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The Siegert-state expansion approach is applied to the solution of the time-dependent Schrödinger equation
describing a model one-dimensional laser-atom interaction problem in the Kramers-Henneberger frame. Our
method is mathematically rigorous and numerically exact even though a very restricted spatial box is consid-
ered, since the use of Siegert states as a basis in the expansion eliminates unphysical reflections from the
boundary of the box and the Kramers-Henneberger frame enables us to fully take the interaction with the laser
field into account. The method is demonstrated by calculations of above-threshold ionization spectra generated
by strong high-frequency laser pulses. We found an oscillating substructure of multiphoton peaks caused by an
interference of photoelectron wave packets produced at different times during the pulse which becomes espe-
cially pronounced in the stabilization regime. An interpretation of this effect in terms of the high-frequency
Floquet theory is given.
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I. INTRODUCTION

From the theoretical point of view, how to implement the
numerical scheme to study a laser-atom interaction is a fun-
damental issue. Solving the time-dependent Schrödinger
equation �TDSE� in the laboratory frame with absorbing
boundary conditions in a large box is a widely used ap-
proach, see, e.g., Refs. �1–4�. However, this scheme substan-
tially bears the following problems. First, the laboratory
frame modifies the dynamics since the laser field must be
eventually cut off beyond a finite box considered in the cal-
culations. Second, the dynamics is disturbed also by the ab-
sorbing potential, whose effect is difficult to control and dis-
entangle. Under the circumstances, Reed and Burnett �5�
suggested to use the Kramers-Henneberger �KH� frame �6,7�
instead of the laboratory frame. In the KH frame, the inter-
action with the laser field is represented by a quiver motion
of the center of the atomic potential along a trajectory a
classical electron would follow. Hence it is localized in a
finite region of space where the atomic potential is effective.
The electron moves freely once it leaves this interaction re-
gion. As was demonstrated in Ref. �5�, this fact enables one
to increase �approximately double� the length of a laser pulse
that can be treated, because the calculations can be extended
up to the moment when the electron returns to the interaction
region after its reflection from the boundary of the box. Al-
ternatively, one can reduce �approximately halve� the size of
the box. In any case, a gain in the computational efficiency is
achieved. The advantage of the KH frame is well recognized
in �8,9�. In Ref. �5�, zero boundary conditions were used. In
this case, to calculate the spectrum the box must substan-
tially exceed the interaction region, finiteness of the box ob-
viously limits the high-energy extent of the spectrum ob-
tained as well as its resolution. The gain from the use of the
KH frame would be much more essential if one could reduce
the size of the box to that of the interaction region. The
absorbing boundary conditions may help to reach this goal,
but if only the total ionization probability is needed. The true

solution lies in correctly implementing the outgoing-wave
boundary conditions. In this paper, we present a method in
which only the interaction region is to be considered and, at
the same time, which is capable of calculating spectra up to
any desired energy and without any limitations on the reso-
lution.

The idea consists in applying the recently developed
Siegert-state expansion approach �10,11� to the solution of
the TDSE in the KH frame. Siegert states �SSs� are the so-
lutions to the stationary Schrödinger equation satisfying
outgoing-wave boundary conditions. The corresponding ei-
genvalue problem was first considered by Siegert �12� for
s-wave scattering in a finite range potential. SSs remained a
formal object in scattering theory until Tolstikhin et al.
�13–15� developed an algebraic formulation known as the
theory of Siegert pseudostates �SPSs� which became a pow-
erful tool in practical calculations. Recently, this formulation
was supplemented by a discussion of the SPS perturbation
theory �16�. More recently, it has been generalized to non-
zero angular momenta �17�. In the stationary framework,
SPSs have been employed, for example, for the calculation
of resonances in three-body Coulomb systems �18–20�.
Yoshida et al. �21� and Tanabe et al. �22� pioneered the ap-
plications of SPSs as a basis to treat time propagation of
wave packets. The advantage of such a basis is that it does
not produce an unphysical reflection at the boundary of the
box because the outgoing-wave boundary conditions are sat-
isfied. Subsequently, Santra et al. �23� following an earlier
work �24� developed a rigorous formalism of the expansion
in terms of SPSs for the case of a stationary Hamiltonian.
Finally, Tolstikhin �10,11� has extended the method to time-
dependent Hamiltonians, which made its applications to
many nonstationary problems such as laser-atom interaction
possible.

