the electronic transitions
to the lowest excited states, labeled A and B, with frequency
�L tuned near the minima of the BO potentials. Since spon-
taneous emission in the excited states is typically a few
megahertz, deep traps on the order of 1 MHz with a negli-
gible inelastic scattering rate �	 a few hertz� require detun-
ings on the order of hundreds of gigahertz from the vibra-
tional resonances. Since these detuning are much larger than
B, one can neglect the rotational structure in the electronic
ground and excited states in deriving the optical potential.
The effective interaction of the molecules with the off-
resonant laser field is thus described by

Hopt�r� = − Eopt�r�* · �̂��L� · Eopt�r� , �8�

with the dynamic polarizability tensor

�̂��L� = ����L�e0� � e0� + ����L� �

=±1

�− 1�
e
� � e−
�

= ����L� �
q=−1

+1

�− 1�qeq � e−q + �����L� − ����L��

� �
p,q

�− 1�p−qC−p
�1���,��Cq

�1���,��ep � e−q. �9�

Here �e−1� ,e0� ,e+1� � denotes a body-fixed spherical basis with
e0��eab=�q�−1�qC−q

�1��� ,��eq being the internuclear axis, and
����L� �����L�� the dynamic polarizability at frequency �L

in the direction parallel �perpendicular� to the internuclear
axis �43,49�. The parallel and perpendicular components are
given by the �-� ��
=0� and �-� ��
= ±1� transitions,
respectively, and read

����L� = �
±

�
	,v


d	��v�-X��0�
2

E	��v� − EX��0� 
 ��L
, �10a�

����L� = �
±

�
	,v


d	��v�-X��0�
2

E	��v� − EX��0� 
 ��L
. �10b�

Here d	
�v�-X��0� denotes the transition dipole moment from
X��0� to 	
�v�, and the sum over 
 accounts for the near-
resonant and typically far off-resonant terms. From Eq. �10�
we see that the anisotropy in the dynamic polarizabilities,
����L�−����L�, is due both to the different dipole moments
and to the large splitting of the excited 	��v� and 	��v�
states.

In our setup we consider a pair of circularly polarized
counter propagating laser beams, Eopt�r�=Eopt cos�kLz�e+,
with wave vectors ±kL= ±�Le0 /c along z, trapping the mol-
ecules in the x-y plane �see Fig. 1�. From Eq. �8� we obtain
the following Hamiltonian for the optical trapping �49�:
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Hopt�r� = − �0��L�
Eopt
2 cos2�kLz�C0
�0���,��

− �2��L�
Eopt
2cos2�kLz�C0
�2���,�� , �11�

where �0��L�������L�+2����L�� /3 and �2��L�
������L�−����L�� /3. The first term in Eq. �11�, propor-
tional to C0

�0��� ,��=1, gives an overall shift, which is com-
mon to all the rotational states. The second term is respon-
sible for tensor shifts, which split the excited rotational states
according to 
M
, as


J,M
C0
�2���,��
J,M� =

J�J + 1� − 3M2

�2J − 1��2J + 3�
. �12�

Typical depths of optical lattices are of the order of �h
�1 MHz, and thus much smaller than B. Therefore we may
neglect the far-off-resonant Raman coupling between differ-
ent J manifolds, i.e., J↔J±2.

We consider tight optical traps, such that the molecules in
the ground state are strongly confined at one potential mini-
mum of 
�0,0 
Hopt�r� 
�0,0�=−�0��L� 
Eopt
2cos2�kLz�. For a
light field which is �far� red detuned from the electronic ex-
cited states, i.e., ��L�E	
�v�−EX��0�, the dynamic polariz-
abilities ����L� and ����L� are positive and the trapping
potential for the ground state is attractive, since �0��L��0.
We assume the molecule to be strongly confined near the
field antinode z=0. Then the optical trapping is essentially
given by a tight harmonic trap,

Hopt�r� � − �0��L�
Eopt
2�1 − k2z2�

− �2��L�
Eopt
2�1 − kL
2z2�C0

�2���,�� . �13�

From the last expression we see that the tensor shifts induce
a position-dependent splitting for the excited rotational mani-
folds, which at z=0 is analogous to that induced by a dc
field, but has a strong modulation in space. The tensor shifts
are thus seen as position- and state-dependent potentials, and
the last term in Hopt�r� is �in principle� unwanted for our
purposes, since it gives rise to different trapping frequencies
�� for the ground and excited states.

However, we note that by applying a second laser,
Eopt� �r , t�, of frequency �L� with wave vector kL� and polariza-
tion eL� , one can eliminate the state-dependent potentials—up
to a position-independent splitting of the excited states.
Given the large number and variety of available excited
electronic-vibrational states, several choices are possible.
One choice is, e.g., to apply an additional laser with the same
polarization eL� as the first laser, i.e., eL� =e+, but having
a node at z=0 and being blue detuned from the electro-

nic transitions, i.e., Eopt� �r , t�=Eopt� sin�kL�z�e−i�L� te++c.c. with

�L� � �E	
�0�−EX��0�� /� for 	
=A� ,B�. This induces an
additional state-dependent optical trapping potential given by
Hopt� �r�=−
Eopt� 
sin2�kL�z���0��L��+�2��L��C0

�2��� ,���. Tuning
the laser frequency �L� with respect to the vibrational reso-
nances one can force both ����L�� and ����L�� to be negative
�see Eq. �10��. The additional trapping potentials are zero at
their node z=0; in particular, for the ground state the trap-
ping potential is repulsive �thus enhancing the trapping given

by the first laser�, while the excited-state position-dependent
trapping �z2C0

�2��� ,�� of Eq. �13� can be compensated for by
tuning the strength of the second laser, Eopt� .

The parabolic trapping potential for our setup is then
given by

Hopt�r� =
1

2
m��

2 z2 − V0 − V2C0
�2���,�� , �14�

where the first term is a state-independent harmonic trapping
along ez at frequency

�� = �2��0��L�
EoptkL
2 + 
�0��L��

Eopt� kL� 
2�/m ,

the second terms gives an overall Stark shift V0
=�0��L� 
Eopt
2, and the last term is a splitting of the excited
rotational states, J�0, which is independent of the position
z, V2=�2��L� 
Eopt
2.

Concluding, the Hamiltonian for a single molecule is

H�t� =
p2

2m
+

1

2
m��

2 z2 − V0 − V2C0
�2���,�� + BJ2 − d0Edc

− �dqEace
−i�t + H.c.� . �15�

III. TWO MOLECULES

We consider the interactions of two polar molecules j
=1,2 confined to the x-y plane by a tight harmonic trapping
potential of frequency ��, directed along z. The interaction
of the two molecules at a distance r�r2−r1=rer is de-
scribed by the Hamiltonian

H�t� = �
j=1

2

Hj�t� + Vdd�r� , �16�

where Hj�t� is the single-molecule Hamiltonian Eq. �15�, and
Vdd�r� is the dipole-dipole interaction

Vdd�r� =
d1 · d2 − 3�d1 · er��er · d2�

r3 . �17�

Here, d j is the dipole operator of the molecule j, and er ·d j is
its projection onto the collision axis er. The projection reads
er ·d j =�q=−1

+1 �−1�qC−q
�1��� ,��dq;j, where Cq

�1��� ,���eq ·er are

unnormalized spherical harmonics with � and � polar and
azimuthal angles relating the orientation of er with respect to
a space-fixed frame eq, respectively. The terms dq;j �eq ·d j
are the spherical components of the projection of the dipole
operator of molecule j onto the space-fixed frame eq.

In the absence of external fields Edc=Eac=0, the interac-
tion of the two molecules in their rotational ground state is
determined by the van der Waals attraction VvdW	C6;0 /r6

with C6;0�−d4 /6B. This expression for the interaction po-
tential is valid outside of the molecular core region r�rB
��d2 /B�1/3, where rB defines the characteristic length where
the dipole-dipole interaction becomes comparable to the
splittings of the rotational levels �see below�. In the follow-
ing we show that it is possible to induce and design interac-
tion potentials that are long range, by dressing the interac-
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tions with appropriately chosen static and/or microwave
fields. In fact, the combination of the latter with low-
dimensional trapping allows one to engineer effective poten-
tials whose strength and shape can both be tuned. The deri-
vation of the effective interactions proceeds in two steps. �i�
We derive a set of Born-Oppenheimer potentials by first
separating Eq. �16� into center-of-mass and relative coordi-
nates, and diagonalizing the Hamiltonian for the relative mo-
tion for fixed molecular positions. Within an adiabatic ap-
proximation, the corresponding eigenvalues play the role of
an effective 3D interaction potential in a given state manifold
dressed by the external field. �ii� We eliminate the motional
degrees of freedom in the tightly confined z direction to ob-
tain an effective 2D dynamics with interaction Veff

2D���. In the
following we consider the cases of a static field and a micro-
wave field, coupling the lowest rotor states.

A. Effective interactions in the presence of a dc electric field

In this section we consider the collisions of two ground-
state molecules in the presence of a dc electric field Edc
=Edce0. The Hamiltonian Eq. �16� now reads

H = �
j=1

2 � p j
2

2m
+

1

2
m��

2 zj
2 + BJ j

2 − Edcd0;j� + Vdd�r�

= �
j=1

2 � p j
2

2m
+

1

2
m��

2 zj
2� + Hint�r� , �18�

where d0;j =e0 ·d j and Hint�r� is the internal Hamiltonian in-
cluding the dipole-dipole interaction, Hint�r�=� j�BJ j

2

−Edcd0;j�+Vdd�r�, respectively. In this section we are inter-
ested in ground-state collisions, and thus for convenience we
set V2=0 in Eq. �18�, that is, we neglect possible tensor shifts
in the excited-state energies of each molecule. We can further
rewrite Eq. �18� by splitting H into center-of-mass and rela-
tive coordinates as H=Hcom+Hrel with

Hcom =
P2

4m
+ m��

2 Z2, �19a�

Hrel =
p2

m
+

1

4
m��

2 z2 + Hint�r� . �19b�

Here, R= �r1+r2� /2 and P=p1+p2 are the center-of-mass
coordinate and momentum of the two molecules, while r
=r2−r1 and p= �p2−p1� /2 are the relative coordinate and
momentum, respectively. Equations �19� show that the
dipole-dipole interaction couples the internal degrees of free-
dom to the relative motion, while the latter and the harmonic
motion of the center of mass remain decoupled. Thus, the
nontrivial system’s dynamics is entirely determined by Hrel.
In the following we focus our discussion on this term.

As explained above, in the spirit of the BO approximation
we can obtain effective interaction potentials for the collision
of the two particles by diagonalizing Hrel for fixed particle
positions and zero kinetic energy. In the adiabatic approxi-
mation, the resulting eigenvalues are energy surfaces which
act as effective potentials in each state manifold. Here we

first analyze the case of collisions in the absence of external
fields, that is, Edc=��=0 �Sec. III A 1�. Then, in Sec. III A 2
we add a static electric field of small strength Edc�B /d. The
effects of finite trapping ���0 are treated in the following
section, Sec. III A 3 for the most relevant case of ground-
state collisions. The stability of ground-state collisions is in-
vestigated in Sec. III A 4. The effective two-dimensional po-
tential for ground-state collision is derived in Sec. III A 5.

1. Collisions in the absence of external fields

In the absence of external fields �Edc=��=0� and for zero
kinetic energy, diagonalizing Hrel amounts to diagonalizing
Hint�r� as a function of r,

Hint�r� = �
j=1

2

BJ j
2 + Vdd�r� = �

n


�n�r��En�r�
�n�r�
 ,

�20�

where En�r� and 
�n�r�� are the nth adiabatic energy eigen-
values and two-particle eigenfunctions, respectively, and n is
a collective index for a set of quantum numbers to be speci-
fied below. Each eigenvalue En�r� plays the role of an effec-
tive interaction in a given state manifold dressed by the ex-
ternal field. At infinite separations of the molecules, the
eigenfunctions 
�n

�0��r���
�n
�0��� ,���= 
�n�r→ � ,� ,���

are symmetrized products of the �rotated� single-particle
eigenstates 
Jj ,Mj� j��e−i�Jz;je−i�Jy;j 
Jj ,Mj� j, which are inde-
pendent of the distance r. For finite r the two-particle eigen-
states are superposition of several single-particle states,
which are mixed by the dipole-dipole interaction Vdd�r�.

