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Extracting amplitudes for single and double ionization from a time-dependent wave packet
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A method is described for extracting double ionization amplitudes from a quantum wave packet for an atom
after a short radiation pulse, but while the electrons are still interacting. The procedure involves the use of
exterior complex scaling to effectively propagate the field-free solution to infinite times, and allows the use of
existing integral formulas for double ionization amplitudes for two electron atoms and molecules.
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I. INTRODUCTION

Experimental studies of electron dynamics with short ra-
diation pulses, and in particular studies making use of newly
developed attosecond sources [1], are stimulating the devel-
opment of accurate ab initio theoretical methods with which
to interpret them and explore the effects of electron correla-
tion on these time scales. Multiple ionization of atoms and
molecules by one or more photons is a central focus for
many of these studies.

In the case of experiments with either continuous XUV
sources or very long pulses, there is now an array of methods
capable of accurately solving at least the one-photon double
ionization problem accurately from first principles for either
atoms [2-9] or for two-electron molecules [10-14]. Because
the boundary conditions for three-body Coulomb breakup are
mathematically difficult and numerically problematic, a key
issue for all of these methods is the extraction of the ampli-
tudes and cross sections for double ionization from a solution
of the Schrodinger equation, and these references contain
extensive discussions of this point. However, recently Fou-
mouo et al. [15] have raised this question anew in the con-
text of solutions of the time-dependent Schrédinger equation
for either single or double ionization of an atom by a short
radiation pulse.

It is that question that we seek to address in this study. We
propose a procedure for extracting the amplitudes for eject-
ing electrons of particular energies and directions from a
quantum wave packet at the end of a short pulse (or series
thereof), while the electrons are still interacting with the tar-
get nucleus and each other. Since the final state for double
ionization, in the case of a two-electron atom for example, is
the three-body Coulomb breakup wave function, the idea of
projecting the solutions of the time-independent Schrodinger
equation on the wave packet to construct the physical ampli-
tudes for ejection is completely impractical. Nonetheless
projection on approximate final states, namely, a product of
independent Coulomb functions for each of the outgoing
electrons, has yielded practical results [5].

The basic problem remains open, however, as Foumouo et
al. [15] point out when they observe that the results of such
approximate projection schemes, while frequently successful
if applied long enough after the radiation pulse is over, yield
different results in the Schrodinger and interaction pictures.
In the molecular case, the problem is still more complicated,
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because even the noninteracting approximation to the final
state is then not a product of known one-electron Coulomb
functions, and would instead be a product of one-electron
molecular continuum functions.

In previous work in which the method of exterior com-
plex scaling (ECS) was used to impose the correct boundary
conditions on the solution of the time-independent
Schrodinger equation, we have developed a method for ex-
tracting the amplitudes for double ejection of electrons from
both atoms [2,3] and molecules [10,12—-14]. We propose here
the extension of that formalism to the time-dependent case.
We show that using the same underlying methods in which
ECS has previously been implemented, such as the discrete
variable method (DVR) or B-splines, to numerically propa-
gate solutions of the time-dependent Schrddinger equation
allows us to apply the complete methodology of ECS ampli-
tude
analysis.

In Sec. IT we develop the theory for this new approach to
extracting double ionization information from a wave packet
while the electrons are still interacting. We begin with a de-
scription of the idea for single ionization, where it reduces to
an already well-understood procedure. Then, using the same
logic, but making use of recent formal results of Kadyrov et
al. [16] on the asymptotic form of the three-body Coulomb
wave function, we show how to extend those ideas to the
case of double ionization. In Sec. III we describe a simple
application to a one-electron test case with which we can
demonstrate that this approach is valid for multiphoton ion-
ization, and also derive a formula with which the two-photon
ionization cross section can be extracted for all the energies
within the bandwidth of a pulse in the weak field limit. Then
in Sec. IV we very briefly describe the numerical methods
we use here, and in Sec. V present some numerical results of
simple tests of these ideas.

II. EXTRACTION OF IONIZATION AMPLITUDES FROM
A WAVE PACKET AFTER A RADIATION PULSE

Our goal is to extract unambiguously the energy and an-
gular dependence of the electrons ejected from an atom or
molecule by a radiation pulse. Of course, this question has
meaning only if we analyze the wave packet after the pulse is
over. The full Hamiltonian is the sum of the time-
independent Hamiltonian H of the target atom or molecule,
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and the perturbation U(r) due to the radiation field,
H()=H+U(1), (1)
where the perturbation is

r,t) for0<t=<ty,
U(f) _ f( ) final
0 for t > Tfinal s

2)

and r denotes all the electronic coordinates. Our point of
departure is a numerical representation of the wave function
W(r) that evolves from the time t=0, at which the perturba-
tion is turned on and is a solution of the time-dependent
Schrodinger equation as follows:

ii\lf(t) =H@OV(). (3)
ot

The central idea of our approach, as we will show in the
following subsection, is that if we solve the time-
independent-driven Schrodinger equation whose right hand
side is the ionizing wave packet W(zg,,) at the end of the
pulse,

(E - H)\Irsc = \I,(tﬁnal) s (4)

with pure outgoing boundary conditions, then all the single
and double ionization information about a two-electron sys-
tem can be extracted from W . With the particular form as-
sumed for the Hamiltonian in Egs. (1) and (2), the definition
of W and Eq. (4) follow directly from the time-dependent
Schrodinger equation, as we show in the Appendix.