In the calculations reported in Ref. �11�, a model one-
dimensional atom in the laboratory frame was considered. In
this paper, we consider the same problem in the KH frame.
The SS expansion approach �10,11� enables us to solve the
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TDSE avoiding unphysical reflections from the boundary of
the box. The use of the KH frame guarantees that the inter-
action with the laser field is fully taken into account so long
as the box is large enough to cover the interaction region.
When these two elements are combined, the method is free
from any approximations despite the use of a very restricted
box size. But the main advantage of the method is its ability
to produce accurate highly resolved spectra.

The paper is organized as follows. In Sec. II, basic equa-
tions of our approach are formulated. In Sec. III, the ap-
proach is applied to the calculations of above-threshold ion-
ization �ATI� spectra �25�. First we revisit the model
considered in Ref. �11�. The present calculations are essen-
tially exact, because there is no need to cut off the laser field
as it was the case in Ref. �11�. Then we discuss the same
model, but for a much stronger laser field. An interesting
interference substructure of ATI peaks generated by high-
frequency pulses is found in the stabilization regime. Its in-
terpretation in terms of an adiabatic version of the high-
frequency Floquet theory �8,26� is given. The effect is
demonstrated also by calculations for a model describing
photodetachment of H−. Section V concludes the paper.

II. THEORETICAL APPROACH

A. Time-dependent Schrödinger equation
in the Kramers-Henneberger frame

We consider an electron in a model one-dimensional atom
interacting with a laser pulse. Our starting point is the TDSE
in the laboratory �L� frame in the length gauge �atomic units
�=m= �e � =1 are used throughout the paper, unless otherwise
stated�

i
��L�xL,t�

�t
= �−

1

2

�2

�xL
2 + V�xL� + F�t�xL��L�xL,t� . �1�

The atomic potential V�xL� is assumed to vanish beyond a
finite interval −X�xL�X,

V��xL� � X� = 0, �2�

or can be cut off without any appreciable effect on the ob-
servables. The pulse is assumed to have a finite duration T,
i.e., the electric field F�t� satisfies

F�t � 0� = F�t � T� = 0. �3�

Let x�t� and v�t�=dx�t� /dt be a classical trajectory of the
electron in the laser field,

d2x�t�
dt2 = − F�t� , �4a�

x�t � 0� = v�t � 0� = 0. �4b�

One finds

v�t� = − �
0

t

F�t��dt�, x�t� = �
0

t

v�t��dt�. �5�

The transformation to the KH frame is defined by �6,7�

xL = xKH + x�t� , �6a�

�L�xL,t� = exp	iv�t�xL −
i

2
�

0

t

v2�t��dt�
�KH�xKH,t� .

�6b�

Note that there is no difference between the two frames for
t�0. Substituting this into Eq. �1�, one obtains

i
��KH�xKH,t�

�t
= 	−

1

2

�2

�xKH
2 + V„xKH + x�t�…
�KH�xKH,t� .

�7�

Thus electron’s dipole interaction with the laser field in the
laboratory frame is represented by a quiver motion of the
center of the atomic potential in the KH frame. The main
advantage of the KH frame in the context of the SS expan-
sion approach is that the KH potential V(xKH+x�t�) is local-
ized in a finite interval of xKH—the interaction region. In-
deed, taking into account Eq. �2�, it differs from zero only for
x−�xKH�x+, where

x− = − X + min�x�t��, x+ = X + max�x�t�� . �8�

Hence all interactions are exactly taken into account if the
box used in the calculations covers this interval.