A few eigenvalues En�r� of Eq. �20� are plotted as a func-
tion of r in Fig. 5. Figure 5 shows that the energy spectrum
behaves quite differently for r�rB and r�rB, rB
��d2 /B�1/3. In fact, for r�rB a large number of level cross-
ings and anticrossings occurs, which make the satisfaction of
the adiabatic approximation generally impossible. The region
r�rB is the molecular core region. In the following we focus
on the region r�rB, where the lowest-energy eigenvalues
group into well-defined manifolds, which are approximately
spaced by an energy �2B. For ground-state collisions, the
adiabatic approximation is here trivially satisfied.

Since we are interested in ground-state collisions, we re-
strict our discussion to the Jj =0 and 1 manifolds of each
molecule, which amounts to taking into account 16 rotational
two-particle states. The corresponding eigenvalues En�r� are
clearly distinguishable in Fig. 5 in the region r�rB. The
manifolds are approximately split by 2B, according to the
number of rotational excitations J1+J2 shared by the two
molecules. The two-particle energy eigenstates and eigenpo-
tentials can be classified according to the following symme-
tries of Hint�r�. �a� The projection of the total internal angular
momentum along the collision axis, er · �J1+J2�, is conserved
and associated with a quantum number Y. �b� The Hamil-
tonian is invariant under the exchange of the two particles,
which is associated with the permutation symmetry �=± un-
der the exchange of the two particles. This implying that
symmetric �antisymmetric� states couple to symmetric �anti-
symmetric� states only. �c� The parity p=��−1�J1+J2 is con-
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served. The spectroscopic notations labeling the eigenstates

�n�r�� and potentials En�r�,with n��J=J1+J2 ;Y ;�� in Fig.
5 are explained in the caption of Table II.

Analytic results for the energy eigenvalues and eigen-
states of Hint�r� for large enough interparticle distances r can
be derived using a perturbative expansion in Vdd�r� /B. Our
results for the energy eigenvalues En�r��EJ1+J2;Y;��r� of
B� jJ j

2+Vdd�r� are summarized in Table II. There, the
asymptotic energies En

�0��En�r→ � �, the dipole-dipole coef-
ficients C3;n, and the van der Waals coefficients C6;n are re-
ported, so that the perturbative expressions for En�r� take the
form En�r�=En

�0�+C3;n /r3+C6;n /r6. The table shows that the
ground-state energy E0�r��E0;0;+�r� is shifted downward by
an amount E0;0;+�r�=−d4 /6Br6, which is the usual van der
Waals shift due to off-resonant dipole-dipole interactions.
The first excited manifold �J1+J2=1� consists of six states,
of which three are symmetric and three are antisymmetric.

These states are split by the resonant dipole-dipole interac-
tion according to their angular momentum along the collision
axis, 
Y 
 =0,1 and �=±, as reported in Table II. Finally, the
second excited manifold �J1+J2=2� consists of nine states,
of which six are symmetric, Y =0±, ±1 , ±2 with �=+, and
three are antisymmetric, Y =0, ±1 with �=−.

2. Collisions in a dc field: Effective 3D interaction

We now turn to study the collision of the two molecules in
the presence of a weak static electric field applied in the z
direction but in the absence of optical trapping, that is, E
=Edce0 with Edc�B /d and ��=0. As explained in Sec.
II B 1, the effects of a dc electric field on each molecule are
to partially split the �2J+1�-fold degeneracy in the rotor
spectrum �the modulus of the projection M is conserved�,
and to align the molecule along the direction of the field,
which amounts to inducing a finite dipole moment

j
�Jj,Mj

d0;j 
�Jj,Mj

� j in each rotational state.
Analogous to the discussion above, the effective interac-

tion potentials for the collision of the two particles can
be obtained in the adiabatic approximation by diagonalizing
the Hamiltonian Hrel=Hint�r�=� j=1

2 �BJ j
2−Edcd0;j�+Vdd�r�

=�n 
�n�r��En�r�
�n�r�
, where now the asymptotic energy
eigenstates 
�n

�0��� ,��� are symmetrized products of the
single-particle states 
�Jj,Mj

� j of Eq. �4�. The quantity n
��J ;M ;�� is the collective quantum number labeling the
eigenvalues En�r�, with J=J1+J2, M �
M1 
 + 
M2
, and �
=±. We note that, because of the presence of the dc field,
here J is a simple label for the various energy manifolds, and
not a quantum number. The energies of the eigenvalues En�r�
and the associated eigenvectors are tabulated in Table III.

Similar to the zero-field discussion, in the weak-field limit
��1, and for r�rB we expect the eigenvalues of Hint�r� to
group into manifolds, which are approximately separated by
the rotational spacing 2B. On the other hand, because of the
finite induced dipole moments j
�Jj,Mj


d0;j 
�Jj,Mj
� j, the two

molecules can now interact resonantly via the dipole-dipole
interaction Vdd�r� in each state manifold. This has important
consequences for ground-state collisions. In fact, the new
effective ground-state potential E0�r� derived in perturbation
theory in Vdd�r� /B reads

Veff
3D�r� � E0�r� �

C3;0

r3 �1 − 3 cos2�� +
C6;0

r6 , �21�

where a constant term 2E0,0=−�2B /3 due to single-particle
dc Stark shifts has been neglected. The constants C3;0
�d2�2 /9 and C6;0�−d4 /6B are the dipolar and van der
Waals coefficients for the ground state, respectively �see
Table III�. Equation �21� is valid for r�rB, and it shows that
for distances r�r� with

r� � �2
C6;0

C3;0

�1/3

� � 3d2

B�2�1/3

�22�

the dipole-dipole interaction dominates over the van der
Waals attractive potential, and Veff

3D�r�	C3;0�1−3 cos2�� /r3

�31�. In fact, the potential has a local maximum in the plane
z=r cos �=0 at the position r=r�, where the dipole-dipole

20.5 1

1

2

0

1.5 r r/ B

E2; ;{Y

E BJ Y ¾; ; ( )/2r

E2; ;+Y

E1;0;{

E1;0;+

E1; 1;{§

E1; 1;+§

§u

¢g

§g

§g

§g

E0;0;+

§g

§u

FIG. 5. �Color online� BO potentials EJ;Y;��r� as a function of
the distance r, for two molecules interacting in the absence of ex-
ternal fields, Edc=��=�=0 �see text and Table II�. Here, J=J1

+J2, Y, and � are the total number of rotational excitations shared
by the two molecules, the quantum number associated with the
projection of the total internal angular momentum onto the collision
axis er · �J1+J2�, and the permutation symmetry under the exchange
of the particles, respectively. The solid and dashed curves corre-
spond to symmetric ��= + � and antisymmetric ��=−� eigenstates,
respectively. Each potential energy surface is labeled by the corre-
sponding energy and eigenstate �see Table II�. Here, rB��d2 /B�1/3,
with d the permanent dipole moment and B the rotational constant
of each molecule, respectively. Note that the � and � states are
doubly degenerate.
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TABLE II. Perturbative expansions of the effective potentials, En�EJ;Y;�, for the three lowest-energy manifolds, J=J1+J2=0,1 ,2 with
Jj =0,1, for interactions in the absence of external fields Edc=Eac=��=0. First column: index n=0,1 ,2 , . . . labeling the energy potentials
and states. Second column: total number of rotational excitations shared by the two molecules, J=J1+J2. Third column: the quantum number
Y associated with the projection of the total internal angular momentum along the collision axis er · �J1+J2�, which is denoted by � ,� ,� for
Y =0,1 ,2, respectively. For n=7,8 the subindex ± indicates the presence of two states, which are split by the van der Waals interaction.
Fourth column: permutation symmetry �=±. Fifth column: spectroscopic notation with parity p=��−1�J denoted by g �gerade� for p= +1
and u �ungerade� for p=−1, respectively. Sixth column: Asymptotic energy En

�0��En�r→ � �. Seventh column: dipole-dipole coefficient C3;n.
Last column: van der Waals coefficient C6;n. Perturbative energy eigenvalues are expressed in the form En�r�=En

�0�+C3;n /r3+C6;n /r6.

n J Y � Yp En
�0� C3;n /d2 C6;n�6B /d4

0 0 0 + �g 0 0 −1

1 1 0 + �u 2B −2/3 −22/45

2,3 1 ±1 − �g 2B −1/3 −19/45

4,5 1 ±1 + �u 2B +1/3 −19/45

6 1 0 − �g 2B +2/3 −22/45

7,8 2 0± + �g 4B 0 −�48
39�3� /50

9 ,10 2 ±1 − �u 4B 0 −39/20

11,12 2 ±2 + �g 4B 0 −24/25

13,14 2 ±1 + �g 4B 0 −51/25

15 2 0 − �u 4B 0 −6/25

TABLE III. Perturbative expressions for the 16 lowest-energy BO potentials En�r�=En
�0�+C3;nhn��� /r3+C6;n��� /r6 of two molecules

interacting in the presence of a dc electric field Edc= �B� /d�e0. First column: collective quantum number n��J=J1+J2 ;M �
M1 

+ 
M2 
 ;�= ± � labeling the eigenstates En�r�. Second column: number J=J1+J2 of rotational excitations shared by the two molecules.
Because of the presence of the dc field, parity is not conserved and J is a simple index that labels the various energy manifolds for r�rB ,r�.
Third column: quantum number M �
M1 
 + 
M2
. The additional subindex � for M �0 labels superposition of states with the same �Y ;M ;��,
which depend on the azimuthal angle � �see eighth column�. Fourth column: quantum number �=+ ��=−� denoting symmetric �antisym-
metric� states under permutation of the two molecules. Fifth column: asymptotic energies En

�0� for infinite separation. The quantities �� and
��̄ are defined in Eqs. �5� and �6�, respectively. Sixth column: C3;n coefficient and the angular dependence hn���. The dipole moments gn

and fn are defined in Table I, while the angular distribution � is ��1−3 cos2�. Seventh column: contributions to the C6;n��� coefficient up
to order O��2�. The values A1, A2, and A3 are A1�40�2−�−�2��f0f1+ f2g0�2 /d4�2, A2�33+6�−�2 /2, A3�13�1+�� / cos  , respectively.
Here,  is defined by the relation tan  = �14−���2+�� /26�1+��. Last column: eigenstates 
�n

�0��� ,����
�n�r→ � ,� ,��� valid at infinite
separation. Here, “perm.” denotes the permuted state, e.g., 
�1,2 ;�3,4�→ 
�3,4 ;�1,2�.

n J M� � En
�0�−2E0,0 C3;nhn��� C6;n���6B /d4 
�n

�0��� ,���

0 0 0 + 0 g0
2� −1 
�0,0 ;�0,0�

1 1 1− + ���̄−� /3� �g0g1− f1
2��− f1

2 −A1− �21+�� /45 �±±e
i� 
�0,0 ;�1,±1� /2+perm.

2 1 1− − ���̄−� /3� �g0g1+ f1
2��+ f1

2 −A1− �21+�� /45 �±±e
i� 
�0,0 ;�1,±1� /2−perm.

3 1 1+ + ���̄−� /3� g0g1�+ f1
2 −19/45 �±e
i� 
�0,0 ;�1,±1� /2+perm.

4 1 1+ − ���̄−� /3� g0g1�− f1
2 −19/45 �±e
i� 
�0,0 ;�1,±1� /2−perm.

5 1 0 + ���̄+2� /3� �g0g2+ f0
2�� +A1− �20−�� /45 
�0,0 ;�1,0� /�2+perm.

6 1 0 − ���̄+2� /3� �g0g2− f0
2�� +A1− �20−�� /45 
�0,0 ;�1,0� /�2−perm.

7 2 2 − 2���̄−� /3� g1
2� −3�46+19�� /100 �±± 
�1,±1 ;�1,
1� /�2

8 2 2− + 2���̄−� /3� g1
2� −3�22−5�� /100 �±±e
2i� 
�1,±1 ;�1,±1� /�2

9 2 20 + 2���̄−� /3� g1
2� −3�A2+A3� /100 �±�c 
�1,±1 ;�1,
1�−s e


2i� 
�1,±1 ;�1,±1�� /�2

10 2 2+ + 2���̄−� /3� g1
2� −3�A2−A3� /200 �±�s 
�1,±1 ;�1,
1�+c e


2i� 
�1,±1 ;�1,±1�� /�2

11 2 1− + 2���̄+� /6� �g1g2− f2
2��− f2

2 −3�13+2�+2�2� /100 �±±e
i� 
�1,0 ;�1,±1� /2+perm.

12 2 1− − 2���̄+� /6� �g1g2+ f2
2��+ f2

2 −39/20 �±±e
i� 
�1,0 ;�1,±1� /2−perm.