Although essentially any numerical representation can be
used for the time integration needed to solve Eq. (3), a grid
method using exterior complex scaling [2] gives a particu-
larly convenient representation of Eq. (4), because it allows
the automatic imposition of pure outgoing boundary condi-
tions no matter how many electrons are leaving the ionized
target.

In this work we employ the combined finite element
method (FEM) and discrete variable representation (DVR)
[17], which we have previously used in atomic [2] and mo-
lecular [12,13] double ionization calculations. We have also
shown, in a different context, how to carry out time propa-
gation under ECS using FEM-DVR methods [18-20]. In the
FEM-DVR approach we can easily complex scale the coor-
dinates at some large radius R, beyond which the packet
W(ts0a) has no appreciable extension, according to the ECS
transformation

for r <R,

r
) 5
" {R0+ (r—Ro)e”] for r > Ro. ( )

Then Eq. (4) becomes a set of linear equations, whose solu-
tion is effectively the propagation of the wave packet from
1=Tfinal to mﬁmty

We have shown previously that there are convenient inte-
gral formulas for the single and double ionization amplitudes
[2,3] that involve only W, and known one-electron func-
tions. We will specialize our treatment in this section to
atomic targets, although the generalization of the final work-
ing equations to the case of diatomic molecules with fixed
nuclei is straightforward.
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A. One-electron target

Before addressing the two-electron case, it is instructive
to see how the amplitude for ejection can be constructed in
the case of a one-electron target using these ideas. For a
one-electron target, the atomic Hamiltonian for atomic num-
ber Z (in atomic units, Ai=m,=e=1) is

H=T-27Ir, (6)

where T is the kinetic energy operator.

For any time ¢>fg,, when the perturbation U(r) is zero,
the wave function can be formally expanded in eigenstates of
H as

_ —(ik? .
\If(l‘,t) = f dk?C(k) l//k(l')e (@wr2)(e rfmdl) + lr/}bound(r’t - tfinal) >
(7)

where ¢ is a momentum-normalized continuum solution of
the Schrodinger equation Hiji=(k*/2)¢;, with incoming
wave boundary conditions, and i,,,nq(r,#) contains the con-
tributions of all the bound states of the target. We use ¢ (r)
and not (r) in this expansion, because this is formally a
“half collision problem,” and we want the coefficients C(k)
to have the physical meaning of ionization amplitudes. A key
point is that the functions ¢ (r) are orthogonal to those with
different values of k, and to all the bound states contributing

to l;bbound‘
Our problem is to extract the coefficient C(k) in Eq. (7)

[which is the amplitude that an electron has been ejected into
continuum state ¢ (r)] from a numerical representation of
the wave packet W(r,5,,;) at the end of the pulse. To do so,
we solve the driven equation

(E - H)q,sc(r) = \I,(rstﬁnal) s (8)
using ECS to enforce pure outgoing boundary conditions on

W (r) and extract C(k) from its asymptotic behavior.
Equation (8) can be formally solved as

‘Psc(r) = ‘P(r,’tﬁnal) = G+(r’r,)q}(r,’tﬁna])' (9)

(E-H)

Since the wave packet W(r’',7,,) is square integrable, the
large r behavior of W.(r) can be deduced using the
asymptotic form of the full Green’s function for the target
(the Coulomb Green’s function in this case), which is [21]

’_ei[kr+(Z/k)ln 2kr]
Gilrr) ~ = 2m (i), (10)

r—®

with k=fy2E=kt. With this relation, we can operate with
the Green’s function on the expansion of W(r,#;,,) in Eq.
(7), and using the orthogonality of the solutions of the
Schrodinger equation, we immediately deduce the
asymptotic form of W,
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ilkr+(Z/k)In 2kr]
V() = GIW(r ) ~ = \2mClhi) =

— 00

(11)

and see that indeed the amplitude associated with the pure
outgoing wave function, W, is a constant times C(k).

We can also express this amplitude as a surface integral
using Green’s theorem, as we have done previously in two-
electron problems [2],

C(k) = <¢£|E_ T- V1|\I’sc>

1 * *
=5 f (the () VW (r) =W (r) V i (r)) - dS,

(12)

where V,=-Z/r.

So we see that solving a driven equation for ¥ . and
performing the surface integral in Eq. (12) produces the
complete amplitude for photoejection. For a one-electron tar-
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get this formalism is obviously not necessary, because the
first line of Eq. (12) is equal to (¢4 | W (#5)), and since we
already know the wave functions ¢4 we could simply project
with them on the wave packet at the end of the pulse. How-
ever, for a two-electron target that is not the case since we do
not know the correlated two-electron final states analytically.
Nonetheless, the same logic produces a practical method to
calculate the complete energetic and angular dependence of
double ionization.