The wave function in the laboratory frame at the moment
when the pulse is over, �L�xL ,T�, can be obtained from the
solution to Eq. �7� using Eqs. �6�. The observables can be
calculated by projecting this function onto bound and scat-
tering states of the atomic Hamiltonian. The results can be
seen to depend crucially on the values of x�T� and v�T�. For
simplicity, in this paper we assume that the classical trajec-
tory satisfies

x�T� = v�T� = 0. �9�

In this case, there is no difference between the laboratory and
KH frames for t�T too. Function �L�xL ,T� up to a constant
phase factor coincides with �KH�xL ,T�, therefore observables
in the two frames also coincide. Formulas for the spectrum
of ionized electrons given in the next section apply to this
particular case; their generalization to arbitrary values of the
parameters x�T� and v�T� meets no difficulties but is
foregone.

B. Siegert-state expansion

Let us rewrite Eq. �7� as �the subscript KH is omitted
from here on for brevity�

i
���x,t�

�t
= H�t���x,t� , �10�

where

H�t� = H + U�x,t� , �11�

H = −
1

2

�2

�x2 + V�x� , �12�
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U�x,t� = V„x + x�t�… − V�x� . �13�

Note that both the time-independent V�x� and time-
dependent U�x , t� parts of the KH potential V(x+x�t�) vanish
beyond the interval x−�x�x+. In addition, U�x , t� vanishes
for t�0 and t�T. All this complies with the assumptions
made in �11�, thus the present problem is reduced to the one
considered there. From this point we invoke the formulation
developed in Ref. �11�.

Our goal is to find the solution to Eq. �10� satisfying the
initial condition

���x,t��t�0 = 	0�x�e−iE0t, �14�

where E0 and 	0�x� represent a bound state of the atomic
Hamiltonian �12�. Let us introduce the function and deriva-
tive value operators at x=x0,

F�x0� = 
�x − x0�, D�x0� = 
�x − x0�
d

dx
, �15�

and a pseudodifferential operator

�̂t = i�2i
�

�t
. �16�

For a more detailed discussion of this operator see �10�. Fol-
lowing �11�, we rewrite Eq. �10� in a matrix form,

��̂t − 	 0 1

− 2H̃�t� F
�	��x,t�

�̃�x,t�

 = 0, �17�

where H̃�t� is a Hermitized Hamiltonian,

H̃�t� = H�t� +
1

2
�D�x+� − D�x−�� , �18�

and

F = F�x−� + F�x+� . �19�

Note that the apparent dimension of the Hilbert space is
doubled on the step from Eq. �10� to Eq. �17�. This enables
one to incorporate the outgoing-wave boundary conditions
satisfied by the solution to Eqs. �10� and �14�,

�	 �

�x
� �̂t
��x,t��

x=x±

= 0, �20�

and consequently to eliminate the outer free-space regions,
x�x− and x�x+, from the consideration. The SSs defined by
the atomic Hamiltonian �12� are the solutions to the eigen-
value problem

�H − En�	n�x� = 0, �21a�

�	 d

dx
� ikn
	n�x��

x=x±

= 0, �21b�

where En=kn
2 /2. The solution to Eq. �17� in the interaction

region x−�x�x+ can be sought in the form �11�

	��x,t�

�̃�x,t�

 = 


n

an�t�	 	n�x�
ikn	n�x�


 . �22�

The coefficients an�t� in this expansion satisfy �11�

an�t� = 
n0e−iE0t +
i

kn


m
�

0

t

g�t − t�;kn�Unm�t��am�t��dt�,

�23�

where

Unm�t� = �
x−

x+

	n�x�U�x,t�	m�x�dx , �24�

and g�t ;k� is the retarded Green’s function for the operator

�̂t− ik, see �10�. Thus the TDSE �10� is reduced to a set of
coupled equations in time. We note that these equations, both
in the integral Volterra form �23� and in a pseudodifferential
form given in Ref. �11�, have a “memory.” To propagate the
solution, one needs to keep and use all the information ob-
tained on previous steps. The memory results from nonlocal-

ity of the driving operator �̂t in Eq. �17� and is a price for
incorporating the continuum. This feature differs the SS ex-
pansion approach from other time-dependent close-coupling
schemes in atomic physics.