13 2 1+ + 2���̄+� /6� g1g2�+ f2
2 −3�27+5�� /100 �±e
i� 
�1,0 ;�1,±1� /2+perm.

14 2 1+ − 2���̄+� /6� g1g2�− f2
2 −3�27−19�� /100 �±e
i� 
�1,0 ;�1,±1� /2+perm.

15 2 0 + 2���̄+2� /3� g2
2� −3�34−14�−�2� /100 
�1,0 ;�1,0�
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and van der Waals interactions become comparable. The
height of this maximum is

V� =
C3;0

2

4
C6;0

�

B�4

54
, �23�

and the curvature along z is

�z
2V�r = r�,z = 0� = − 6C3;0/r�

5 � − m�c
2/2,

which defines a characteristic frequency

�c � �12C3;0

mr�
5 �1/2

, �24�

to be used below. The latter has a strong dependence �8/3

= �dEdc/B�8/3 on the applied electric field.
We notice that if it were possible to confine the collisional

dynamics to the z=0 plane, purely repulsive long-range in-
teractions with a characteristic dipolar spatial dependence
	1/r3 could be attained. In the following sections, we ana-
lyze the conditions for realizing sufficiently strong confine-
ments to the z=0 plane by employing a tight harmonic opti-
cal trap in the z direction.

Figure 6 shows the eigenvalues En�r� as a function of the
interparticle distance r, for �=1/5. The vector r is expressed
in spherical coordinates r= �r ,� ,��, with z=r cos �. Figure
6�a� shows the different behavior of the energy spectrum for
r�rB and r�rB, analogous to the zero-field case. Even at
finite � we can clearly distinguish the molecular core region
r�rB where the adiabatic approximation breaks down. Fig-

ures 6�b�–6�e� are blowups of the two lowest-energy mani-
folds of Fig. 6�a�, for �=0 and � /2, respectively. Unlike in
the zero-field case, Figs. 6�b� and 6�d� show that the excited-
state manifold with one quantum of rotation �J1+J2=1� is
asymptotically split into two submanifolds. This separation
corresponds to the electric-field-induced splitting of the Jj
=1 manifold of each molecule, and it is thus given by ��
=3B�2 /20 of Eq. �5�. More importantly, Figs. 6�c� and 6�e�
show that the effective ground-state potential has a very dif-
ferent character for the cases �=0 and � /2. In fact, for �
=� /2, corresponding to collisions in the z=0 plane �see Fig.
6�e��, the potential is repulsive and decaying at large dis-
tances as 1/r3 in agreement with the discussion above. On
the other hand, for �=0 �see Fig. 6�c�� the potential is purely
attractive, with dipolar character. As mentioned above, in the
next section we show that the probability of sampling this
attractive part of the potential during the collision can be
largely suppressed in the case ���0, for a sufficiently tight
transverse trapping.

3. Parabolic confinement

The presence of a finite trapping potential of frequency
�� in the z direction provides for a position-dependent en-
ergy shift of Eq. �21�. The new potential reads

V�r� � Veff
3D�r� +

1

4
m��

2 z2 =
C3;0

r3 �1 − 3 cos2�� +
C6;0

r6

+
1

4
m��

2 z2. �25�

FIG. 6. �Color online� BO potentials EJ;M;��r ,�� for two molecules colliding in the presence of a dc field, with ��dEdc/B=1/5 and
�J ;M ;�� the quantum numbers of Table III. The solid and dashed curves correspond to symmetric ��= + � and antisymmetric ��=−�
eigenstates, respectively. �a� BO potentials for the 16 lowest-energy eigenstates En�r ,�=0�. The molecular-core region is identified as the
region r�rB= �d2 /B�1/3, while for r�rB the eigenstates group into manifolds separated by one quantum of rotational excitation 2B. �b�, �d�
Blowups of the first excited energy manifold of �a� in the region r!rB for �=0 and � /2, respectively. Note the electric-field-induced
splitting ���3B�2 /20 �see Sec. II B 1�. The distance r� where the dipole-dipole interaction becomes comparable to �� is r�= �d2 /���1/3. �c�,
�e� Blowups of the ground-state potential E0,0;+�r ,�� of �a� in the region r!rB for �=0 and � /2, respectively. The distance r� �cf. Eq. �22��,
where the dipole-dipole interaction becomes comparable to the van der Waals attraction is indicated. Note the attractive �repulsive� character
of the potential for �=0 ��=� /2� and r�r�.
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As noted before, for z=0 the repulsive dipole-dipole in-
teraction dominates over the attractive van der Waals inter-
action at distances r�r� given in Eq. �22�. In addition, for
���0 the harmonic potential confines the particle’s motion
in the z direction. Thus, the combination of the dipole-dipole
interaction and the harmonic confinement yields a repulsive
potential which provides for a three-dimensional barrier
separating the long-distance from the short-distance regime.
If the collisional energy is much smaller than this barrier, the
particle’s motion is confined to the long-distance region,
where the potential is purely repulsive.

Figure 7 is a contour plot of V�r� in units of V� �cf. Eq.
�23��, for ��0 and ��=�c /10, with r��� ,z�
=r�sin � , cos �� �the angle � is neglected due to the cylin-
drical symmetry of the problem�. Darker regions correspond
to a stronger repulsive potential. The repulsion due to the
dipole-dipole and harmonic potentials is clearly distinguish-
able at 
z 
 /r�	0 and 7, respectively. The less-dark regions
located at ��� , ±z������sin �� , ±cos ��� correspond to
the existence of two saddle points �see the circles in Fig. 7�.
Here, �� and cos �� are ��= �12C3;0 /m��

2 �1/5 and cos ��

=�1− �r� /���3 /�5, respectively, while the barrier at the
saddle point is V��� , ±z��=C3;0 /��

3 +C6;0 /��
6 . The figure

shows that for distances r���"r� ,rB the effective interac-
tion potential Eq. �25� is purely repulsive. The existence of
two saddle points at distances r	�� separating the long-

from the short-distance regimes is a general feature of sys-
tems with ��0 and �� /�c�1. Thus, �� defines the char-
acteristic length scale for attaining purely repulsive 3D po-
tentials in the presence of a static electric field. Actually, we
show below that for collisional energies smaller than
V��� , 
z� 
 � the dynamics of the particle can be reduced to a
quasi-two-dimensional one, by tracing over the fast particle
motion in the z direction.

For strong trapping ��"�c, the two saddle points col-
lapse into a single one located at z=0, and �=��	r�. In this
limit the dynamics is purely 2D, with the particles strictly
confined to the z=0 plane. The long-distance regime is sepa-
rated from the short-distance one by a potential barrier of
height V��� ,0�=V�=B�4 /54. The amount of harmonic con-
finement required to achieve this pure 2D regime increases
rapidly with � as �c��8/3. While for a typical rotational
constant B /h	5 GHz and a weak dc field �=1/10, �c is of
order of �c /2�	10 kHz, for a �reasonable� electric field �
=1/3 we find �c /2�	1 MHz. This value of �c exceeds the
tightest experimental optical traps ��

max/2�	150 kHz.
Thus, in general the dynamics should be considered quasi-
2D.

When an ensemble of polar molecules is considered, in-
elastic collisions and three-body recombination may lead the
system to a potential instability, associated with the attractive
character of the dipole-dipole interaction �35,50,51�. In our
discussion, this instability is associated with the population
of the short-distance region r���, which can be efficiently
suppressed. In fact, for collisional energies smaller than the
potential barrier V��� , ±z�� the particles are mostly confined
to the long-distance regime, where they scatter elastically.
That is, when a cold ensemble of molecules is considered the
barrier provides for the stability of the system by “shielding”
the short-distance attractive part of the two-body potential. In
this limit, residual losses are due to the tunneling through the
potential barrier. In the next section we estimate the tunnel-
ing rate # associated with this process, and we show that it
can be efficiently suppressed for reasonable values of � and
��. Thus, it is possible to realize stable 2D configurations of
strongly interacting polar molecules interacting via dipole-
dipole interactions �31�.

4. Stability of long-range collisions

In the following we calculate the rate #=#0e−SE/� of par-
ticle tunneling through the barrier V��� , ±z�� using a semi-
classical or instanton approach �52�. In particular, we focus
on determining the quantity SE, the Euclidean action of the
semiclassical trajectory �52�, which is responsible for the ex-
ponential suppression of the tunneling. The constant #0 is
related to the quantum fluctuations around the semiclassical
trajectory, and its value is strongly system dependent. For the
crystalline phase of Ref. �31� �see also Fig. 3�, it is the col-
lisional “attempt frequency,” proportional to the characteris-
tic phonon frequency #0	�C3;0 /ma5, with a the mean inter-
particle distance.

The relative motion of the two particles in the effective
potential V�r� of Eq. �25� is analogous to that of a single
�fictitious� particle with reduced mass m /2, and dynamics
determined by the Hamiltonian H=p2 /m+V�r�. The associ-

FIG. 7. �Color online� Contour plot of the effective potential
V�� ,z� of Eq. �25�, for two polar molecules interacting in the pres-
ence of a dc field ��0, and a confining harmonic potential in the z
direction, with trapping frequency ��=�c /10, where �c

��12C3;0 /mr�
5�1/2 of Eq. �24� and r�= �2 
C6;0 
 /C3;0�1/3 of Eq. �22�.

The contour lines are shown for V�� ,z� /V�"0, with V�=B�4 /54.
Darker regions represent stronger repulsive interactions. The com-
bination of the dipole-dipole interactions induced by the dc field
and the harmonic confinement leads to realization of a 3D repulsive
potential. The repulsion due to the dipole-dipole interaction and the
harmonic confinement is distinguishable at z	0 and z /r�	 ±7,
respectively. Two saddle points �circles� located at ��� , ±z�� sepa-
rate the long-distance region where the potential is repulsive 	1/r3

from the attractive short-distance region. The gradients of the po-
tential are indicated by dash-dotted lines. The thick dashed line
indicates the instanton solution for the tunneling through the poten-
tial barrier.
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ated Euclidean action, that is, the action in imaginary time $,
is given by

SE�r�$�� = �
−�

+�

d$�m

4
� �r

�$
�2

+ V�r�� , �26�

where r�$� is the particle’s trajectory. We remark that Eq.
�26� corresponds to the action in real time, with an inverted
potential −V�r�. The classical trajectories are found by mini-
mizing the action Eq. �26�, yielding the following equation
of motion:

m

2

d2r

d$2 = + �V�r� . �27�

The “energy” Ē=p2 /m−V�r� is conserved along each classi-
cal trajectory. The instanton solution is then the trajectory
with the smallest action SE, which approaches r�$→ ± � �
= ��→ � ,0� asymptotically at time $→ 
� �see the dashed
line in Fig. 7�. The energy of the particle along this trajectory
is zero. The action SE reads

SE = 2�
0

�

d$ 2V�r�$�� = 2�
r�0�

r���

ds�mV�r� , �28�

where r�0� is the “bouncing point” reached at $=0 �52�.
We solve Eq. �27� numerically for classical trajectories

with zero energy, for generic values of � and ��. The ob-
tained action SE is plotted in Fig. 8 as a function of �� /�c,
in units of S0=�m 
C6;0
 /r�

2 = �2Bd4m3�8 /37�1/6. We notice
that the action shows different behaviors for ����c and
����c. In particular, for ����c the action increases with
increasing ��, while for ����c it is �� independent. The
transition between the two different regimes mirrors the
change in the nature of the underlying potential V�r� as a

function of �� /�c described following Eq. �25�, as ex-
plained below.

We find numerically that for ���c��0.88�c the bounc-
ing point r�$=0�= ���0� ,z�0�� of the instanton solution oc-
curs for z�0��0 �see the dashed line in Fig. 7�. This is con-
sistent with the existence of two saddle points located at
V��� , ±z��, with z��0. Since the saddle points appear ap-
proximately at a length r	���r�, it is expected that in this
regime the action is independent of the short-distance behav-
ior of the potential, that is, of the C6;0 coefficient of the van
der Waals attraction. Accordingly, Fig. 8 shows that SE
is well approximated by SE�7.01S0��� /�c�1/5

=5.86�C3;0
2 m3�� /8�1/5=1.43���� /a��2 �dashed line�, which

depends only on the C3;0 coefficient of the dipole-dipole in-
teraction and the confinement along z, via a�= �� /m���1/2.

For �"�c� we find numerically that the bounce takes
place in the plane z=0. This is consistent with the existence
of a single saddle point located at V��� ,0� for ����c,
as discussed in the previous section. The bouncing point
is at ��$=0�=��=r� /21/3 and the action is SE

=S025/3��#�7/6� /#�5/3��5.78S0. The latter is independent
of ��, which is again consistent with the collisional dynam-
ics being purely 2D.

