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In the strong-field approximation, we calculate the electron momentum distribution following strong-field
ionization of atomic hydrogen by an N-cycle circularly polarized laser pulse. For N<35, our results show a
pronounced interference structure in addition to the well-known carrier-envelope phase difference (CEPD)
sensitivity. With increasing N we observe a gradual change to a momentum distribution which is free of
interference and CEPD effects and which is characterized by well-resolved above-threshold ionization peaks,
consistent with the quantized photon picture. The changes in the interference structures are explained by the
spectral properties of the pulse. We compare the results of the strong-field approximation with those obtained
by the saddle-point method and show that while the saddle-point method is able to reproduce the results for
N=35, it fails to explain the interference structure and the asymmetry of the distribution for smaller N.
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I. INTRODUCTION

Nowadays, intense laser pulses with only a few optical
cycles are available in several laser laboratories (see, for in-
stance, Ref. [1] and references therein). Such pulses can be
used to probe molecular and atomic dynamics on a very
short time scale [2,3]. For example, few-cycle pulses to-
gether with a subfemtosecond soft x-ray pulse were used to
study atomic physics on an attosecond time scale [4-6],
nuclear dynamics in molecules was investigated with few-
cycle pulses using high harmonics generation [7], and few-
cycle laser pulses were used to obtain an image of an elec-
tronic orbital [8].

Another field, which is expected to benefit highly from
the development of few-cycle laser pulses is coherent con-
trol. It was, e.g., recently demonstrated experimentally [9]
that few-cycle pulses can be used to control dissociative ion-
ization of D,—i.e., control reaction dynamics. Coherent con-
trol with few-cycle pulses has also been studied in a number
of theoretical papers [10,11]. The essential parameter in co-
herent control with few-cycle pulses is the carrier-envelope
phase difference (CEPD) of the pulse. A long monochro-
matic pulse is completely characterized by the frequency,
amplitude, and polarization. A few-cycle pulse, on the other
hand, requires additional parameters: the carrier-envelope
phase difference and the number of optical cycles. This leads
to new effects in laser-matter interactions—e.g., strong
CEPD dependence of the direction of ejection of an electron
in the ionization process and finite-bandwidth effects (see,
e.g., Refs. [12-20] and references therein). For linearly po-
larized pulses, where the extrema of the field are relatively
well localized, the CEPD dependence in ionization may be
understood by the approximate exponential dependence of
the ionization rate on the instantaneous field strength, which
means that the electron most likely escapes at the instants of
time where the carrier attains local extrema within the enve-
lope [1]. The situation is quite different for circularly polar-
ized pulses. In this case the extrema are less localized tem-
porally and the field may change its direction by at least 7/2
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while having almost maximum strength (see Figs. 1 and 2
below). As a consequence the momentum distributions are
quite broad even for a two-cycle pulse. For atomic and mo-
lecular systems with a field-free Hamiltonian which is invari-
ant under rotations around the propagation direction of the
circularly polarized few-cycle pulse a characterization of
CEPD effects for changing values of this phase was recently
given [19] in terms of a corresponding rotation of the total
system around the propagation direction. CEPD effects only
occur for very short pulses [16], which means that we are in
the regime where bandwidth effects are expected to be
important.

Although considerable research has been devoted to
CEPD effects, not much attention has been paid to the re-
lated question of bandwidth effects. The purpose of the
present paper is twofold. First, we want to study the effects
of the finite bandwidth of a few-cycle pulse on the electron
momentum distribution in the strong-field ionization of at-
oms. Second, we investigate to what extend a very popular
approach within the strong-field approximation (SFA)—the
saddle-point method (SPM)—accounts for all the structure in
the electron momentum distribution when the number of op-
tical cycles within the pulse is varied. More precisely, we
investigate how the momentum distribution for atomic hy-
drogen depends on the number of optical cycles—i.e., the
pulse length. The consideration of H as the system for our
investigation is for computational convenience and not a re-
striction when it comes to an identification of the generic
physics since bandwidth and CEPD effects are related to the
characteristics of the pulse more than to the particular atomic
(or molecular) system.

The paper is organized as follows. In Sec. II we review
the SFA and the SPM. In Sec. III we discuss the results.
Section IV concludes.