When the pulse is over, the wave function can be conven-
tionally expanded as �11�

��x,T� = 

n��b�

Cn	n�x� + �
0




�C−�k��−�x,k�

+ C+�k��+�x,k��
dk

2�
, �25�

where the summation runs over the bound states of H, and
�±�x ,k� are the scattering states of H satisfying outgoing-
wave boundary conditions at x→ ±
, respectively. The
physical observables are defined by the coefficients Cn and
C±�k�. In this paper, we consider only the spectrum of the
ionized electrons. The momentum distributions of the elec-
trons ejected to the left ��� and right ��� are defined by

P±�k� = �C±�k��2. �26�

They can be expressed in terms of the solutions to Eqs. �23�
as �11�

P±�k� = k2�

n

An�E�
kn�k − kn�

	n�x±��2

, �27�

where E=k2 /2 and

An�E� = 

m
�

0

T

eiEtUnm�t�am�t�dt . �28�

The energy spectrum of the electrons and the total probabil-
ity of ionization are

P�E� =
P−�k� + P+�k�

2�k
, Pion = �

0




P�E�dE . �29�
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C. Implementation

The numerical implementation of our approach is the
same as in Ref. �11�. The Siegert eigenvalue problem �21� is
converted to an algebraic form by expanding the solutions in
terms of a finite N-dimensional discrete variable representa-
tion basis constructed from Legendre polynomials �14�. This
yields a set of 2N SPSs which are used as a basis in the
expansion �22�. Thus we obtain 2N coupled equations �23�
which are solved by a method described in �10�. The solution
of Eqs. �23� is the most time-consuming part. The calculation
time scales as NM2, where M is the number of time steps. In
our calculations, it varied from several minutes to several
hours for pulses of femtosecond to picosecond duration.
Once the solution to Eqs. �23� is obtained, the calculation of
spectra �27� is very fast. The representation of spectra in the
form �27� does not bare any intrinsic limitation on the reso-
lution, so one can easily scan the energy interval of interest
to locate arbitrarily narrow structures. The upper boundary of
the converged energy spectrum is limited by the dimension
of the basis N, and with the present basis it rapidly grows
with N. The results reported below are converged with re-
spect to all numerical parameters. In general, the whole
scheme is very robust and accurate, although a faster algo-
rithm for solving Eqs. �23� is desirable.

III. CALCULATIONS OF ABOVE-THRESHOLD
IONIZATION SPECTRA

Here, we apply our method to the calculations of ATI
spectra �25�. First, we consider perturbative regime, to test
the method and to resolve a problem met in the laboratory
frame �11�. We then move on to much stronger laser pulses.
Among various features, an interesting oscillating substruc-
ture is found in multiphoton ATI peaks for high laser fre-
quencies in the stabilization regime. We analyze the under-
lying interference mechanism and formulate conditions
under which the effect is expected to appear. We demonstrate
the effect also by calculations for a model describing photo-
detachment of H−.

A. Perturbative regime: The model of Ref. [11] revisited

In �11�, a model atom described by the Eckart potential

V�x� = −
15/8

cosh2 x
�30�

was considered. This system has two bound states with en-
ergies E0=−9/8 and E1=−1/8; the ground state is chosen to
be the initial state. In one of the examples discussed, the
electric field of the laser pulse is given by

F�t� = F0 sin2��t/T�cos �t, 0 � t � T , �31�

where F0=0.1, T=200, and �=�, hence �T /2�=100 is an
integer. Substituting this into Eqs. �5�, one can check that
conditions �9� are fulfilled. The potential �30� can be safely
cut off at �x�=X=5 �11�. For F�t� given by Eq. �31� and
�T /2��1, the classical trajectory satisfies

− � � x�t� � �, � =
F0

�2 . �32�

Thus x±= ± �X+��, see Eqs. �8�. For the above parameters
we have ��10−3, hence the interaction region �x− ,x+� in this
case does not exceed the range of the potential �−5,5�.