B. Two-electron target

For a two-electron target the Hamiltonian is
H=T1+T2—Z/r1—Z/r2+1/r12, (13)

and we begin again by formally expanding the wave packet
after the pulse is over (f=1g,,) in its eigenstates,

_ 12,42 .
‘I’(l'1,l‘2,l)=fd3k1 J Py Clky k)i g (1, m)e EHD2 T mma) g (01, 00,0 = i) + Youna (C1 T2 7 = Finat) . (14)

The function ¢El’k2(r1,r2) is a solution of the Schrodinger
equation
2, 42
Hi o ror) = 0 e, (15)
2 %2

whose initial channel has both electrons in the continuum,
and the states contributing to #gnele ion(Fi,T2,2) and
round(T'1,T2,1) are also eigenstates of H. The amplitude for
double ionization, with outgoing momenta for the two elec-
trons k; and k,, is C(k;,Kk,), and that is the quantity we seek
to calculate. The remaining two terms in Eq. (14) contain the
contributions of target eigenstates with either one or no elec-
trons in the continuum.

The incoming function '//Epkz(rl ,I,) must be specified by
its leading term in the region where all three particles are
well separated. That asymptotic form was originally given by
Redmond [22], and is (with momentum normalization)

lllig(,)llz(r]’rZ) = (277)_3eikl‘r]+ik2-r2+i’y’ (16)

where

Z Z
Y= ln(klrl +k1 . rl) + — ln(k2r2+ k2 . 1'2)
ky ky

1
—Eln(klzrlﬂrklz'rlz), (17)

with k,=(k;-k,)/2 and rj,=r;-r,.

Now, as we did in the case of one-electron, we can write
the driven Schrodinger equation with the wave packet at ¢
=txna, When the pulse is over, as the driving term

(E_H)\I,sc(rhrZ) =\I,(r1,r2’tfinal)7 (18)

and use ECS to solve it with pure outgoing boundary condi-
tions. Since W(r,r,, f,q) 1S @ square-integrable function we
need to construct the solution of this equation on a large
enough grid to both enclose this right hand side and reach the
asymptotic region. Here, as in the one-electron case, the
asymptotic form of W, =G™W(r,,r,, %) contains the am-
plitudes C(k;,k,) that we seek to construct. However, to
prove that fact explicitly we require the asymptotic form of
the Green’s function for this equation.

Following the groundbreaking work of Alt and
Mukhamedzhanov [23] on the asymptotic form of the Cou-
lomb three-body wave function, Kadyrov et al. [16] have
explicitly given the asymptotic form of the full Coulomb
three-body Green’s function for general charges and masses.
We require it in the region where all three particles are well
separated (denoted as region () in their work), and special-
izing the result of Ref. [16] to the present case we find the
required asymptotic form to be

—(K3\12
G(r,ryrir)) = (K2 -H+ie) ' —— \2mi —5>
p— p
X e!Kpren Kooy i), (19)

where the total energy is K2/2=k%/ 2+k§/2, and the other
quantities are defined by
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a=tan"! ry/r|, (20)
k, = Kt cos a, (21)
k2 = Kf'z Sin o, (22)
1 ( z z 1 )
=— + = + 7 —
K\cosa sina 1-¢, -t sin2a
zZ Z 1
=—+— (23)

Tk ko [ki—kof

I(Zlncosza Z In sin®
0'0=_ +

sin « sin «

_In[(1 - sin 2af, ~f'2)/2]) (24)

(1 —sin Zaf‘l . f'z)”z

Applying the Green’s function in Eq. (19) to the expansion in
Eq. (14), and using the orthogonality of the solutions of Eq.
(15), we can immediately write the asymptotic form of W,
(in ),
—(3\12 .
W —— vzm(;) ekerein 2KerionC(k, k,), (25)

p—®

in Q

and we see that its amplitude is indeed proportional to
C(k,,k,) appearing in Eq. (14). This asymptotic form was
previously derived by Kadyrov et al. [24] in the context of
electron-impact ionization with a different amplitude appear-
ing in place of C(k;,k,).

Having shown that the asymptotic behavior of the solu-
tion of Eq. (18) in fact contains the amplitude for double
ionization, we are now presented with a practical problem:
Given the solution of Eq. (18) on a region bounded by R, in
Eq. (18), how do we extract C(k;,k,) from it, and also dis-
entangle double ionization from the single ionization contri-
butions we see in Eq. (14)?