The reason why the transition between the two behaviors
of the instanton solution happens at a value of �� that is
slightly different from �c is that the instanton solution ac-
counts for the kinetic energy of the fictitious particle. Thus,
the particle is not always forced to follow the gradient of the
potential �see the dash-dotted �red� lines in Fig. 7�. This re-
sults in the bounce occurring in the plane z=0 even for val-
ues of �� slightly smaller than �c.

From the discussion above it follows that in the limit of
strong interactions and tight transverse confinement # rap-
idly tends to zero. We illustrate this for the example of SrO,
which has a permanent dipole-moment of d�8.9 D and
mass m=104 amu. Then, for a tight transverse optical lattice
with harmonic oscillator frequency ��=2��150 kHz and
for a dc field �=dEdc/B=1/3, we have �C3;0

2 m3�� /8�5�1/5

�3.39 and obtain # /#0�e−5.86�3.39�2�10−9. Even for a
dc field as weak as �=dEdc/B=1/6, we still obtain a sup-
pression by five orders of magnitude, as # /#0�e−5.86�1.94

�10−5.

5. Effective 2D interaction

In the limit of strong interactions and tight optical con-
finement, it is possible to derive effective two-dimensional
potentials by integrating out the fast particle motion in the
transverse direction z.

For r����a�, the two-particle eigenfunctions in the z
direction approximately factorize into products of single-
particle harmonic oscillator wave functions %k1

�z1�%k2
�z2�. In

first-order perturbation theory in Veff
2D /���, the effective 2D

interaction potential Veff
2D reads

Veff
2D��� � � dz1dz2%0�z1�2%0�z2�2Veff

3D�r�

=
1

�2�a�

� dze−z2/2a�
2

Veff
3D�r� , �29�
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FIG. 8. �Color online� The Euclidean action SE of Eq. �28� as a
function of �� /�c �solid line�. For ����c��0.88�c �����c�� the
bounce occurs for z�0��0 �within the plane z�0�=0�; see text. The
point �c� is signaled by a circle. The dashed line is the
C6;0-independent expression SE�7.01S0��� /�c�1/5 �see text�, with
S0=�m 
C6;0
 /r�

2. For ����c� the action is SE�5.78S0, which is
�� independent, consistent with the bounce occurring in the z=0
plane.
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and is shown in Fig. 9 for various strengths of the dc electric
field, ��dEdc/B. Expression Eq. �29� is valid for large sepa-
rations r����a� where the potential is �much� smaller
than the harmonic oscillator spacing, i.e., 
Veff

2D��� 
 ����.
When this condition breaks down, more harmonic oscillator
states should be considered in addition to the ground states
%0�z1�%0�z2� in deriving Veff

2D from Eq. �21�. In any case, for
large separations ���� the 2D potential reduces to

Veff
2D��� � Veff

3D��,0� =
C3;0

�3 +
C6;0

�6 .

Finally, in the adiabatic approximation we obtain the effec-
tive 2D Hamiltonian Heff

2D,

Heff
2D = �

j=1

2
p̄ j

2

2m
+ Veff

2D��� , �30�

where p̄ j ��px;j , py;j� is the �two-dimensional� momentum in
the plane z=0 of molecule j=1,2 and ���x2−x1 ,y2−y1� is
the �two-dimensional� separation of the molecules in the
plane z=0. The derivation of Heff

2D is the central result of Sec.
III A.

B. Effective interactions in the presence
of an ac microwave field

In this section we consider the interactions of two polar
molecules in the presence of an ac microwave field of fre-
quency � and polarization q, with respect to the direction of

transverse trapping ez, i.e., Eac�t�=Eace
−i�teq+c.c. The spatial

dependence of Eac�t� is neglected, in accordance with the
discussion of Eq. �7�. The field is blue detuned from the Jj
=0−1 transition of the single-particle rotor spectrum by �
=�−2B /��0, with Rabi frequency

� � Eac j
1,q
dq;j
0,0� j/� = dEac/�3� .

The effects of the ac field on the two-particle scattering
can be summarized as �a� inducing oscillating dipole-
moments in each molecule, which determine long-range
dipole-dipole interactions whose sign and angular depen-
dence are given by the polarization q and the orientation in
space, er; �b� inducing a coupling of the ground- and excited-
state manifolds of the two-particle spectrum at a resonant
�Condon� point rC= �d2 /3h��1/3, where the dipole-dipole in-
teraction becomes comparable to the detuning �. This cou-
pling is responsible for an avoided crossing, whose proper-
ties depend crucially on the polarization q. We show below
that the character of the �3D� ground-state effective interac-
tion potential is very different at distances larger and smaller
than rC.

The basic features of the scattering in the presence of the
ac field are depicted in Fig. 10. In the figure, the solid
�dashed� lines are the bare �Eac=0� eigenvalues EJ;Y;��r� of
Eq. �20� for �=+ ��=−�, plotted as a function of r. The color
conventions are the same as in Fig. 5. The microwave field,
which is detuned from the single-particle rotational spacing
2B by an amount ���0, is represented by a black arrow.
Analogous to Fig. 5, the excited-state manifold is split by the
dipole-dipole interaction. This splitting has the effect of ren-
dering the detuning position dependent, so that eventually
the combined energy of the bare ground state plus a micro-
wave photon becomes degenerate with the energies of some
bare excited states. The resonant points are denoted as rC and
rC� for the resonance with the two symmetric 
�1;1±;+�r��
��
�1;+1;+�r��± 
�1;−1;+�r��� /�2 and the antisymmetric state

�1;0;−�r�� respectively. The symmetric bare ground state is
coupled by the ac field to the symmetric bare excited state

�1;1−;+�r�� only, while the state 
�1;1+;+�r�� is dark. As ex-
plained below, this coupling induces a splitting of the field-
dressed energy levels at rC. Due to this coupling, the 3D
effective dressed adiabatic ground-state interaction potential
inherits the character of the bare ground and excited poten-
tials for r�rC and r�rC, respectively �thick solid line in
the figure�. Since the symmetric excited-state potential is re-
pulsive, during the collision the dynamics of the particle is
confined to the region r"rC, that is, the ac coupling can
determine an effective “shielding” of the inner part of the
molecular interaction potentials �the molecular core of Fig.
5�. This shielding is three dimensional and it is analogous to
the optical shielding of Napolitano et al. developed in the
context of ultracold atomic collisions �40,41�. In particular,
we show below that the shielding efficiency depends
strongly on the chosen polarization q of the ac field �see Fig.
11 and text�, a characteristic which was found both in theory
and in experiments with cold atoms �40,42�.

Analogous to the optical shielding case, one expects that
diabatic couplings among symmetric states provide for a loss

FIG. 9. �Color online� The ground-state effective 2D BO poten-
tials Veff

2D��� of Eq. �29� as a function of the molecular separation �
in the z=0 plane for various strengths of the dc electric field �
=0,0.1,0.15,0.2,0.3,0.4. The quantity a� is the harmonic oscilla-
tor length in the z direction. The molecular parameters are chosen as
�d4m3B /�6�1/2=1.26�106 and the frequency of the harmonic po-
tential in the z direction is ��=15B /106�. This corresponds to the
case of SrO with a mass m=104 amu, a rotational constant B�h
�10 GHz, and a permanent dipole moment d�8.9 D in a tight
confining potential with ��=2��150 kHz, where a��25 nm.
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mechanism in the 3D ground-state collision, for any finite
collisional energies. In particular diabatic couplings, and
therefore losses, are expected to be particularly relevant in
the region r�rC and r�rC, where the ground-state energy
shows an avoided crossing with another potential, and the
ground-state energy becomes doubly degenerate, respec-
tively �see Figs. 10 and 11�. When a harmonic confinement
in the z direction is considered, other loss channels may arise
due to residual noncompensated tensor-shifts Eq. �12�, cou-
pling the ground state to the antisymmetric state 
�1;0;−�r��,
whose energy E1;0;−�r� crosses the ground-state potential at
rC� = �2d2 /3���1/3 �see Fig. 10�. When more particles are con-
sidered, three-body interactions are expected to generate
similar couplings to the antisymmetric state. Three-body in-
teractions are of concern since, as noted in Sec. I, we are
interested in designing effective two-dimensional interaction
potentials for pairs of molecules, which can lead to the real-
ization of interesting phases for an ensemble of polar mol-
ecules in the strongly interacting regime �see Fig. 1 and Ref.
�31��.

Because of all these loss mechanisms, two-dimensional
shielding is not expected to be very efficient in the case of
interactions in an ac field. However, in Sec. III C we show
that most of these losses can be avoided, and an efficient 2D
shielding recovered, by utilizing a properly chosen combina-
tion of static and microwave fields, and a tight harmonic
confinement in the z-direction.

In the remainder of this section we further detail the in-
teraction processes. This analysis is instrumental to the dis-
cussion of the collisions of two particles in the presence of
both static and microwave fields, which is addressed in Sec.
III C.

In Sec. III B 1 we derive the dressed adiabatic potentials
for the interaction of two particles in an ac field. There, we

~¢

0 907020
rC
0

10 30 40 80 100

0

~!

2 +2 ¢B ~

4B

2 {2 ¢B ~

2 { ¢B ~

2B

E2; ;{Y

EJ Y; ;¾( )r
E ;Y2 ;+

E1;0;{

E1;0;+

E1; 1;+§

E1; 1;{§

E0;0;+

rC r r/ B

~

FIG. 10. �Color online� Schematic representation of the effects
of an ac microwave field on the interaction of two molecules. The
solid and dashed lines are the bare �Eac=0� potentials En�r�
�EJ;Y;��r� of Sec. III A 1 for the symmetric ��= + � and antisym-
metric ��=−� states, respectively. An ac field of frequency �=2B
+� is blue detuned by �=3B /106� from the single-particle rota-
tional spacing 2B, with Rabi frequency �. The dipole-dipole inter-
action splits the excited-state manifold, making the detuning posi-
tion dependent. Eventually, the combined energy of the bare
ground-state potential E0;0;+�r� and of an ac photon �vertical arrow�
becomes degenerate with the energies of the bare symmetric
E1;±1;+�r� and antisymmetric E1;0;−�r� potentials. The corresponding
resonant points are denoted as rC= �d2 /3���1/3 �circles� and rC�
= �2d2 /3���1/3, respectively. The resulting dressed ground-state po-
tential is sketched by a thick solid line. For molecular parameters of
SrO �B�h�10 GHz and d�8.9 D� the detuning corresponds to
� /2�=30 kHz, and the lengths rB and rC are given by rB

�11 nm and rC�0.5 �m, respectively.
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FIG. 11. �Color online� The dressed adiabatic potentials Ẽn�r ,��
of Eq. �37� for two molecules interacting in an ac field. The setup is
the same as in Fig. 10. The field polarization is linear �q=0� in �a1�
and �a2�, while it is circular �q=1� in �b1� and �b2�. The solid �red�
and dashed �blue� lines correspond to the potentials for the symmet-
ric ��= + � and antisymmetric ��=−� states, respectively. The thick
continuous �black� line is the adiabatic dressed ground-state poten-

tial Ẽ1;0;+�r�. �a1� and �b1� show the potentials as a function of the
separation r for interactions in the z=0 plane ��=� /2�. The posi-
tion of the resonant Condon point rC is indicated by a vertical line.
�a2� and �b2� show the angular dependence of the potentials at r

=rC. Note that for q=0 �a2� Ẽ0;0;+�r� becomes degenerate with

Ẽ1;1±;+�rC,�� at �=0,�, while it is nondegenerate at all angles for

q=1 �b2�, suggesting better shielding. The potential Ẽ1;0;−�rC,��
has an energy larger than Ẽ1;0;+�rC,�� for all angles �, indicating a
level crossing ar r�rC �see text�.
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show that the shielding is strongly dependent on the chosen
polarization of the ac field. In fact, for linear polarization
�q=0� the width of the avoided crossing at the Condon point
rC between the ground-state potential E0;0;+�r� and the poten-
tial E1;+1;+�r� is dependent on the value of the polar angle �,
and it vanishes for �=0 and �=�. This vanishing of the
width of the avoided crossing entails the existence of “holes”
in the three-dimensional shielding, which allow for reaching
the molecular-core region �see Figs. 11�a1� and 11�a2��. On
the other hand, for circular polarization �q=1� the potential
is repulsive in three dimensions �see Figs. 11�b1� and
11�b2��. Diabatic losses are most likely to occur at the Con-
don point rC, and for r�rC due to couplings to the dark state

�1;1+;+�r��, which becomes degenerate with the ground
state. In Secs. III B 2 and III B 3, the interaction is further
analyzed by deriving a perturbative expansion for the
ground-state potential valid to second order in � /�, and by
analyzing a reduced model Hamiltonian valid in the vicinity
of rC, respectively. There, it is argued that couplings to the
antisymmetric manifold due to three-body interactions �and
to the possible existence of residual tensor shifts for a har-
monic confinement� reduce the efficiency of the shielding.