The present results for this model are shown in Fig. 1.
There are two differences compared to �11� to be mentioned
here. First, some oscillations of the envelope of the back-
ground resulting from the cutoff of the laser field in the labo-
ratory frame �11� no longer appear in the present approach.
The KH frame takes the interaction with the laser field into
full account, including that in the asymptotic region. Second,
multiphoton peaks from the excited state are now buried in
the background. Indeed, the probability of excitation in the
present calculations is 1.96�10−12, in close agreement with
the result 1.95�10−12 of Ref. �11�. The height of the one-
photon peak from the ground state is 3.1�10−2, see Fig. 1,
so that the height of the one-photon peak from the excited
state is roughly estimated as �1.96�10−12��3.1�10−2�
�6.1�10−14, which falls well below visibility.

The above parameters of the laser pulse correspond to
perturbative regime. To confirm the consistency of our ap-
proach, we compare our calculations with perturbation
theory. The first-order perturbation theory result for the spec-
trum reads �7�

PPT�E� = �x�E − E0��2
�d−�k��2 + �d+�k��2

2�k
, �33�

where

0 5 10 15 20
10-30

10-25

10-20

10-15

10-10

x10-5

4ω

P(E)
P

PT
(E)

5ω

3ω

2ω

E
0
+ ω

E

1.96 2.00 2.04 2.08
0.00

0.01

0.02

0.03

E

E
0
+ ω

FIG. 1. �Color online� Present results for the model considered
in Ref. �11�, see Eqs. �30� and �31� with F0=0.1, T=200, and �
=�. One can clearly see a number of ATI peaks in the photoelectron
spectrum P�E� produced by multiphoton absorption from the

ground state. For comparison, the envelope P̄PT�E� of the perturba-
tion theory results obtained by dropping the rapidly oscillating fac-
tor sin2�ET /2� in Eq. �33� is also shown.

TOYOTA et al. PHYSICAL REVIEW A 76, 043418 �2007�

043418-4



d±�k� =� �±
*�x,k�

dV�x�
dx

	0�x�dx , �34�

and x�E� is the Fourier transform of the trajectory x�t�. Func-
tion x�E� contains a rapidly oscillating factor sin�ET /2� �11�.
In Fig. 1, for clarity, we show the perturbation theory results
obtained by dropping this factor, even though our calcula-
tions reproduce it. There is a perfect agreement between the
results in the one-photon peak as well as in the background;
multiphoton peaks are beyond the first-order perturbation
theory, of course.

B. Interference substructure of ATI peaks
in the stabilization regime

Now, when the method has been tested, the physics in
many different regimes can be analyzed. In this paper, we
chose one particular cut of the parameter space where the
laser frequency � is larger than the ionization potential �E0�.
We wish to see what happens as the strength of the pulse
grows. Let us consider the same model defined by Eqs. �30�
and �31�, again with T=200 and �=�. To illustrate our find-
ings, we skip intermediate values of F0 and proceed directly
to a superstrong pulse with F0=30 �a more realistic model is
considered below�. In this case ��3, see Eq. �32�, hence the
interaction region is �x− ,x+�= �−8,8�, which is less than
twice the range of the atomic potential. The spectrum of the
ionized electrons for this model is shown in Fig. 2�a�. One
still can see a train of multiphoton peaks, although of a quite
different shape as compared to the previous case. The first
peak is enlarged in linear scale in Fig. 2�b�. We note that
E0+��2.017 and E1+��3.017 for the present parameters,

so the spectrum in Fig. 2�b� is certainly produced by one-
photon absorption from the ground state, however, it looks
qualitatively different from the one-photon peak in Fig. 1.
Higher-order ATI peaks have a similar oscillating substruc-
ture. Let us discuss its physical origin.