Fortunately we can appeal to a well-tested formalism that
involves a surface integral and two “testing functions” that
evaluate the amplitude for double ionization from W.. This
formalism does not follow immediately from Egs. (18)—(25),
but instead relies on a stationary phase argument with Eq.
(25) as a starting point [25,26]. We have shown previously
[2], in the contexts of both double photoionization and
electron-impact ionization, that we can extract the amplitude,
up to an overall volume-dependent phase x [26] from a func-
tion with this asymptotic form using an integral form involv-
ing a pair of testing functions ¢ (r) that are momentum-
normalized, one-electron Coulomb functions with nuclear
charge Z. Applying that relation here we find immediately
that C(k,,k,) is given by

e'0C(k;,ky) = eiX<l/fE1(l‘1)l//E2(r2)|E —T- V[P (r).ry)),
(26)

where V,=-Z/r|—Z/r, and the integration over r; and r, is
over a finite volume large enough for the asymptotic form in
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Eq. (25) to hold exactly. From the formal theory of ionization
as developed by Peterkop [27] and by Rudge and co-workers
[25], one knows that the phase y diverges on an infinite
volume, unless the effective charge Z is chosen to satisfy a
certain kinematic condition. On a finite volume, there are of
course no problems with divergent phase factors, but as we
have shown previously, there can be serious numerical prob-
lems if the charge Z is not chosen properly. In the case of
double ionization of helium, for example, it is critical that
the functions ¢ (r) correspond to Z=2, because it is the re-
sulting orthogonality of these testing functions to the bound
states of He" that eliminates the contribution of the single
ionization channels [2].

The volume-dependent phase x can be calculated if nec-
essary at considerable additional effort [2,26], but since the
ejection probabilities depend only on |C(k,k,)[?, the overall
phase is irrelevant for our purposes. The matrix element in
Eq. (26) can be written in a more convenient form for calcu-
lation as a surface integral, and that is our working equation
for the calculation of the amplitudes:

<z//;1(r1)¢;2(r2)|E -T- Vl|q,sc(rl7r2)>

= % f [lﬁif(h)%;(rz) V¥, (r,r,)
-V (r,r,)V ngj(rl)ljjiz(rz)] .ds, 27)

where V is the six-dimensional gradient operator, V
=(V,,V,). Equation (27) is an identity which follows from
the fact that the product (ﬂ;](r 1)1&;2(1'2) is an eigenfunction of
T+V,, and the application of Gauss’ theorem. It is important
to note that in this equation the functions zp]‘(l(rl) and zpiz(rz)
do not describe the final state of the system, but are merely
the testing functions which extract the necessary amplitude
from V..

So the overall procedure we propose for calculating the
energy and angle dependence of double photoejection by a
short radiation pulse is as follows:

(1) Propagate the solution of the time-dependent
Schrodinger using the FEM-DVR approach until #g,, when
the pulse is over.

(2) Solve driven equation, Eq. (18) using ECS.

(3) Extract the amplitude using Eq. (27) and calculate the
ejection probability |C(k;,k,)|%.

A final comment about the application of these ideas to
two-electron molecules is in order. The amplitude formula in
Eq. (27) has been extended to that case and applied to double
photoionization of the H, molecule [10,12-14]. The essence
of that idea is to replace the testing functions ¢ with Hj
continuum wave functions. Although that replacement entails
numerical solution of the time-independent Schrodinger
equation for electron scattering from H§+, it provides a pow-
erful and practical approach to the molecular double ioniza-
tion problem as the most recent comparisons with experi-
ment demonstrate [13,14]. For short enough pulses for which
the fixed nuclei approximation is valid, the extension of the
results of this section to that molecular case can be made in
exactly the same way.
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III. EXAMPLE: ONE- AND TWO-PHOTON IONIZATION
OF ATOMIC HYDROGEN

Using a one-electron test case, we can explore some of
the numerical aspects of the general method we propose here
for attacking the multiphoton double and single ionization
problem in two-electron atoms. While these methods are ap-
plicable at any intensity of the applied field, we will focus in
Sec. V on low intensity fields where results obtained with the
present formalism can be compared with well-known results
for one- and two-photon ionization cross sections of the hy-
drogen atom obtained in the perturbative limit.

The time-dependent Schrodinger equation (TDSE) for this
one-electron system is

i%‘lf(r,t) Z[H() + Ule.0)]W (x.0), (28)

where H(r) is the atomic Hamiltonian,

17 L2 1
H(r) = 2 or* * 277’ (29)
and L is the angular momentum operator. In the dipole ap-
proximation, the laser-atom interaction U(r,) in the velocity
gauge is given in terms of the electron’s momentum operator
p and the vector potential A by U(r,7)=(e/mc)A(z) -p. In the
length gauge it is U(r,7)=¢E(z)-r, with the corresponding
electromagnetic field E(z) defined as E(t)=—(1/¢)dA(z)/ or.

For a photon energy w and a total pulse duration 7, A(z)
may be written

AgF (t)e te|0,T
a2 Ao 1e0T) 0
0, elsewhere,

where € is the polarization vector. For the time and fre-
quency dependence of the pulse F(7), in these examples we
choose a sine squared envelope,

F, (1) = sinz(;t> sin(wt). (31)

The initial state W(r,0) is the ground state of the hydrogen
atom W,

A. Amplitudes for one-photon single ionization for energies
within the pulse bandwidth

In general the amplitude for ionization extracted via Eq.
(12) or Eq. (27) will depend on the parameters of the radia-
tion pulse that produced the wave packet being analyzed.
However, in the case that the intensities involved allow the
accurate description of the process using time-dependent per-
turbation theory (TDPT), we can use these methods to ex-
tract the amplitudes over the range of energies within the
bandwidth of the pulse.