1. Adiabatic potentials

The total Hamiltonian for the collision of two particles in
the presence of an ac field is

H�t� = �
j=1

2 � p j
2

2m
+

1

2
m��

2 zj
2� + Hint�r,t� , �31�

with

Hint�r,t� = �
j=1

2

�BJ j
2 − �Eace

−i�tdq,j + H.c.�� + Vdd�r� .

�32�

Analogous to the discussion of Sec. III A, Hint�r , t� entirely
determines the nontrivial dynamics of the system, since the

harmonic motion of the center of mass is decoupled from the
relative motion. The permutation symmetry �=± is con-
served during the collision, since Hint�r , t� is invariant under
the exchange of the positions of the two molecules
�j=1�↔ �j=2�, i.e., r→−r. Thus, Hint�r , t�, can be conve-
niently rewritten as Hint�r , t�=��=±P�Hint

����r , t�P�, where P+

and P− denote the projector onto the symmetric and antisym-
metric manifolds, respectively.

We obtain the solution of the time-dependent problem is
obtained analogously to Sec. II B 2 by diagonalizing the
Hamiltonian Hint�r , t� in a Floquet picture and proceeds as
follows. First we diagonalize the Hamiltonian in the absence
of the ac field, Eac=0, as Hint�r�=�n 
�n�r��En�r�
�n�r�

with n= �J ;Y ;��, which is the same as Eq. �20�, and in par-
ticular is time independent �see also Table II�. Then, we con-
sider the effect of the ac field, Eac�t� via a transformation to
the Floquet picture, which is obtained by expanding the
time-dependent wave function in a Fourier series in the ac
frequency �. After applying the rotating wave approxima-
tion, i.e., keeping only the energy-conserving terms, we ob-

tain the time-independent Hamiltonian H̃�r�, which describes
the driven system. The Hamiltonian preserves the permuta-

tion symmetry, �=±, i.e., H̃int�r�=��P�H̃int
����r�P�. Analo-

gously to the zero-field case of Sec. III A, we restrict the
basis set to the 16 states belonging to the three lowest-energy
manifolds. This is obtained by choosing a detuning much
smaller than the rotational spacing ��B, and working in the
regime of weak saturation ���. In fact, in this limit the
anharmonicity of the single-particle rotational spectrum en-
sures that the population of high-energy rotational states is

negligible. Finally, we solve for H̃int�r� by diagonalizing the
Hamiltonian in the symmetric and antisymmetric subspaces

separately, e.g., H̃int
����r�.

The Hamiltonian H̃int
�+��r� for the symmetric subspace

expressed in the basis 
�J;Y;+�r�� with �J ;Y�
= ��0;0� , �1;Y�
Y=−1,0,1 , �2;Y�
Y=−2,−1,0+,0−,1,2� reads

H̃int
�+��r� = − ��

�0;0
�+� �2�−

* �2�0
* �2�+

* 0 0 0 0 0 0

�2�− �1;−1
�+� 0 0 �2�−

* �0
* c+�+

* − c−�+
* 0 0

�2�0 0 �1;0
�+� 0 0 �−

* c−
�2�0

* c+
�2�0

* �+
* 0

�2�+ 0 0 �1;+1
�+� 0 0 c+�−

* − c−�−
* �0

* �2�+
*

0 �2�− 0 0 �2;−2
�+� 0 0 0 0 0

0 �0 �− 0 0 �2;−1
�+� 0 0 0 0

0 c+�+ �2c−�0 c+�− 0 0 �2;0+

�+� 0 0 0

0 − c−�+ �2c+�0 − c−�− 0 0 0 �2;0−

�+� 0 0

0 0 �+ �0 0 0 0 0 �2;+1
�+� 0

0 0 0 �2�+ 0 0 0 0 0 �2;+2
�+�

� . �33�
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The Hamiltonian H̃int
�−��r� for the antisymmetric subspace

on the basis 
�J;Y;−�r�� with �J ;Y�= ��1;Y�
Y=−1,0,1 ,
�2;Y�
Y=−1,0,1�� reads

H̃int
�−��r� = − ��

�1;−1
�−� 0 0 − �0

* − �+
* 0

0 �1;0
�−� 0 �−

* 0 − �+
*

0 0 �1;+1
�−� 0 �−

* �0
*

− �0 �− 0 �2,−1
�−� 0 0

− �+ 0 �− 0 �2,0
�−� 0

0 − �+ �0 0 0 �2,+1
�−�

� .

�34�

In Eqs. �33� and �34� off-resonant couplings of order
O��d2 /r3B� between the various J manifolds have been ne-
glected. The detunings �J;Y

��� and couplings �Y in Eqs. �33�
and �34� depend on the separation r of the two molecules as

�J;Y
��� � �J;Y

����r� = J� − EJ;Y;��r�/� , �35�

�Y � �Y��,�� = �Dq,Y
1 ��,�,0�*. �36�

Here Dq,Y
1 �� ,� ,0��
1,q 
exp�−i�Jz�exp�−i�Jy� 
1,Y� are

matrix elements of the rotation operator, which rotates the
laboratory frame onto the frame where the collision axis is
fixed along e0. The coefficients c± are c±= ��1±1/�3� /2�1/2.

As said above, a set of dressed BO potentials Ẽn�r� and of

adiabatic eigenstates 
�̃n�r�� is obtained by diagonalizing the

Hamiltonian H̃int as

H̃int�r� = �
n


�̃n�r��Ẽn�r�
�̃n�r�
 , �37�

with n= �J ;Y ;��. The tilde refers to the implicit dependence
of the dressed potentials and eigenstates on the Rabi fre-
quency �, the polarization q, and the detuning � of the
external ac field. As mentioned above, we focus on blue
detunings �=�−2B /��0, since we are interested in repul-
sive potentials which can “shield” the short-range molecular-
core interaction.

2. Asymptotic expansion: r�rC

An insight into the nature of the dressed ground state
potential can be obtained by deriving an expression for

Ẽ0�r�� Ẽ0;0;+�r� perturbatively in the small parameter � /�.
The perturbative expansion is valid at separations r�rC
��d2 /���1/3, where the dipole-dipole interaction in the first
excited manifold n= �1;Y ;�� is smaller than the detuning of
the ac field. Then, to second order in � /�, the dressed
ground-state potential reads

Ẽ0�r� � − ��0;0
�+��r� + � �

Y=−1

+1
2
�Y��,��
2

�1;Y
�+� �r� − �0;0

�+��r�

� +
2�
�
2

�
−


�
2

�2

d2�2 − 3q2�
3r3 �1 − 3 cos2�� ,

�38�

where terms of order O�1/r6� have been neglected. The first
term in Eq. �38� describes a quadratic single-molecule ac
Stark shift, which is positive for blue detunings. The second
term is understood as follows. The ac field induces in each
molecule an oscillating dipole moment of magnitude 
d j�
	d� eq /�, and on average the oscillating dipoles give rise
to an effective dipole-dipole interaction in the ground state,
which is proportional to 
d j�2 /r3. Equation �38� shows that
the overall sign of the induced interaction can be changed by
varying the polarization q.

The perturbative expression for the ground-state potential
breaks down at r	rC= �d2 /3���1/3, where two of the bare
J=1 excited potentials �E1;±1;+�r�� become degenerate with
the energy of the ground state plus a photon of frequency �.

While the validity of perturbation theory ceases at r	rC,
further insight into the solution of the adiabatic scattering
problem can be obtained by direct inspection of a specific

example. Figure 11 shows the dressed BO potentials Ẽn�r� of
Eq. �37� for �=3B /106� and �=� /4. The polarization is
linear, q=0, in Figs. 11�a1� and 11�a2�, while it is circular in
Figs. 11�b1� and 11�b2�, with q= +1. Figures 11�b2� and

11�b2� show Ẽn�r� as a function of the separation r for col-
lisions in the plane �=arccos�z /r�=� /2. Figures 11�a2� and

11�b2� depict the angular dependence of Ẽn�r� at the Condon
point r=rC for the two polarizations q=0 and 1, respectively.
In all the panels, the solid and dashed lines denote symmetric
and antisymmetric potentials, respectively, while the dressed

ground-state potential Ẽ0�r�= Ẽ0;0;+�r� is represented by a
thick solid line. Since we are interested in ground-state col-
lisions, the figure suggests the two following observations.

First, while the potential Ẽ0�r� is strongly repulsive for r
�rC and �=� /2, for both q=0 and 1 �Figs. 11�a1� and
11�b1��, the angular dependence at r=rC is very different
�Figs. 11�a2� and 11�b2��. In particular, Fig. 11�a2� shows
that for q=0 the repulsive potential is a maximum at �
=� /2, while it vanishes at �=0 and �. This vanishing of the
repulsion allows for the molecules to approach the
molecular-core region, and thus the polarization q=0 does
not provide for an efficient three-dimensional shielding of
the molecular-core region. On the other hand, Fig. 11�b2�
shows that the shielding may in principle work for q=1,
since the ground-state potential is repulsive for any angle.
The second observation is that a level crossing of the
ground-state potential with the antisymmetric potential

Ẽ1,0,−�r� appears at rC� =21/3rC for all polarizations �Figs.
11�a1� and 11�b1��. Couplings to this state can arise due to
noncompensated residual tensor shifts, when a harmonic
confinement in the z direction is considered, or due to three-
body interactions, when an ensemble of polar molecules is
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considered. These couplings will induce losses in the
ground-state interaction. In Sec. III C we show that the po-
sition of this level crossing can be shifted to distances r�rC,
and the associated losses can be avoided, by superimposing a
weak static electric field onto the ac field. In this way, an
efficient �2D� shielding of the molecular-core region can be
recovered.

3. Resonant Condon point: rÈrC

In the remainder of this section we analyze further
the scattering process at the resonance point rC. We
restrict the discussion to the three relevant states
�
�0;0;+�r�� , 
�1;−1;+�r�� , 
�1;+1;+�r���, since all other sym-
metric states of the J=1 manifold are detuned by �J;Y

����r�
"���. In this subspace the Hamiltonian Eq. �33� reads

H̃int�r�

= − �� �0;0
�+��r� �2�−��,��* �2�+��,��*

�2�−��,�� �1;−1
�+� �r� 0

�2�+��,�� 0 �1;+1
�+� �r�

� .

�39�

For q=0 we have �±�� ,��= ±� sin � /�2 and the ground
state couples only to the bright superposition state
�
�1;−1;+�r��− 
�1;+1;+�r��� /�2 with coupling �2�� sin �.
The orthogonal state �
�1;−1;+�r��+ 
�1;+1;+�r��� /�2 is dark
with respect to the ac coupling. The dressed ground state is
then a �position-dependent� superposition of bare ground and
excited states and the corresponding dressed potential is

Ẽ0;0;+�r�/� = − �+�r� + ��−�r�2 + 2
�
2sin2� , �40�

with �±�r����1;1
�+��r�±�0;0

�+��r�� /2��−d2 /3�r3. We notice
that for q=0 and �=� /2 the potential is repulsive with a
	1/r3 radial dependence, due to the avoided crossing at r
=rC �see Fig. 11�a1��. For ��� /2 the splitting of the
avoided crossing decreases as sin � and vanishes at r=rC for
�=0 and �=� �see Fig. 11�a2��. Thus, close to the point r
=rCe0, the molecules can penetrate the 3D shield provided
by the ac field and approach the short-range molecular-core
region, r�rC. This behavior resembles that encountered in
Sec. III A for the collision of two dipoles polarized by a dc
field, when the intermolecular axis is parallel to the direction
of the dc field �see Fig. 6�c��. However, this unstable region
now appears at distances r	rC��d2 /3���1/3, which are
larger than the short-distance length rB= �d2 /B�1/3 by a factor
	�B /���1/3. For a detuning on the order of tens of kilohertz
and a rotational spacing of tens of gigahertz, rC is two orders
of magnitude larger than rB.