An adequate framework is provided by the high-
frequency Floquet theory �HFFT� �8�. For a monochromatic
laser field with the amplitude F0 and frequency � �one
should simply drop the pulse envelope factor sin2��t /T� in
Eq. �31�� the classical trajectory is x�t�=� cos �t �the initial
conditions �4b� become immaterial in this case�. Then the
KH potential can be expanded into a Fourier series,

V�x + � cos �t� = 

n=−





Vn�x;��e−in�t. �35�

In the leading order of the HFFT, our model atom in the KH
frame is described by �26�

	−
1

2

d2

dx2 + V0�x;�� − E
��x� = 0. �36�

It can be seen that the “dressed” potential V0�x ;�� coincides
with V�x� in the absence of the laser field, i.e., for �=0. Let
E0��� and 	0�x ;�� be the bound-state solution to Eq. �36�
which coincides with the initial state E0 and 	0�x� of the
unperturbed atom for �=0. The width of this state corre-
sponding to the absorption of one photon is �27�

���� =
�−��� + �+���

2�k���
, �37�

where

�±��� = 2��� �±
*
„x,k���;�…V1�x;��	0�x;��dx�2

.

�38�

Here k���=�2�E0���+�� is the momentum of the ionized
electron and �±�x ,k ;�� are the scattering-state solutions to
Eq. �36� coinciding with �±�x ,k� for �=0, see Eq. �25�.
Functions E0��� and ���� for the present model are shown in
Fig. 3�a�. Their behavior is qualitatively similar to that cal-
culated for a different model in Ref. �27�.

In our case, the pulse is not monochromatic. However, its
envelope is a slowly varying function �the pulse contains 100
optical cycles�, so one could expect that the picture sug-
gested by the HFFT will be followed adiabatically. The adia-
batic approximation is implemented via the substitution

� → ��t� =
F0

�2 sin2 �t

T
, �39�

which makes the amplitude of the classical trajectory, see Eq.
�32�, a slow function of time. Functions E0�t� and ��t� ob-
tained from E0��� and ���� upon such a substitution are
shown in Fig. 3�b�. These functions describe the energy and
width of the initial atomic state “dressed” by the high-
frequency laser field. Since ��t� is small compared to E0�t�,
the dynamics can be approximately described as follows.

0 5 10 15 20 25 30 35 40
10-23

10-18

10-13

x10-8

x10-3

x102

(a)

P(E)

E

1.8 2.0 2.2 2.4 2.6 2.8
0

1

2

3

4

5

E
0
+ω

(b) P(E)
P

HFFT
(E)

E

FIG. 2. �Color online� Photoelectron spectrum P�E� for the
same model as in Fig. 1, but for a very strong laser pulse with F0

=30. The lower panel enlarges the first ATI peak. Two bunches of
oscillations can be seen at energies around E��=�c1�+��2.19 and
E��=�c2�+��2.62, see text. PHFFT�E� shows the results obtained
from Eq. �43�.
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The probability for the atom to stay in the initial state until
the moment t is

P0�t� � exp�− �
0

t

��t��dt�� . �40�

This gives P0�T��0.115. Meanwhile, our accurate calcula-
tions yield the survival probability P0=0.126 and ionization
probability Pion=0.874, the probability of excitation P1�8
�10−8 being negligible. Thus the approximation �40� is ac-
tually not too bad. The key to understanding the dynamics is
that under the adiabatic approximation there exists a relation
between the energy E of a photoelectron and the moment t of
its ionization,

E = E0�t� + � → t = t�E� . �41�

Because of this relation, the electrons ionized in the interval
from t to t+dt have energies between E and E+dE, where
E=E0�t�+� and dE= �dE0�t� /dt�dt. Equating the probability
of ionization during this interval P0�t���t�dt to C2�E��dE�,
where C�E� is the amplitude of the wave packet created, we
obtain

C�E� = ��P0�t���t�� dt

dE
��

t=t�E�
. �42�

For the present pulse, t�E� is a double-valued function: it has
two branches, t1�E�� �0,T /2� and t2�E�� �T /2 ,T�, corre-
sponding to the rising and falling parts of the pulse, see Fig.
3�b�. Hence there are two moments, t1�E� and t2�E�, contrib-
uting to the spectrum at given energy E. Let C1�E� and C2�E�
be the corresponding amplitudes defined by Eq. �42�. The
first wave packet created at t1�E� evolves between t1�E� and
t2�E� with the energy E; the second wave packet created at

t2�E� bears an additional phase accumulated between t1�E�
and t2�E� by the bound state evolving with the energy
E0�t�+�. Taking these time-dependent phase factors into ac-
count, one obtains the spectrum of electrons produced by the
absorption of one photon

PHFFT�E� = �C1�E� + C2�E�ei��E��2, �43�

where the interference phase is given by

��E� = E�t2�E� − t1�E�� − �
t1�E�

t2�E�

�E0�t� + ��dt . �44�

Formula �43� can be easily generalized to the absorption of
several photons as well as to the case when Eq. �41� has
more than two solutions.