The textbook expression in first order TDPT for the tran-
sition amplitude C'V(k), between an initial state of energy
E;=fiw; and a continuum final state of energy E.=fwy,
caused by a pulse of duration T characterized as in Egs. (30)
and (31) is
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—ieA _
(k) = =2 gile- pldF . T).  (32)
fimc
where
—~ T .
F(l)(w,wki,T)=J N (1)dt (33)
0

and (¢;|e-p|i;) is the dipole matrix element connecting the
initial and continuum states for a particular wave vector k.
We can evaluate the energy-dependent factor F'(w, wy;, T)
explicitly in this case and thereby find the connection, over
the bandwidth of energies where F D(w,wy,T) is apprecia-
bly nonzero, between the amplitude C(k) we extract after the
pulse for a particular k and the dipole matrix element.

Using the rotating wave approximation to evaluate F
X(w,wy,T), gives

~ e—in(ei(w—wkl-)T _ 1)772
- [T (w- “)ki)z -4 )(w— W)’
and the modulus squared of this amplitude has a frequently

quoted [15] form that is useful when computing the single
ionization cross section,

Fi(@, 0. T) (34)

~1) e 47 sin’[(w — o) T/2]
i e P e
(35)

Note that [Fi(w, @y, T)|? tends to (37T/16)&w—wy,) for
long pulse durations.
The cross section for one-photon single ionization in the
velocity gauge is
do 4w ak
dQ  mhwy,

(Wide- plunl, (36)

where fiwy; is the energy difference between the initial and
the final states, and ¢, is momentum normalized. Using Eq.
(32) we can easily relate the differential cross section to
CY(K) to obtain

do _Am’ke*m |cV(Kk)[?

dQ hoga |A0|2|ﬁ§21\;v(w9wki’T)|2.

(37

So the factorability of the expression in first order TDPT
for the transition probability allows us to extract the differ-
ential single ionization cross section from a single pulse
within its bandwidth, defined as the range of photon frequen-
cies for which fg\),\,(w, wy;,T) is appreciably nonzero. This is
a well-known result. However, we show next that, more sig-
nificantly, we can effectively do the same thing for two-
photon processes where the TDPT expressions are not fac-
torable.

B. Amplitudes for two-photon single ionization for energies
within the pulse bandwidth

For a two-photon transition between an initial state of
energy E,=fw; and a continuum final state of energy
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E,=hw;, we begin with the second order TDPT expression
for the transition amplitude as follows:

-\ 2
—1i
C(Z)(k) = (z) E UkmUmiF(Z)(Ek7En17Ei’ w, T)’ (38)
where the dipole matrix elements Uy, and U,,; are

e _
Ukm= AO<¢k|€p|¢m>7
mc

Upi= Aol € lih). (39)
mc

the summation over m denotes a sum and integral over all
the eigenstates of the target and the coefficient
F(E,,E, E;,»,T) is given, in the rotating wave approxi-
mation, by
(",
FO(ELE,.E,w,T) = 5 J dt’ e o= sin?(¢' 7w/ T)
0

1 l’ . 1
X5 f dt" e @ni= " sin?(¢" 7/ T).
0

(40)
F?(E,,E, E;,»,T) can be evaluated analytically to give an

algebraically complicated result.

§(Ek5Ei’ w, T) =
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To connect C?(k) with the familiar expression for the
two-photon cross section obtained in the time-independent
theory, we define the reduced coefficient or “shape function”

FO(E,,E,, .E;,w,T) as follows:

FOELE,.E 0.T) = (E;+ o — E,)FP(ELE,.Ey0.T),
(41)

where ﬁwg)=(Ek—E,»)/ 2, is a half of the difference between
the initial and the final state energies (i.e., the photon energy
for an infinitely long pulse duration). It turns out that if the
photon frequency w is not too close to being in resonance
with a transition to one of the intermediate states m, then the

shape function F? is well approximated by an expression
that does not depend on the energies of the intermediate
states in the sum in Eq. (38) and which becomes exact in the
long T limit as follows:

FOELE, . E,w,T) =~ §(EE,w,T), (42)

with

6€—iT(El-—Ek+2w)(_ 1+ eiT(E,-—Ek+2w)) e

So §(Ek,Ei,w,T) factors out of the sum in Eq. (38) in this

approximation. We note in passing that |F(Ey,E;,w,T)
tends to (707T/64%) & w;,— w;+2w) for large T.