For a circularly polarized field 
q 
 =1, we have �±�� ,��
=�eiq��1±q cos �� /2 and hence the ground-state couples
to the bright superposition state �cos2�� /2� 
�1;q;+�r��
+sin2�� /2�
�1;−q;+�r��� /��1+cos2 �� /2 with an amplitude
� 
� 
�1+cos2 �, which is now nonvanishing for all angle
�. The orthogonal superposition �cos2�� /2� 
�1;−q;+�r��
−sin2�� /2� 
�1;q;+�r�����1+cos2 �� /2 is dark with respect to
the ac coupling. The dressed ground-state potential is

Ẽ0;0;+�r�/� = − �+�r� + ��−�r�2 + 
�
2�1 + cos2 �� ,

�41�

with �±�r� defined as in Eq. �40�. The behavior of the
ground-state potential in the �=0 plane is analogous to the
linearly polarized case �see Figs. 11�a1� and 11�b1��. How-
ever, in contrast to the q=0 case, now the width of the
avoided crossing remains finite at all angles �see Fig 11�b2��,
and the ac shielding of the molecular core is effective.

However, as noted above, the pure ac shielding mecha-
nism has an intrinsic flaw that limits its utility, once an en-
semble of polar molecules is considered. The antisymmetric
state 
�1;0;−�r�� is strongly repulsive with energy −��1;0

�−��r�
�2d2 /3r3−�� and thus gives rise to a real crossing at rC�
= �2d2 /3���1/3=21/3rC �see the dotted lines in Fig. 11�. This
crossing at distances larger than rC is expected to give rise to
�strong� collisional losses when an ensemble of polar mol-
ecules is considered. In fact, three-body interactions can
couple the ground state to the antisymmetric 
�1;0;−�r�� state.
In addition, analogous couplings can be provided by residual
noncompensated tensor shifts, when a harmonic confinement
in the z direction is considered. In the next section we ex-
plain how some of these problems can be circumvented by
introducing an additional static electric field. In that case, an
efficient and collisionally stable 2D shielding of the inner
part of the potential can be recovered.

C. Effective interactions in the presence of both a dc
and an ac field

In this section we consider the interactions of two polar
molecules in the presence of both a weak dc field Edc
=Edce0 with ��dEdc/B�1 and an ac microwave field
Eac�t�=Eace

−i�teq+c.c., where the polarization q is defined
with respect to the z-direction, � is the frequency, � is the
detuning from the single-particle resonance, and � is the
Rabi frequency.

As explained in Sec. II B 1, the dc field partially splits the
threefold degeneracy of the Jj =1 manifold of each molecule
by an amount 	��=3d2Edc

2 /20B �the modulus of the projec-
tion 
M
 is conserved�. When the ac field is superimposed on
the weak dc field, this splitting can yield significative advan-
tages regarding the stability of the ground-state collision. �a�
The ground state can couple to a single nondegenerate ex-
cited state of the two-particle spectrum, thus avoiding diaba-
tic losses due to the presence of symmetric �dark� states close
to the ground state for r�rC	�d2 /3���1/3 �see the discus-
sion in Sec. III B�. In fact, because of the splitting ��, the
energies of other symmetric states become comparable to the
dressed ground-state energy only at distances r	r�

��d2 /���1/3�rC, where the dipole-dipole interaction be-
comes of the order of the splitting ��. �b� The location rC� of
the real crossing of Sec. III B is also shifted to small dis-
tances r�r��rC, thus suppressing losses due to three-body-
induced �or residual-tensor-shift-induced due to transverse
confinement� couplings to the ground state.

Both of the outlined processes are shown in Figs. 12�a�
and 12�b�, which depict the bare �Eac=0� energy levels of the
two-particle eigenstates with J�2 as a function of the dis-
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tance r, for �=1/10. The polarization of the ac field is q
=0 and its frequency � is blue detuned from the 
�0,0�
→ 
�1,0� transition of the single-particle spectrum by an
amount �=�− ��̄+2� /3��0. In the figure, the continuous
�red� and dashed �blue� curves are the bare BO potentials for
the symmetric and antisymmetric states, respectively. The
presence of the ac field is signaled by a black arrow at the
resonant �Condon� point rC	�d2 /3���1/3. Analogous to the
case of Fig. 6�d�, Fig. 12�a� shows that the J=1 manifold is
asymptotically split by the dc Stark shift ��. As said above,
for r�r� this splitting suppresses the coupling among states
of the J=1 manifold due to dipole-dipole interactions. More-
over, we note that, since the characteristic length r� is such
that r��rC and rC� �r� �not shown in the figure�, the pres-
ence of the splitting ensures that rC�rC� , as opposed to the
Edc=0 case of Sec. III B. As a consequence, for r�r��rC�
we expect diabatic and three-body-induced losses to be
largely suppressed. Then, we show below that a strong opti-
cal confinement in the z direction allows for the realization
of stable 2D collision setups, as in Sec. III A. However, at
variance with the dc case of Sec. III A, utilizing a combina-
tion of dc and ac fields allows for much greater flexibility in
designing interparticle interactions. In particular, we here fo-
cus on the realization of a 2D potential achievable with a
single ac field, whose character is very different at distances
larger and smaller than rC.

In the remainder of this section, we discuss further the
above-mentioned processes. In Sec. III C 1 we derive the 3D
dressed adiabatic potentials for interactions in the presence
of combined dc and ac fields. In Secs. III C 2 and III C 3 we
illustrate the main features of the two-particle interaction, by
specializing to the case where the ac field polarization is
linear �q=0�, and by solving a model Hamiltonian compris-
ing only a limited number of states, whose energies are close
to that of the ground state. An expression for the ground-state
interaction potential is obtained which shows that at large
distances r�rC the potential has a behavior 	1/r3 similar to
that obtained for two molecules in a dc field. However, now
the effective dipolar strength is given by the combination of
both the dc and the ac fields, and it can be much weaker than
for r�rC. Thus, 3D interaction potentials can be engineered
that have a marked steplike character, being strongly and
weakly repulsive at distances smaller and larger than rC, re-
spectively. Analogously to the dc case of Sec. III A, an ef-
fective 2D interaction potential shielding of the short-range
region r�r��rC is obtained by adding a harmonic confine-
ment in the z direction and tracing over the fast particle
motion along z �see Secs. III C 4 and III C 5�.

1. Adiabatic potentials

The total Hamiltonian including the couplings to dc and
ac fields reads

r± r r/ B
rC

0

00

±

20 30 40 50

¢

(a) (b)[EJ;M ¾; ( , /2){2 ]/r ¼ E0,0 ~ [EJ;M ¾; ( , /2){2 ]/r ¼ E0,0 ~
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FIG. 12. �Color online� �a� Schematic representation of the effects of a dc and an ac microwave field on the interaction of two molecules.
The solid and dashed lines are the bare potentials En�r��EJ;M;��r ,�� of Sec. III A 2 with �=� /2 for interactions in the presence of the dc
field only, for the symmetric ��= + � and antisymmetric ��=−� states, respectively. The dc field induces a splitting �� of the first excited
manifold of the two-particle spectrum. A microwave field of frequency �= �̄+2� /3+� is blue detuned by ��0 from the single-particle
rotational resonance. The dipole-dipole interaction further splits the excited-state manifold, making the detuning space dependent. Eventu-
ally, the combined energy of the bare ground-state potential E0;0;+�r� and an ac photon �black arrow� becomes degenerate with the energy of
the bare symmetric E1;0;+�r ,� /2�. The resonant point rC= �d2 /3���1/3 occurs at r�46rB. A second resonant Condon point occurs at �much�
shorter distances rC��r�= �d2 /���1/3 with an antisymmetric potential �not shown�. �b� Blowup of the potentials of �a� with M =0 �see text
in Sec. III C 2�. The dressed ground-state potential is sketched by a thick solid line.
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H�t� = �
j
� p j

2

2m
+

1

2
m��

2 zj
2� + Hint�r,t� , �42�

with

Hint�r,t� = �
j

�BJ j
2 − Edcd0;j − �Eace

−i�tdq;j + H.c.�� + Vdd�r� .

�43�

Similarly to the discussion following Eq. �18�, the non-
trivial system dynamics is determined by the dynamics of the
relative degrees of freedom, which decouple from the har-
monic motion of the center of mass. In this section we set
��=0 in Eq. �42�, and thus diagonalizing the Hamiltonian
for the relative coordinates in the adiabatic limit corresponds
to diagonalizing Hint�r , t�. The case ���0 is treated in sub-
sequent sections.

The Hamiltonian Hint�r , t� is invariant under the permuta-
tion of the two molecules, �j=1�↔ �j=2�, and thus it can be
conveniently rewritten as Hint�r , t�=��=±P�Hint

����r , t�P�.
Here P+ and P− are the projectors onto the manifold of sym-
metric and antisymmetric states, respectively. Since �several�
external fields are present, parity is not conserved.

In Sec. III A 2 we have already diagonalized Hint�r , t� in
the absence of the ac field, that is Hint�r�=�n 
�n�r��En�r�
�
�n�r�
. The corresponding adiabatic potentials En�r� are
shown in Fig. 6, together with the corresponding quantum
numbers n= �J ;M ;��. We remark that J is not a good quan-
tum number since the electric field breaks the parity for each
molecule; thus J=J1+J2 merely indicates the asymptotic
manifold. The corresponding adiabatic potentials and eigen-
states for the ground state n= �0;0 ; + � �valid for r�rB

= �d2 /B�1/3� and the lowest excited states �valid for r�r�

= �d2 /���1/3� are given in Table III. Our goal in this section is
to extend that treatment to account for the driving by the ac
microwave field, which we assume to be near resonant with
the transition from the ground to the first excited manifold,
i.e., �	 �̄+ �2/3−q2�� for polarizations q=0, ±1 �see Fig.
4�. The average energy separation ��̄ is defined in Eq. �6�.

Since for ��1 the single-particle rotor spectrum is
strongly anharmonic and the ac field is near resonant with
the Jj =0↔1 transition, we restrict our discussion to the ro-
tor states with Jj =0,1 for each molecule, that is, we consider
16 two-particle states. Moreover, we focus on the region
r�r�, where the dipole-dipole interaction is �much� weaker
than the dc-field-induced splitting �� in the excited states.
Therefore �up to corrections of order 	d2 /��r3 and
	d2 /Br3� the states 
�J;M;��r�� are given by the states

�J;M;�

�0� �� ,����
�J;M�;��r→ � ,� ,���, which are reported
in Table III. These states are independent of r, that is, they
depend only on the orientation of the two molecules. In anal-
ogy to the treatment of Sec. III B, we utilize the approximate
states 
�J;M;��r��to diagonalize the time-dependent Hamil-
tonian Hint�r , t� in a Floquet picture. We expand the time-
dependent wave function in a Fourier series in the ac fre-
quency �. After applying the rotating wave approximation,
i.e., keeping only the energy-conserving terms, we obtain the

time-independent Hamiltonian H̃�r�, which again preserves

the permutation symmetry, �=±. The Hamiltonian H̃int
�+��r�

for the symmetric manifold ��= + � is expressed in the basis
�
�J;M�;�=+�r��� with

�J;M�� = ��0;0�,�1;1
�
;�1;0�;�2;2��
�=−,0,+;�2;1
�;�2;0��

as

H̃int
�+��r� = − ��

�0;0
�+� �2�−

* �2�+
* �2�0

* 0 0 0 0 0 0

�2�− �1;1−

�+� 0 0 �+
* − c+�−

* c−�−
* �0

* 0 0

�2�+ 0 �1;1+

�+� 0 �−
* c−�+

* c+�+
* 0 �0

* 0

�2�0 0 0 �1;0
�+� 0 0 0 �−

* �+
* �2�0

*

0 �+ �− 0 �2;2−

�+� 0 0 0 0 0

0 − c+�− c−�+ 0 0 �2;20

�+� 0 0 0 0

0 c−�− c+�+ 0 0 0 �2;2+

�+� 0 0 0

0 �0 0 �− 0 0 0 �2;1−

�+� 0 0

0 0 �0 �+ 0 0 0 0 �2;1+

�+� 0

0 0 0 �2�0 0 0 0 0 0 �2;0
�+�

� , �44�

�J;M�

��� ��J;M�

��� �r ,��=J�−EJ;M�;��r ,�� /� denote position-dependent detunings �for each rotational excitation�, �±��±��� are
orientation-dependent couplings, which are detailed below, and c±�c±���=cos� /2�±sin� /2� depends on the polar angle �.
The parameter  is defined in the caption of Table III.