The results obtained using the above equations are shown
in Fig. 2�b�. In general, the adiabatic HFFT nicely repro-
duces the oscillating substructure of the first ATI peak. Some
disagreement in the amplitude of the oscillations at lower
energies is explained by the fact that the validity of HFFT
requires �� �E0� and �2�t���1 �26�, but the second condi-
tion is not satisfied in the beginning and end of the pulse,
where electrons with lower energies are produced. The main
limitation of our approximate theory is that it accounts only
for electrons with energies in a finite interval from
min�E0�t��+�=E0+� to max�E0�t��+�. The lower bound-
ary of this interval is indicated by the arrow in Fig. 2�b�; Eq.
�43� diverges at the upper boundary because of the factor
dt�E� /dE in Eq. �42�, which can be seen as a sharp rise of the
curve PHFFT�E� at E�2.72. A more accurate approximation
free from this limitation could be developed, but this goes
beyond the scope of the present paper.

Having demonstrated that the adiabatic HFFT is qualita-
tively correct, we now give a very rough picture of the dy-
namics explaining what happens with the first ATI peak as
the amplitude of the pulse F0 grows, while its frequency �
remains unchanged. This can be understood in terms of the
behavior of ��t�, since the ionization dominantly occurs near
the maxima of ��t�. If max���t��=F0 /�2 is smaller than the
first critical value �c1 defined by the abscissa of the first
maximum of ����, �c1�0.79 for the present model, then
��t� has only one maximum at the maximum of the pulse,
and only one wave packet is created. The spectrum in this
case consists of a single peak located at E=E��=F0 /�2�
+� with a rapidly decaying interference substructure in its
left wing. If F0 /�2 becomes larger than �c1, then function
��t� has two maxima, one in the rising and one in the falling
parts of the pulse, hence a pair of wave packets is created. In
this case, the spectrum acquires quite a different shape: it
consists of a peak located at E=E��=�c1�+��2.19 and
modulated by the interference of the two wave packets, see
Fig. 2�b�. In the calculations shown in Fig. 2 we have
F0 /�2�3, which is larger than the second critical value
�c2�2.33, see Fig. 3�a�. Function ��t� in this case has totally
four humps, see Fig. 3�b�. The smaller ones produce a sec-
ond pair of wave packets and result in an additional modu-
lated peak in the spectrum at E=E��=�c2�+��2.62, see
Fig. 2�b�. More pairs of wave packets are created and more
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FIG. 3. �Color online� The energy and width of the initial atomic
state “dressed” by the high-frequency laser field as functions of the
amplitude � of classical trajectory and time t related to each other
by Eq. �39� with F0 /�2�3.
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peaks modulated by their interference appear in the spectrum
as F0 /�2 becomes larger than higher maxima of ����, if any.
The number of fringes in each peak is determined by the
interference phase �44� and grows proportionally to the
length of the pulse T. Their contrast depends on the ratio of
the amplitudes C1�E� and C2�E� in Eq. �43� and decays as T
grows.

Summarizing, the conditions under which a pronounced
interference substructure in ATI peaks is expected to appear
can be formulated as follows: �a� �� �E0�, �b� F0 /�2��c1,
and �c� T is not too small, to have at least a few fringes, and
not too large, to have a good contrast. We note that the very
existence of a maximum of function ���� as well as condi-
tions �a� and �b� are prerequisites for one of the scenarios of
the phenomena of atomic stabilization �8,9�. Our analysis
thus shows that under certain conditions on the length of the
laser pulse ATI spectra produced in the stabilization regime
should possess an interference substructure of the type dis-
cussed above.