II. THEORY

In the following we consider atomic hydrogen interacting
with a field described by the right-hand circularly polarized

vector potential A,
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FIG. 1.
lated using Egs. (1) and (2) in the plane of polarization of the

(Color online) Momentum distribution (g,,q,) calcu-

right-hand circularly polarized field E propagating in the z direction
for strong-field ionization of H(1s) for various values of N, with /
=5.0x 10" W/em?, wy=0.057 (800 nm), and ¢==/2. The grid
size is Ag,=Aq,=0.01.

f()o

\

X(t) = [cos(wyt + ), + sin(wt + P)e, ]

for t € [0; 7] and A=0 otherwise. Here Ay is the amplitude, 7
is the pulse length, w, is the carrier frequency, f(r)
=sin’[wyt/(2N)] is the envelope, with N the number of opti-
cal cycles, and ¢ the CEPD The corresponding electric field
is obtained as E=-dA [we use atomic units (fi=|e|=ay
=m,=1) throughout].

In the SFA [21-24] the probability amplitude for direct
ionization is given by

—i f W ADVO (1)), (1)
0
with W; the initial wave function, \I’f the final continuum

wave function, and V(¢f)=r -E(t) the length gauge interaction
operator (see, e.g., Refs. [25-28] for recent references dis-
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FIG. 2. (Color online) Vector potential and electric field (blue
dotted line) for five different values of N. The solid curve shows the
carrier wave—i.e., the field without the envelope. The arrows show
the natural time evolution for the pulse. The parameters are /=5.0
X 1013 W/em?, wy=0.057 (800 nm), and ¢=/2.

cussing the choice of gauge). The initial state of the system is
assumed to be the atomic ground state H(1s). The final state
is represented by a Volkov wave function. The Volkov state
describes the state of a free electron in an electromagnetic
field, so in this state the Coulomb potential is completely
neglected.
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The momentum distribution of the ejected electron is
given by the absolute square of the probability amplitude,
and integrating over g, gives us the (¢,,q,) momentum dis-
tribution in the plane of polarization of the circularly polar-

ized light:
dP ”
= T,’dq.. 2

dqxdqy J_OC| fz| 4q: ( )

The spatial integration in Eq. (1) can be performed analyti-
cally, so we are left with a one-dimensional time integral
which we evaluate numerically by quadrature as detailed in
Sec. III.

In Sec. III, we shall first be concerned with a discussion
of results obtained on the basis of Eq. (1) with direct numeri-
cal integration, and second we shall investigate to what ex-
tent the SPM described below is capable of accounting for
all the structures in the spectra.

For multiphoton processes the matrix element in Eq. (1)
contains a very rapidly oscillating phase factor exp[iS(z)]. In
the case when the final state is described by a Volkov state,
this phase reads S(t):%f6[§+A(t’)]2dt'+Ipt, with ¢ the
asymptotic momentum and /, the ionization potential. One
may therefore use the SPM to calculate an approximate value
for the integral (1) [20]. Besides its computational conve-
nience, the SPM also gives physical insight since it provides
a time analysis of the results obtained [see Egs. (3) and (4)
below]. These features make the SPM very popular for cal-
culating transition amplitudes in strong-field physics, and it
has been used to describe a number of physical processes
including ionization [15], high harmonics generation [29],
and rescattering [18]. The SPM gives the following expres-
sion for T; [20]:

1
Tfi == EIE as(ts)exp[is(ts)l (3)

where a, are complex amplitudes given explicitly for H(1s)
[20], a,(t,)=1/S"(t,), and the instants of time ¢, are solutions
to the saddle-point equation

)
1) =0, )

For a circularly polarized laser pulse with N optical cycles,
there are N+1 solutions for 7, [20]. The solutions are typi-
cally complex since ionization is a classically forbidden pro-
cess except in the over-the-barrier regime.

III. RESULTS AND DISCUSSION

Figure 1 presents the calculated momentum distribution
for different numbers of optical cycles N, with 1=5.0
X 10" W/cm?, wy,=0.057 (800 nm), and ¢=/2. The inte-
gral in Eq. (1) is calculated using Gauss-Legendre quadrature
[30], while the integral over g is calculated using an equi-
distant grid on [-Q.,Q.], where Q. is chosen large enough to
ensure convergence, 0,=0.6 in the present case. For N<5
we observe (i) a well-known asymmetry in the direction of
electron ejection [12-20] (see Sec. IIT A) and (ii) a compli-
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cated interference pattern radially as well as angularly (see
Sec. III B).