We can now connect the amplitude C<2)(k) we extract
from the wave packet using Eq. (12) with differential cross
section (units of cm* sec) for two-photon ionization. The dif-
ferential cross section for two-photon ionization is defined as
the transition rate from Fermi’s golden rule divided by the
square of the photon flux [28], giving in the velocity gauge,

2

k]

do (2m)3tka?
aQ  @m’

(Uile- p(E; + hay, — H) e pliy)
(44)

where @y, = (w,—w;)/2, and where the length gauge expres-
sion is given by replacing p by r in this expression and
multiplying by (@;m)*. Using the combination of Eqgs. (38),
(39), (41), and (42), we can relate this cross section to the
amplitude extracted from the packet via Eq. (12) at the end
of the pulse,

(E;— E+ 20)[THE; - E + 20)* = 207 TXE; - E, + 2w)* + 647*]

(43)

|C@(k)|?

—— = . (45)
o am’ <€2|A°|2)2|§(E E.o.T)]?
m2c*h? ko™

and a similar expression can be derived in the length gauge.
We mention in passing that, when comparing with the results
of Karule [29,30] below, we follow her definition of a pro-
portional quantity called the “ionization rate” in that work,

@ B 27726(1661(2) 2

; —— (Yile- p(E;+ ha; — H)™'e- ply)
lywy;

bl

(46)

where I, is the atomic unit of intensity I,=ce?/[(4m)?€yay]
=7.0189 X 10'® W/cm?.

To our knowledge Egs. (43) and (45), which allow us to
extract the two-photon ionization cross section within the
bandwidth of a pulse, provided the energies are not close to
a resonance feature, have not appeared previously in the lit-
erature. Similar expressions making use of Eq. (43) can be
derived for two-photon double ionization and may be useful
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in extracting cross sections from large-scale converged cal-
culations on two-electron systems where each solution of the
TDSE is expensive to compute.

IV. TIME PROPAGATION USING THE FEM-DVR
APPROACH

In the FEM-DVR method the wave function is expanded
in a product basis of the FEM-DVR radial basis functions
and spherical harmonics as follows:

W(r,1) = 2 a; (Ox,(Y,0(6, ), (47)
il

where for linear polarization in this example we need include
only m=0 contributions, and the wave function is a function
of only r and 6. The vector of coefficients a; (1) is the rep-
resentation of the wave function that we must propagate in
time.

The FEM-DVR radial basis functions x;(r) have been dis-
cussed at length elsewhere [2,17], and on the DVR grid each
is nonzero only at a single point r;. Like all discrete variable
representations, this one, based on finite elements and Gauss-
Lobatto quadrature, has the key property that the matrix el-
ements of any local function of the electronic coordinates are
diagonal in the radial basis, when evaluated using the under-
lying Gauss quadrature rule. For example, when evaluated
by Gauss quadrature, the laser-atom interaction has the ma-
trix elements

XY 10l U, 0| x;Y 0y = Uy (ri1) 8, (48)

where r; is the DVR radial grid point at which y;(r) is non-
zero. This follows from the fact that the DVR basis functions
have the property

xr) =L, (49)
Wi
where w; is a quadrature weight. The matrix elements are of
course not diagonal in the angular momenta. In the two-
electron problem the convenient numerical properties of this
basis have been exploited in time-independent double ioniza-
tion and electron-impact ionization calculations.
We use the split operator approach, writing the propagator
for a time step Az as

e—i(H+U,)At — e—iHAt/2e—iU,Aze—iHAt/2 ) (50)

Since the atomic Hamiltonian is block diagonal in the angu-
lar momentum indices, we can write the exponential of its
matrix representation in the FEM-DVR basis as

[=lax

e—iHAt= H e—iH’Al- (51)
1=0

Each of the exponential matrix operators in this product can
be constructed using the Cranck-Nicholson propagator,

] Ar\7! Ar
il _ (1 n ,'le> (1 - iHZZ). (52)

However, since these operators depend on At¢, but not ¢, their
construction by solution of linear equations need be done
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only once. These simplifications carry over to the two-
electron case if we choose H to consist of only the kinetic
energy and nuclear attraction potential.

The fact that matrix representation of U, in Eq. (48) is not
diagonal in [ complicates the construction of the remaining
factor, exp(—iU,Ar), of the propagator in Eq. (50). As the
number of angular momenta in the basis increases, exponen-
tiating the matrix of U, becomes increasingly time consum-
ing.

At each time step we must apply this exponential operator
to the function W(r,7) to produce the intermediate result
W' (r,1),

W' (r,1) = e VA (r, 7). (53)

The function W is expanded as in Eq. (47), and we require
the expansion of W' in the same basis, for which the coeffi-
cients are

a; (1) = (XY 1ole VAW (r,1)). (54)