The Hamiltonian H̃int
�−��r� for the antisymmetric manifold ��=−� expressed in the basis �
�J;M�;�=−�r��� with �J ;M��

= ��1;1
� ; �1;0� ; �2;2� ; �2;1
�� reads
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H̃int
�−��r� = − ��

�1;1−

�−� 0 0 �+
* �0

* 0

0 �1;1+

�−� 0 − �−
* 0 �0

*

0 0 �1;0
�−� 0 − �−

* − �+
*

�+ − �− 0 �2;2
�−� 0 0

�0 0 − �− 0 �2;1−

�−� 0

0 �0 − �+ 0 0 �2;1+

�−�

� .

�45�

In Eqs. �44� and �45� we neglected off-resonant �second-
order� corrections 	�M���d2 /��r3 to the Rabi frequency.
The couplings �−��� ,�0 ,�+��� are given by �−���
=qf1Eace

iq� /�2, �0= �1−q2�f0Eac, �+���=qf1Eace
iq� /�2, re-

spectively. Thus for linear polarization �q=0� one has �0

�� and �±=0, while for circular polarization �
q 
 =1� �0

=0 and �+���= ±�−���=�e±i� /�2 for q= ±1, respectively.

2. Model Hamiltonian for ���

In the following we illustrate the main features of the
scattering in the combined dc and ac fields, using the ex-
ample of Fig. 12. The Rabi frequency � is chosen real and
positive and in particular smaller than the detuning, ���.
Moreover, we choose ��� since we want to address the
potentials in regions where the two molecules in the first
excited two-particle manifold are aligned by the dc field and
not by the dipole-dipole interaction �see Fig. 12�. The figure
shows that for r�r� the bare �Eac=0� states 
�J;M;��r�� with
M �0 are largely detuned from resonance by an amount of
order ���. Thus, the discussion of Eqs. �44� and �45� can
be simplified by restricting the Hilbert space to the four
states with M =0 only. For our basis set, these are the three
symmetric states 
�J;0;+�r�� with J=0,1 ,2 and the antisym-
metric state 
�1;0;−�r��. Then, Eqs. �44� and �45� reduce to

H̃int
�+��r� = − ���0;0

�+� �2� 0

�2� �1;0
�+� �2�

0 �2� �2;0
�+� � , �46a�

H̃int
�−��r� = − ���1,0

�−�� . �46b�

The position dependence of the detunings �J;0
�����J;0

����r ,��
has the usual dipolar form �J;0

����r ,��	� /r3, with ��1
−3 cos2�. Explicitly, we have �J;0

����r ,��=J�
− �C3;�J;0;��� /r3−C6;�J;0;����� /r6� /�. The coefficients C3;n

and C6;n��� are given in Table III for n=0,5 ,15 �symmetric
states� and n=6 �antisymmetric state�, respectively. For the
following discussion, it is important to notice that for a weak
dc electric field ��1, the C3;n coefficients C3;�0;0;+��g0

2

��d� /3�2 and C3;�2;0;+��g2
2��d� /5�2are quite small, since

they are suppressed by a factor 	�2. On the other hand, the
coefficients C3;�1;0;±��g0g2± f1

2� ±d2 /3 for states belonging
to the first excited manifold are as large as the bare dipolar
coefficients �see Tables I and III�.

By diagonalizing Eq. �46a� we obtain the three dressed

symmetric potentials ẼJ;0;+�r� �with J=0,1 ,2� in terms of
complex cubic roots by

ẼJ;0;+�r� = ��
±

e±2�iJ/3�−
Q

2
± i�P3

27
−

Q2

4
�1/3

− ��̄�r,�� ,

�47�

where P�4�2+�J��J;0
�+��r ,��− �̄�r ,���2 /2, Q=2�2

���1;0
�+��r ,��− �̄�r ,���−�J��J;0

�+��r ,��− �̄�r ,���, and �̄�r ,��
=�J�J;0

�+��r ,�� /3. The dressed potential for the antisymmetric

state, Ẽ1;0;−�r�=−��1;0
�−��r ,��, is the same as the bare one.

The dressed potentials ẼJ;0;��r ,�� are plotted in Fig. 13,
for �=4�=3B /106�, B=h�10 GHz, linear polarization
�q=0�, and �=1/10. These parameters are the same as in

Fig. 12. In particular, Fig. 13�a� shows ẼJ;0;��r ,�=� /2� as a
function of the distance r, for molecules on the plane z
=r cos �=0 ��=� /2�. Figure 13�b� is a three-dimensional

representation of the potential-energy surfaces ẼJ;0;+�r ,��
� ẼJ;0;+�� ,z� for the three symmetric states J=0,1 ,2, for fi-
nite transverse displacements z=r cos � ���� /2�, while
Fig. 13�c� is the same as Fig. 13�b�, with the addition of the

potential Ẽ1;0;−�� ,z� for the antisymmetric state.
In Fig. 13�a� the dressed ground-state potential

Ẽ0;0;+�r ,� /2� is the thick solid curve with largest energy,
which undergoes an avoided crossing with the potential

Ẽ1;0;+�r ,� /2� at a distance rC	�d2 /3���1/3. The precise
value of rC is derived below. The figure shows that the Con-
don point rC separates an inner region r�rC where the
ground-state potential is strongly repulsive,

Ẽ0;0;+�r�rC,� /2�	 C̃3�r�rC� /r3, from an outer region r
�rC where the potential is only weakly repulsive,

Ẽ0;0;+�r�rC,� /2�	 C̃3�r�rC� /r3 with C̃3�r�rC�� C̃3�r
�rC�.This marked dependence of the potential strength on r
is the realization of the steplike potential of Fig. 2, and it is
due to the fact that the dressed ground state inherits the char-
acter of the bare ground state and of the bare state 
�1;0;+�r��
for r�rC and r�rC, respectively. Thus, we have

C̃3�r�rC�	C3;�0;0;+���d� /3�2 and C̃3�r�rC�	C3;�1;0;+�
�d2 /3. A harmonic confinement in the z direction will be
added in Sec. III C 4 to ensure the stability of the 2D inter-
action.

Figure 13�b� is a three-dimensional representation of the

dressed adiabatic potentials ẼJ;M;+�r� for the symmetric
states, plotted as a function of �=r sin � and z=r cos �.
Darker regions �in the online version: darker red/darker blue�
correspond to stronger repulsive/attractive. The thin gray
lines are equipotential energy contours. For z=0 �� axis� we
recognize the case of Fig. 13�a�, where the symmetric
ground-state potential has the largest energy. The position of
the Condon point rC is indicated by an arrow. The avoided

crossing between the ground-state potential Ẽ0;0;+�r� and the

potential Ẽ1;0;+�r� observed at r=rC for �=� /2 in Fig. 13�a�
is now clearly visible in transparency, below the upper layer.
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The figure shows that for 
z 
 �0 the potential Ẽ1;0;+�� ,z�
becomes less and less repulsive, and thus the Condon point
rC=rC���er occurs at shorter distances �see below, Eq. �50��.
For 
z 
 �� /�2, we have 1−3 cos2��0 and therefore

Ẽ1;0;+�r� becomes attractive. Thus, the Condon point van-
ishes since the combined energy of the bare ground state plus
a photon and the energy E1;0;+�r� of the bare state 
�1;0;+�r��
are not resonant �for the dependence of the bare potential
E1;0;+�r� on the angle �, see also Figs. 6�b� and 6�d��. This
vanishing of the avoided crossing for 
z 
 �� /�2 corresponds
to the formation of a hole in the 3D potential shielding the
molecular-core region, and it allows for the familiar attrac-
tion of dipole-dipole interactions. The presence of this hole is
reminiscent of the vanishing of the Condon point at �=0 and
�=� for the case of a linearly polarized ac field in the ab-
sence of a dc field �see Fig. 11�a2� in Sec. III B�. However,
here there are no dark states present at rC, due to the dc-field-
induced splitting �� of the J=1 manifold. This fact elimi-
nates a significant nonadiabatic loss channel for ground-state
interactions.

From Fig. 13�b� we see that a real crossing with the anti-
symmetric state 
�1;0;−�r�� takes place for 
z 
 �� /�2 at a
second Condon point, which we denote as rC� . This is at
variance with the case of Sec. III B �see Fig. 11�a1��, where

one had rC��rC for all angles, thus opening loss channels due
to three-body-induced �or tensor-shift-induced, when a har-
monic confinement along z is considered� couplings to the
symmetric ground-state for any �. The exact position of the
point rC� is obtained in the next section.

3. Effective 3D interaction potential

In the following we are interested in the effective 3D
potential Veff

3D�r� for two molecules in their ground state
dressed by the external fields. In the absence of a trap
���=0� Veff

3D�r� reads

Veff
3D�r� � Ẽ0;0;+�r,�� − 2�E0,0 + E0,0� � , �48�

where the terms in brackets are the Stark-shifts
E0,0�−d2�2 /6 and E0,0� ���2 /� induced by the dc and ac
electric fields, respectively.

At separations r�rC the effective potential resembles the
dipolar potential for two dipoles aligned along ez and in sec-
ond order in the saturation amplitude � /� is given by

FIG. 13. �Color online� Dressed adiabatic potentials ẼJ;M;��r� of Eq. �47� for the interaction of two molecules polarized by a �weak� dc
field Edc=Edcez with ��dEdc/B=1/10 and dressed by an ac field with linear polarization q=0. The ac-field detuning and Rabi frequency
are �=3B /106� and �=� /4, respectively. For a typical rotational spacing of B	h�10 GHz these numbers entail � /2�=30 kHz and

� /2�=7.5 kHz. �a� Dressed adiabatic potentials Ẽn�r� of Eq. �47� plotted as a function of r for z=0 ��=� /2�. The potentials corresponding

to symmetric �antisymmetric� states are given by solid �dashed� lines, and indicated by ẼJ;M;��r� for J=0,1 ,2, M =0, �=+ �J=1, M =0,

�=−�. The dressed ground-state potential Ẽ0;0;+�r� has the highest energy �thick solid line�. The other potentials are asymptotically detuned

by multiples of �. The ground-state potential Ẽ0;0;+�r� shows an avoided crossing with the symmetric potential Ẽ1;0;+�r� at r=rC. �b� Dressed

adiabatic potentials ẼJ;M;��r�� ẼJ;M;��� ,z� for the symmetric states ��= + � of Eq. �47� plotted as a function of �=r sin � and z=r cos �.
Darker regions �in the online version: darker red/darker blue� correspond to stronger repulsive/attraction. For z=0 �� axis� we recognize the
case of �a�, where the symmetric ground-state potential has the largest energy. The position of the Condon point rC is indicated by an arrow.

Accordingly, the avoided crossing with the potential Ẽ1;0;+�r� observed at r=rC in �a� is now clearly visible in transparency, below the upper

layer. For 
z 
 �0 the potential Ẽ1;0;+ becomes less and less repulsive. For 
z 
 �� /�2 we have 1−3 cos2��0, and thus Ẽ1;0;+�r� is attractive
and the Condon point vanishes since the two states are off resonant. �c� Dressed adiabatic potential as in �b�, but also showing the

antisymmetric states ��=−�. We see that the dressed potential Ẽ1;0;−�r� for the antisymmetric state with �1;0 ;−� is strongly attractive in the
plane, i.e., for z=0, which corresponds to the profile shown in �a�. With increasingly separation 
z 
 /r�0 the potential become less and less
attractive. For 
z 
 /��1/�2 we have 3 cos2�−1�0 and the potential becomes repulsive. Thereby a crossing between the asymmetric state
and the ground state appears at a �second� Condon point rC� �dashed line�, as the two states are resonant, but due to the permutation symmetry
do not couple.
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Veff
3D�r� �

C3;�0;0;+��

r3 +
2�2

�2

�C3;�1;0;+� − C3;�0;0;+���

r3 ,

�49�

where ��1−3 cos2�, and terms of order O��4� and
O�1/r6� have been neglected. The first term in Eq. �49� is the
dipole-dipole interaction for the two weakly polarized mol-
ecules induced by the dc field �see Sec. III A 2�, while the
second term is the familiar dipole-dipole interaction induced
by the coupling to the ac field. The proportionality factor
�C3;�1;0;+�−C3;�0;0;+��2�2 /�2 appears due to the competition
of the oscillating dipole moment �	d� /�� induced by the ac
field with the permanent dipole moment already present be-
cause of the dc field.