A. CEPD effect

In Fig. 1, we see how the CEPD effect disappears for
increasing number of optical cycles of the ionizing pulse. We
include a brief discussion of this well-known effect for com-
pleteness. The preferred direction of electron emission is a
CEPD effect and can be explained classically by assuming
that an electron is freed at the peak of the field =7, with

initial velocity v(f))=0 and subsequently moves under the
influence of the external field only [16,19],

Tfinal = — J é(f')dt' = —g(fo)- (5)

0

Hence, the direction of ejection is opposite the direction of
the maximum vector potential. Notice that this equation is
the saddle-point equation in the strong-field limit, where we
can neglect the ionization potential. Figure 2 shows the vec-
tor potential and the corresponding electric field for five dif-
ferent values of N. For N=2,3,4 we observe a good agree-
ment between this simple model and the quantum results in
Fig. 1. The momentum distributions for other values of the
CEPD ¢ are obtained by a simple rotation of the momentum
spectra by ¢p—m/2 [19].

As N increases, we gradually observe in Fig. 1 the emer-
gence of well-resolved above threshold ionization (ATI)
peaks, while the directional asymmetry and interference pat-
tern disappear—in other words, a distribution fully consis-
tent with the photon picture. The fact that the asymmetry
disappears may again be understood classically. For ex-
ample, for N=6,7, the field takes almost a full revolution on
the circle, corresponding to a monochromatic field with our
field strength, and a preferred instant of ionization #, cannot
be clearly defined. There is almost an entire period around 3,
where the electron is equally likely to emerge into the con-
tinuum, leading to an angularly symmetric distribution, in
agreement with Fig. 1.

B. Interference structures

The behavior of the interference features in Fig. 1 for N
=5 can be understood by looking at the power spectrum of
the pulse. Figure 3 shows the power spectrum for different
values of N. The spectrum is very broad for N=2,4, with a
lot of frequencies contributing with comparable magnitude.
As a consequence there is a large number of different paths
leading to the same final energy and such paths can interfere
with each other. We see from Fig. 3 that the width of the
spectrum for N=2 is Aw~0.05, corresponding to AFE
~0.05. For a momentum of ¢=0.67 this corresponds to a
huge shift in momentum of Ag~ 0.07, which is clearly vis-
ible with our grid discretization. This explains the observed
interference pattern in Fig. 1. The structure is simply caused
by the fact that our pulse contains a very large number of
frequencies when N is small (the pulse duration is small). As
N increases the width of the spectrum gets smaller and fre-
quencies close to w, dominate completely. Thus we regain
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FIG. 3. Power spectrum |[7.E (e di|*+|[7, E,(t)e'dt]* of
the electric field for four different values of N. The parameters are
1=5.0X 103 W/cm?, wy=0.057 (800 nm), and ¢=/2.

the photon picture. For N=7 we have Aw<0.01 which cor-
responds to Ag<<0.015 for ¢=0.67. This explains why the
interference pattern disappears and why we observe well-
resolved ATI peaks as N increases.

The spectrum of the pulse depends on the form of the
envelope. It is therefore interesting to examine if we obtain
the same effects with a different envelope. We have calcu-
lated the momentum distribution using a Gaussian envelope,
J(t)=exp[~(t—7/2)*/ 7.}, with 7,=2 arccos(2™""*)7/ 7 [16],
and confirmed the interference effects reported above. The
width of the spectrum for a pulse with a Gaussian envelope
is a bit smaller for a given value of N, which leads to small
changes.

C. Saddle-point method

In addition to the SFA we use the SPM of Eq. (3) to
calculate the time integral in Eq. (1). The results of such
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FIG. 4. (Color online) Momentum distribution (g,,q,) as pre-
dicted by the saddle-point method (SPM) using Egs. (3) and (2), in
the plane of polarization of the right-hand circularly polarized field
E propagating in the z direction for strong-field ionization of H(1s)
for various values of N, with =5.0X 103 W/cm?, w,=0.057
(800 nm), and ¢=/2. The grid size is Aq,=Aq,=0.01.

calculations are shown in Fig. 4, with I=5.0X 10'3 W/cm?,
wy=0.057, and ¢=1/2. The saddle-point equation is solved
using a modified Newton-Raphson method [30]. The prob-
ability amplitude is then calculated using Eq. (3). From Fig.
4, we see that there is good agreement between the results
obtained by an exact numerical integration of Eq. (1) (Fig. 1)
and the results obtained by the SPM for N=5. For smaller
N, however, there are some serious discrepancies. The inter-
ference structure shown in Fig. 1 is completely absent in Fig.
4. The SPM gives a smooth distribution, without any inter-
ference pattern. This feature can be understood by looking at
the solutions ¢, to the saddle-point equation (4) and the asso-
ciated amplitudes a,(z,). Figure 5 shows an example of such
solutions for two different values of N. There are three solu-
tions to the saddle-point equation for N=2 (upper panel), but
the solution with the smallest imaginary part completely
dominates the sum in Eq. (3) in regions with high yield.
Since we need at least two solutions with comparable ampli-
tudes to create a momentum distribution with an interference
pattern, this explains why the interference pattern is missing
in the SPM calculation for N=2. In the N=7 case we have
eight solutions, and typically 2/3 of them have comparable
amplitudes. Then the sum in Eq. (3) contains interference
terms and the SPM calculation gives a momentum distribu-
tion with well-developed peaks. The agreement between the
SPM and the SFA does not improve by expanding S’ as well
as S to second order [31].