To avoid exponentiating the matrix representation of the op-
erator U, obtained through Eq. (48) at each time step, we
follow the ideas of Chu and co-workers [31,32] and con-
struct a diagonal representation of U, in coordinate space by
discretizing both the radial and angular variables. If we re-
strict ourselves to the length gauge, we can write the expo-
nential explicitly as a function of coordinates

e—iU,At — e—ieE(t)r cos(0)At' (55)
Substituting the expansion of W in Eq. (47) into Eq. (54), we
can simply quadrature this integral using the properties of the
DVR in the radial variables, and a Gaussian quadrature in the
angular variables. The result shows the simplification intrin-
sic to the DVR, which keeps the operation diagonal in the
DVR index i,

aj (1) = > M(r) Y, (1), (56)
l’

with

M(ri)l,l’ = E quzo(gq)e—ieE(t)ri COS(%)A[YI',O( 0q). (57)
q

In an efficient numerical implementation, the sums and
multiplications in Egs. (56) and (57) are carried out in a
stepwise manner with the sum over [’ first and the sum over
q, second. For the sizes of the time steps in this work, ten
point Gauss Legendre quadrature in cos(6) suffices to con-
verge this integral. More interestingly, this algorithm is also
effective in the two-electron problem when we include the
electron repulsion 1/ry, in U, because while 1/r, is not
diagonal in angular momentum indices, its FEM-DVR rep-
resentation is still diagonal in the radial coordinates [2]. Al-
though this procedure can only be implemented in the length
gauge, it strongly reduces the computational effort for time
propagation in both the one- and two-electron cases.

V. NUMERICAL RESULTS

To demonstrate the basic idea of extracting amplitudes for
ionization from a time-dependent description using Egs. (8)
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FIG. 1. (Color online) Square of the transition amplitudes over
the intensity as a function of the ejected energy for different inten-
sity values, in the region in which one-photon ionization dominates.
The central frequency of the pulse is 0.76 a.u. (20.68 eV).

and (12) for a one-electron case, we have calculated the one-
and two-photon ionization cross sections of the hydrogen
atom using short XUV pulses in order to compare with the
known cross sections in the perturbative limit.

To choose the intensities for these test calculations, we
first check that the square of the transition amplitude at the
end of the pulse evaluated using Eq. (12) is proportional to
IV (with N being the number of absorbed photons).

For example, Fig. 1 shows |C(V(k)[?/I for one-photon ab-
sorption, using pulses of 2 fs and ten cycles (w=0.76 a.u.) at
different intensities. Above I=10' W/cm?, nonlinear pro-
cesses appear, and we therefore employ a laser intensity of
1=10"2 W/cm?, so as to produce a relatively high ionization
rate but still in the perturbative limit.

Figure 1 illustrates that the electron energy distributions
for one-photon absorption reflect the energy profile of the
pulse (with width Aw=4m/T, for a sine squared time enve-
lope [33]), as given by the shape function defined by Egq.
(35). We can extract the cross sections on this energy inter-
val, and each TDSE calculation for a given pulse frequency
(for a given number of cycles) allows us to reproduce cross
sections for the photon energies contained in this bandwidth.

In Fig. 2 we compare one-photon ionization cross sections
for a hydrogen atom as a function of photon energy obtained
by applying perturbation theory and by extracting them from
the time propagated wave packet.

The time propagation has been carried out with a time
step Ar=0.1 au. (1 a.u.=2.41888%107"7s), for a total
pulse duration of 2 fs, / =102 W cm™2, and different pulse
frequencies (corresponding to different numbers of cycles).
The radial part of the wave function is represented in a DVR
basis set with Ry=150 a.u. and the spherical harmonics ex-
pansion includes a maximum value of angular momentum
lax=1 (only s and p partial waves are included). Length and
velocity gauge results are indistinguishable on this scale, and
the time-dependent results agree perfectly with those of per-
turbation theory, even using such a relatively short pulse.
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FIG. 2. (Color online) Upper panel: one-photon ionization cross
sections for atomic hydrogen as a function of photon energy. Black
full line: perturbation theory results. TDSE results are obtained for
1=102 Wem™, T=2fs, and different number of cycles, repre-
sented with different symbols and colors. Lower panel: the squared
moduli of the amplitudes corresponding to the cross sections in the
upper panel.

The lower panel of Fig. 2 shows the corresponding electron
energy distributions, including those whose central frequen-
cies correspond to photon energies close to the ionization
threshold. For instance, a 2 fs pulse of six cycles is centered
at a photon energy (0.456 a.u.) below the ionization limit,
but the energy bandwidth is wide enough to populate the
ionization continuum and allow us to extract the perturbation
theory limit cross sections for ionization.

For the more interesting case of extracting the cross sec-
tion over the bandwidth of the pulse for a two-photon ion-
ization process, more partial waves are included (conver-
gence is achieved for a maximum value of angular
momentum /,,,=3 at these intensities), and the density of
the DVR functions is increased.

In Fig. 3 we show the partial two-photon ionization cross
sections (s and d contributions) for above-threshold ioniza-
tion (ATI) photon energies >0.5 a.u., where the time-
dependent propagation has been computed with a time step
Ar=0.0138 a.u., for a total pulse duration of 4 fs and [
=102 W cm™.

There is essentially perfect agreement with perturbation
theory results [29,34-37], demonstrating that we are able to
reproduce the long time limit in the ATI region with a rela-
tively short pulse. This result verifies that using the analytic
expression Eq. (43) for the energy profile function in the
two-photon case is a reliable approximation as long as no
sharp resonant contributions lie within its bandwidth.