Closing this section, we mention that an interference of
wave packets created in the rising and falling parts of a laser
pulse has been discussed in many different contexts. For ex-
ample, an interference substructure in the right wing of ATI
peaks was found in Ref. �5�. Some related interference ef-
fects in the excitation �28� and ionization �29� of atoms were
observed experimentally. All such effects contain a phase
which sometimes looks superficially similar to ours, Eq.
�44�. However, as far as we know, the interference mecha-
nism in the stabilization regime we found has never been
discussed in the literature.

IV. A MORE REALISTIC MODEL:
PHOTODETACHMENT OF H−

Let us show that our effect can be found in a more real-
istic situation. Consider a one-dimensional model of the
negative hydrogen ion H− described by the potential

V�x� = − 24.856 �
exp�− �x2 + 42�1/2�

�x2 + 6.272�1/2 . �45�

This model was used, e.g., in Ref. �30,31�. The potential �45�
supports only one bound state with E0�−0.0277
�−0.754 eV�, in close agreement with the binding energy of
the real H− ion. Our calculations show that this potential can
be safely cut off at �x�=X=15, in agreement with �30�. Let
the laser field be defined by Eq. �31� with F0=0.5
�I=cF0

2 /8�=8.8�1015 W/cm2�, �=� /10 �8.55 eV�, and T
=2000 �48.4 fs�, hence the pulse again contains �T /2�
=100 optical cycles. Though somewhat speculative at
present, a laser in this parameter range is expected to come
into practical use in view of the recent experimental progress
with free-electron lasers �32�. In this case ��5, see Eq. �32�,
so the interaction region is �−20,20�. We note that to gener-
ate a spectrum in �30� a huge box of the size 3276 was
required. Our results for this model are shown in Fig. 4; they
look similar to the results in Fig. 2. In the present case, the
first maximum of ���� occurs at �c1�2.32, and at �
�5.25 the function hits its first minimum. Hence only one
pair of ionized electron wave packets is produced and only

one bunch of oscillations with the center at E=E��=�c1�
+��0.29 �7.90 eV� is seen in the first ATI peak. Interest-
ingly, in Ref. �31� under slightly different conditions �I=5
�1014 W/cm2 and �=2.5 eV� a pair of wave packets were
detected on the spatial distribution of the photoelectron prob-
ability density, see Fig. 3�b� there. It was argued that they are
created in the rising and falling parts of the laser pulse, but
the spectrum was not calculated. We think that was the first,
even though indirect, observation of the mechanism as
discussed above.

V. CONCLUSION

In this paper, we applied the Siegert-state expansion ap-
proach �10,11� to the solution of the TDSE describing a one-
dimensional laser-atom interaction problem in the Kramers-
Henneberger frame �6,7�. The main advantage of our method
is that no unphysical reflection from the boundary of the box
considered in the calculations occurs and the interaction with
the laser field, including that in the asymptotic region, is
fully taken into account. So, it is possible to accurately cal-
culate the physical quantities using very restricted box size,
even for long laser pulses. The method is demonstrated by
calculations of ATI spectra for a number of model problems.
We found an interference substructure of ATI peaks gener-
ated by strong high-frequency laser pulses in the stabilization
regime. The physical mechanism of this effect is interpreted
in terms of an adiabatic version of the high-frequency Flo-
quet theory �8,26� and conditions favorable for its observa-
tion are formulated. A recent generalization of the theory of
Siegert pseudostates to nonzero angular momenta �17�
should make the extension of the present approach to the
three-dimensional case possible.
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FIG. 4. �Color online� The spectrum P�E� of electrons produced
by irradiating a model one-dimensional ion H− by a laser pulse with
intensity I=8.8�1015 W/cm2, photon energy ��=8.55 eV, and
duration T=48.4 fs �100 optical cycles�. The total ionization prob-
ability is Pion�0.45. The lower panel enlarges the first ATI peak.
PHFFT�E� shows the results obtained from Eq. �43�.
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