D. Asymmetry in different models

Now let us briefly return to the question of CEPD effects
in the momentum distribution. Spatial asymmetry in the ion-
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FIG. 5. (Color online) The complex instants of time ¢, that solve
the saddle-point equation (4) for N=2 (upper panel) and N=7
(lower panel). For N=7, only the three most dominant are shown.
The number attached to the #; solutions give the norm square of the
amplitude a; Eq. (3). The parameters are (g..q,,q.)~ (0.0,
-0.7,0.0) (upper panel) (¢.q,.q.)~(0.0,0.7,0.0) (lower panel), 1
=5.0% 10> W/cm?, wy=0.057 (800 nm), and ¢=1r/2.

ization process was predicted theoretically some time ago in
[12,13] and first measured in Ref. [14]. A detailed analysis of
the latter experiment in terms of the SFA was given in Ref.
[15]. Here we compare the SFA with the SPM. We define the
following measure of asymmetry in the distribution [17]:

[Py —P||

A(00)= P.+P s
T !

(6)
where P; (P)) is the probability for ionizing in the direction
0<60<6, (180°-6,<6<180°). In order to calculate P,
(P)) we first calculate dP/(dq.dq,), using Egs. (1) and (2),
on a square grid [-0.8,0.8]* with grid size Ag,=Aq,=0.01.
When dP/(dq,dq,) is known on the grid P, (P)) is calcu-
lated by summing up the appropriate momentum compo-
nents. Figure 6 shows A(15°) as a function of the number of
optical cycles, N, for the two different approximations used
in the article (SFA with Volkov wave function and SPM).
There is a good agreement between the different approxima-
tions for N=35, and A(15°) becomes small for increasing N
as expected. The situation is quite different for N e {2,3},
where Agpy(15°) increases as N decreases, while Agpa(15°)
decreases as N decreases. Agpa(15°) has a maximum at N
=3,4. We have checked that this conclusion is independent
of 6,. The nonmonotonic behavior of A(15°) was also ob-
served and explained for a linear polarized laser pulse in Ref.
[16]. However, the physics behind the nonmonotonic behav-
ior is quite different in the two cases. While the asymmetry
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FIG. 6. (Color online) A(6,=15°) from Eq. (6) as a function of
the number of optical cycles. The parameters are [=5.0
X103 W/em?, 0y=0.057 (800 nm), and ¢=m=/2. In the figure
SPM denotes results obtained using the saddle-point method of Eq.
(3). SFA denotes results obtained evaluating Eq. (1) by numerical
integration.

for a linearly polarized pulse comes from the fact that such a
pulse contains a number of well-localized extrema, a circu-
larly polarized pulse contains only a single rather broad field
maximum. From a purely classical point of view we would
for circularly polarized light expect A(15°) to increase as N
decreases. The SPM predicts the same and is in that sense
too classical: it overestimates the saddle-point close to the
real time axis [Im(z;)=0].

IV. CONCLUSION

In this paper, we investigated bandwidth and CEPD ef-
fects in strong-field few-cycle ionization of atomic hydrogen.
We studied the momentum distribution and observed a very
complicated interference pattern in the case of a very short
pulse (N<35). These interference effects disappear as the
number of optical cycles increases, and we gradually ob-
served the emergence of well resolved ATI peaks. A very
short pulse contains a lot of different frequencies, which ex-
plains the observed interference pattern. The center fre-
quency w, begins to dominate as N increases, and we regain
the normal photon picture. A very popular model, within the
SFA, is the saddle-point method. For N>4, we saw good
agreement between the exact numerical integration and the
saddle-point method. However, for N=4 the saddle-point
method cannot describe the observed bandwidth effects since
it overestimates the dominant saddle point for N small. Ac-
cordingly, the interferences observed in the electron momen-
tum distribution cannot be associated with interference be-
tween ionization pathways leading to the same final state
from different (complex) instants of ionization provided by
the 7,’s. Also the SPM does not reproduce the maximum in
the asymmetry of the momentum distribution obtained for
N=3,4.
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