The perturbative expression Eq. �49� breaks down when
the level spacing becomes comparable to the coupling, that
is, for 
�1;0

�+��r�−�0;0
�+� 
 	�. In particular, for �1;0

�+��rC�
=�0;0

�+��rC� an avoided crossing occurs between the potentials

Ẽ0;0;+�r� and Ẽ1;0;+�r�, which defines the resonant Condon
point, rC�rC���er, where er is the intermolecular axis. The
Condon distance rC��� is parametrized in terms of the polar
angle � as

rC��� = �C3;�1;0;+� − C3;�0;0;+�

���1 − 3 cos2��
�1/3

. �50�

For �=� /2 �z /r=0� the Condon point is attained at rC

=rC�� /2�= ��C3;�1;0;+�−C3;�0;0;+�� /���1/3��d2 /3���1/3 �see
Fig. 12�a��, which depends on the detuning � and the differ-
ence in the C3;n coefficients of the first excited state and the
ground state �C3;�1;0;+�−C3;�0;0;+��d2 /3 for a weak dc field
��1�. For ��� /2 �z /r�0� the avoided crossing occurs at
smaller separations rC����rC until it vanishes for cos2�
= �z /r�2=1/3 �see Fig. 12�b��.

The position of the point rC� �rC� ���er is determined by
the crossing between the dressed ground-state potential

Ẽ0;0;+�r� and the potential for the antisymmetric state,

Ẽ1;0;−�r�. As mentioned above �and shown in Fig. 13�b��, this
crossing occurs in the region 
z 
 �� /2 �cos2��1/3�. The
distance rC� ��� is given by rC� ������C3;�0;0;+�−C3;�1;0;−��
��3 cos2�−1� /���1/3.

The discussion above suggests that an effective 2D inter-
action potential Veff

2D��� with no losses due to couplings of the
ground state to other symmetric or antisymmetric states may
be obtained for distances r�r�, by introducing a parabolic
potential in the z direction confining the particles to the sec-
tor �z /r�2�1/3. This shielding of the loss channels is analo-
gous to the shielding of the attractive part of the potential
and of the molecular-core region of the dc case for r
����r�	�d2 /B�2�1/3 �see Sec. III A�. However, now ��

is effectively replaced by rC!��, and rC allows for much
greater flexibility in tuning by external fields.

In the next section we detail the requirements for obtain-
ing a stable effective interaction in 2D. In this way, it is
possible to realize the 2D potential with steplike character, as
shown in Fig. 2.

4. Parabolic confinement

The presence of a finite trapping potential of frequency
�� in the z direction provides for a position-dependent en-
ergy shift of Eq. �49�. Thus, the new potential reads

V��,z� � Veff
3D�r� +

1

4
m��

2 z2. �51�

Analogously to the discussion of Sec. III A 3, the combina-
tion of the dipole-dipole interaction, which is repulsive for
r�rC, and of the harmonic confinement yields a repulsive
potential which provides for a three-dimensional barrier
separating the long-distance repulsive regime from the short-
distance regime, where collisional losses can occur. If the
collisional energy is much smaller than this barrier, the rela-
tive motion of the particles is confined to the long-distance
region, where the potential is purely repulsive.

Figure 14 is a contour plot of Eq. �51� for the same pa-
rameters as in Fig. 13, i.e., �=4�=3B /106� and �=1/10.
The frequency �� for the harmonic confinement is ��

=� /5. In the figure, darker regions correspond to a stronger
repulsive potential, and the white region for � ,z�rC/2 cor-
responds to V�� ,z��0. The repulsion due to the dipole-
dipole and harmonic potentials is clearly distinguishable at
z=0 and 
z 
 /rC!1, respectively. Two saddle points located
at ��� , ±z�� separate the repulsive long-distance from the
short-distance regions �circles in Fig. 14�. The location of the
saddle points approaches ��� , 
z� 
 �	�rC,rC/2� with increas-

FIG. 14. �Color online� Contour plot of the effective potential
V�� ,z� of Eq. �51� for two polar molecules interacting in the pres-
ence of a weak dc field and an ac field. The field parameters are the
same as in Fig. 13. The frequency of the confining harmonic poten-
tial in the z direction is ��=� /5. Darker regions represent stronger
repulsive interactions. The white region for ��1/2 indicates a po-
tential V�� ,z��0. The combination of the dipole-dipole interac-
tions induced by the dc electric and ac �microwave� fields and of the
quadratic confinement leads to realization of a 3D repulsive poten-
tial for r�rC. In particular, two saddle points located at ��� , ±z��
�circles� separate the repulsive long-distance regime r�rC from the
short-distance regime r�rC where diabatic losses occur. The dotted
line signaled by rC� indicates the location of the crossing between

the ground-state potential and the energy Ẽ1;0;−1�r� of the antisym-
metric state �see text and Fig. 13�.
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ing confining potential ��in the z direction. In the figure, the
dotted line signaled by rC� marks the location of the crossing

between the dressed ground-state potential Ẽ0;0;+�r� and the

potential Ẽ1;0;−�r� for the antisymmetric state. The figure
shows that this crossing occurs in the short-distance region
r�rC for all z, in agreement with previous discussions.
Thus, for r�rC and collisional kinetic energies smaller than
the potential barrier at the saddle point the ground-state in-
teractions are stable and purely repulsive, consistent with the
discussion above.

5. Effective 2D interaction

Analogously to the discussion for the dc-field case in Sec.
III A 5, in the limit of tight optical confinement it is possible
to derive effective two-dimensional ground interaction po-
tentials Veff

2D��� by integrating over the fast transverse degrees
of freedom, z1 and z2. For r�rC�a�, the two-particle
eigenfunctions in the z direction approximately factorize into
products of single-particle harmonic oscillator wave func-
tions, and thus the integration is conveniently carried out in
the harmonic oscillator basis. In the adiabatic approximation
we find to first order in Veff

3D�r� /��� the 2D effective ground-
state potential as

Veff
2D��� � � dz1dz2
%0�z1�
2
%0�z2�
2Veff

3D��,z2 − z1�

=
1

�2�a�

� dz e−z2/2a�
2

Veff
3D��,z� , �52�

where %k�zj� is the kth harmonic oscillator wave function for
the transverse confinement. In an analogous way, effective
2D potentials can be derived for all the dressed potentials

ẼJ;M;��r�, as �up to a constant shift�

ẼJ;M;�
2D ��� �

1
�2�a�

� dz e−z2/2a�
2

ẼJ;M;���,z� , �53�

with Ẽ0;0;+
2D ���=Veff

2D���. In the following we discuss the va-
lidity of the adiabatic approximation in the case when both
dc and the ac fields are present. We focus only on the four
above-mentioned potentials, since the remaining states of the
J=1 manifold are detuned by a large amount 	� /��	103.
Thus, we neglect nonadiabatic couplings from the ground
state to the continuum corresponding to high-energy trans-
verse excitations of the far-detuned states, since these cou-
plings are expected to vanish at large interparticle separa-
tions.

At variance with the dc-field case of Sec. III A 5, satisfy-
ing the adiabatic approximation in the presence of both dc
and ac fields is nontrivial. In fact, for a blue-detuned

���0� ac field the dressed ground-state potential Ẽ0;0;+�r�
has the largest energy �see Fig. 13�a��. Thus, it can happen

that Ẽ0;0;+�r� becomes degenerate with the energy of one of
the other states plus some multiple k of the harmonic oscil-
lator energy in the transverse direction ���. When these
degeneracies happen, avoided and real crossings occur with
the energies of the symmetric and the antisymmetric states,

so that satisfying the adiabatic requirement becomes in gen-
eral much harder than in the dc-field case of Sec. III A 5. In
fact, there the ground state is the lowest-energy state and the
lowest-energy excitations are those of the harmonic oscilla-
tor along z. In that case the adiabaticity condition is satisfied
for Veff

2D�������. On the other hand, it is still possible to
derive an expression analogous to the latter even for the case
when the ac field is present, if the trapping potential is large
enough so that ��!2�. In fact, then for large distances

��rC the energy difference between Ẽ0;0;+�r� and that of the
first excited state is approximately ���−2��, where −2��

is the energy Ẽ2;0;+�r�=−2�� �see Fig. 13�. In this case, the
adiabatic approximation is still valid provided

Veff
2D��� � ��� − 2�� . �54�

The perturbative expressions Eq. �53� for the dressed ef-

fective 2D potentials ẼJ;0;�
2D ��� are shown as thick dashed

lines in Fig. 15 for the combination of a weak dc field with
�=1/10 and an ac field with linear polarization q=0 and
detuning �=4�=3B /106�. Figures 15�a�–15�c� represent
different transverse trapping frequencies given by �� /�
=1/2 ,2 ,5, respectively. The effective potential for the

ground state, Ẽ0;0;+
2D , is indicated at large separation ��rC,

where it approaches the value Ẽ0;0;+
2D ��→ � �=2E0,0+2E0,0� ,

corresponding to the dc and ac Stark shift of the separated
molecules, with 2E0,0� /��� +2�� /��2=1/8. The thin solid

and dotted lines in Fig. 15 show the potentials ẼJ;M;�;k
2D ��� for

�=+ and �=−, respectively. The potentials ẼJ;M;�;k
2D ��� have

been obtained by diagonalizing numerically

H̃rel =
pz

2

m
+

1

4
m��

2 z2 −
���

2
+ H̃int�r� , �55�

with H̃int�r� given in Eq. �46�. Here, the index k=0,1 ,2 , . . .
labels the transverse excitations and at large separations
��rC the corresponding potentials approach

ẼJ;M;�;k
2D �� → � � � ẼJ;M;��r → � � + k���.

In Fig. 15�a� we observe a series of avoided crossings
involving the ground-state potential in the region ��rC. For
��rC the ground-state potential has the characteristic 1 /�3

dependence. Figure 15�b� shows that for ��=2� the ground-
state potential Veff

2D��� is already well separated from the en-
ergy of the first excited state with k�0 in a region ��rC.
Finally, Fig. 15�c� shows that for a tight trapping, ��=5�,
the ground-state potential Veff

2D��� for ��rC/2 is well sepa-
rated by �� from all the excited states with k�0. The adia-
batic approximation is valid for Veff

2D������, consistent
with Eq. �54�.

Remarkably, we find that, since the spontaneous emission
rates in the excited rotational levels of polar molecules, #SE,
are negligible compared to achievable optical confinements
	��	2��150 kHz, the regime where ���� /2 is widely
accessible. In fact one can achieve the limit of weak satura-
tion and strong confinement with at the same time sufficient
detuning to avoid spontaneous emission. That is, it is pos-
sible to satisfy all of the inequalities #SE���2����.
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IV. CONCLUSIONS

In this work, we have shown how to engineer 2D interac-
tion potentials for optically trapped polar molecules in their
electronic and vibrational ground state. In particular, we have
shown how to modify the shape as well as the strength of the
interparticle interaction potentials, by manipulating the rota-
tional dynamics using external dc and ac microwave fields in
combination with dipole-dipole interactions. In Sec. III A we
have shown that in the presence of a dc field and of a tight
optical confinement it is possible to realize effective 2D po-
tentials, where particles interact via a purely repulsive 	1/r3

interaction. A potential barrier shields the attractive inner re-
gion of the interaction potential, thus providing for the sta-
bility of the collisional setup. In Sec. III B we analyzed the
interactions in the presence of an ac field. We derived the 3D
adiabatic potentials for the molecular interactions, finding
several degeneracies in the two-particle spectrum at dis-
tances of the order of the resonant Condon point rC between
the energy of the ground state plus one photon and states of
the first excited manifold. The presence of these degenera-
cies opens �diabatic, three-body-induced, and, for the case of

transverse confinement, residual tensor-shift-induced� loss
channels for the ground-state collisions, which make the case
of interactions in a pure ac field less appealing for realizing
stable collisional setups in two dimensions. In Sec. III C we
showed that it is possible to realize stable 2D interaction
setups with considerable flexibility in potential design by
combining dc and ac fields, in the presence of strong trans-
verse confinement. In fact, the dc field helps to greatly sup-
press the presence of loss channels at large distances, while
the ac field allows for realizing potentials whose shape can
vary markedly between the long- and short-distance regimes.
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2D ��� with �J=0,1 ,2 ;M =0;�= ±1;k=0,1 ,2 , . . . � of Eq. �55� for the ac- and

dc-field setups of Fig. 14. The strength of the �weak� dc field is �=dEdc/B=1/10. The ac field has polarization q=0, is blue detuned by
�=3B /106�, and the saturation amplitude is � /�=1/4. �a�, �b�, and �c� correspond to a harmonic oscillator frequency of the confining

potential �� /�=1/2 ,2, and 5, respectively. The thick dashed lines indicate the �single-band� effective potentials ẼJ;0;�
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