However, in the two-photon resonant region where bound
states are populated by one-photon absorption (0.25<w
< 0.5 a.u.), longer pulses are required to reproduce the long
time limit. In Fig. 4 we see that with a pulse duration of 4 fs,
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FIG. 3. (Color online) Two-photon ATI cross sections (s and d
contributions) as a function of the photon energy. Black full lines:
perturbation theory results. TDSE results are calculated for T
=4 fs and /=102 W cm™2, at different pulse frequencies (different
symbols and colors). Ry=314 a.u. and 573 DVR functions.

the ATI region is properly described, but the sharp features
appearing when one-photon absorption is resonant with an
intermediate bound state in perturbation theory are smoothed
out because of the finite energy bandwidth in the pulse. The
inset in Fig. 4 shows that at longer pulse durations those
sharp features can be better distinguished as we approach the
long time limit, but still with pulses of less than 20 fs.

103 Ly ’ I
total o025 03 035 04 045
photon energy (a.u.)

:: s contribution

d contribution

UL B L B AL B P L AL U AL R AL e

| | | | |
0.4 0.6 0.8 1 1.2
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FIG. 4. (Color online) Total (and s and p contribution) two-
photon ionization cross sections. Thin lines: perturbation theory re-
sults. Dots: TDSE results for 4 fs and /=10'> W cm™2. Inner pic-
ture: Total cross sections for different pulse durations and [
=102 W em™.
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VI. CONCLUSIONS

The development of a new generation of intense, ul-
trashort, pulsed x-ray light sources is stimulating the devel-
opment of accurate, nonperturbative theoretical methods for
studying the quantum dynamics of strongly correlated atomic
and molecular targets driven by short-wavelength electro-
magnetic fields. For simple atoms and molecules, attacking
such problems by direct numerical solution of the time-
dependent Schrodinger equation on modern supercomputers
has become feasible. With this approach, however, a central
question, which has yet to be fully resolved, is how best to
extract quantitative scattering information from a propagated
wave packet. In particular, there are evidently open questions
about using projection schemes which involve approximate,
uncorrelated final states, while projection onto exact time-
independent scattering states is not really feasible in the case
of multiple electron ejection.

The approach we have described here builds on the
progress made over the past few years in using exterior com-
plex scaling to solve the time-independent Schrodinger equa-
tion for Coulomb breakup problems while avoiding the de-
tailed specification of asymptotic boundary conditions. We
have shown that it is possible to use the time-propagated
wave packet that is the solution of the time-dependent
Schrodinger equation at the end of a short radiation pulse as
the driving term for a driven time-independent equation that
can be solved under ECS. The scattered wave function so
obtained can be used to compute amplitudes that give the
complete angle- and energy-dependent ejection probabilities
for the photoelectrons.

We have illustrated these ideas with calculations of the
one- and two-photon ionization cross sections for atomic hy-
drogen and shown how, with weak fields and relatively short
pulses, a single time-propagated packet can be used to ex-
tract cross sections over all energies within the bandwidth of
the pulse.

We have also outlined how the method can be used to
study targets with two active electrons. In this context, it is
interesting to compare our approach with the one recently
described by Foumouo er al. [15]. The latter authors compute
the probabilities for single-continuum ionization by project-
ing the wave packet onto accurate multichannel scattering
wave functions. Probabilities for double ionization are then
correctly obtained by subtracting the single ionization prob-
abilities from the total ionization probability. In our ap-
proach, the double ionization amplitudes are obtained di-
rectly from the solution of a driven equation. In addition to
providing double ionization probabilities, the approach we
have outlined also allows for the computation of energy-
sharing and angular ionization probabilities. Application of
the methods outlined here to two-electron targets is currently
underway.
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APPENDIX: DERIVATION OF THE DRIVEN
SCHRODINGER EQUATION

We consider an atom (molecule) in a stationary eigenstate
that is subjected to a time-dependent pulse initiated at #=0.
The wave function evolves under the time-dependent
Schrodinger equation

i(%‘l’(t) =H(OW(r). (A1)

At t=tg,.1, the pulse ends and the wave function continues to
evolve under the time-independent atomic (molecular)
Hamiltonian H of Eq. (1). The time dependence of W(z) for
1> tsna 1S then given explicitly as

V(1) = e MO tmal P (1)

We now take the Fourier transform (from g, to infinity) of
both sides of Eq. (A2), at the same time defining the scat-
tered wave W, as

> tina- (A2)
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\Prc = _ ie—iEtﬁnalf dtei(EHe)t\I,(t)
1,

final
— je " Elfinal dtei(E+i€)te_iH(l_tﬁ“al)‘I’(tﬁnal). (A3)

Tfinal
Making the change of variable t— ¢—15,,;, we obtain

V=i J die" Y (1)
0

W (tfinat) = GV (hina))» (A4)

" (E+ie-H)

or, equivalently,
(E-H)¥.=V(thna)- (AS)
The rest of the logic leading to the working equations for the

amplitudes follows from expanding W(z,,) in terms of the
eigenstates of H and proceeding as in Secs. IT A and II B.
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