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We present an ab initio three-dimensional �3D� calculation of multiphoton ionization �MPI� and high-order
harmonic generation �HHG� of the hydrogen molecular ions subject to intense linearly polarized laser pulses.
The orientation of the molecular axis with respect to the polarization of the laser field can be arbitrary. The
numerical procedure involves the extension of the generalized pseudospectral �GPS� method for nonuniform
spatial discretization of the Hamiltonian and wave functions and time propagation using the split-operator
technique in the energy representation. The calculations were performed for the ground and two first excited
electronic states of H2

+ at the internuclear separation R=2.0 a.u. The laser pulse has a sine-squared envelope
and contains 20 optical cycles with the wavelength 800 nm. The dependence of MPI and HHG on the orien-
tation angle is analyzed. We show that orientation effects are strongly affected by the symmetry of the wave
function and the corresponding distribution of the electron density. While the anisotropy of MPI and HHG is
rather weak for the 1�g state, both processes are suppressed at the orientation angle 90° for the 1�u state and
at the angle 0° for the 1�u state. We discuss the multiphoton resonance and two-center interference effects in
the HHG spectra which can lead both to enhancement and suppression of the harmonic generation.
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I. INTRODUCTION

Multiphoton ionization �MPI� and high-order harmonic
generation �HHG� are fundamental atomic and molecular
processes in strong laser fields that continue to attract much
attention in the recent past both experimentally and theoreti-
cally �1–3�. Due to the extra internuclear degree of freedom,
the response of molecules to strong fields is considerably
more complicated than that of atoms. On the other hand,
once the relationship between molecular structures and MPI
and HHG is understood, it can lead to the control of mol-
ecules to shape harmonics, sculpt attosecond pulses, and en-
hance the harmonic generation efficiency, etc. Thus the study
of strong-field molecular physics is a subject of much current
interest in science and technology. For diatomic molecules,
the extra degrees of freedom are the internuclear separation
R and orientation of the molecular axis with respect to the
polarization of the laser field; the latter is related to the align-
ment of molecules by laser �4�. An important role is played
by the symmetry of electronic molecular orbitals since the
orientation effects manifest themselves differently for elec-
tronic states with different symmetries. In this paper, we fo-
cus our study on the accurate treatment of the orientation
effects in MPI and HHG of diatomic molecules.

The simplest diatomic molecule to study orientation ef-
fects in MPI and HHG is the hydrogen molecular ion H2

+.
This system has been treated many times previously to study
various multiphoton processes in strong laser fields. The
main approaches adopted for three-dimensional �3D� calcu-
lations are the time-independent non-Hermitian Floquet for-

malisms �5� and direct numerical solution of time-dependent
Schrödinger equation �TDSE� �6�. More recently, we have
introduced a time-dependent generalized non-Hermitian Flo-
quet approach for the precision calculation of MPI and HHG
rates of H2

+ as a function of the internuclear separation R for
the molecules aligned in the laser field direction �7�. We
found that both the MPI and HHG rates are strongly depen-
dent on R. Further, the enhancement of higher harmonics
takes place mainly at large R. Detailed study of the correla-
tion between the behavior of MPI and HHG phenomena was
also presented.

The emphasis of the present work is to explore the orien-
tation effects in MPI and HHG not just for the ground state
but also for the excited electronic states of H2

+. Our method
is based on the generalized pseudospectral �GPS� discretiza-
tion of the wave functions and operators �8,9�, which allows
high precision electronic structure results with the use of
only a modest number of grid points. For the present study,
we have developed a time-dependent �TD� GPS scheme for
accurate and efficient treatment of the TDSE of two-center
diatomic molecular systems. The time propagation is per-
formed using the split-operator technique with the propaga-
tor matrices constructed in the energy representation �9,10�.

As the initial states of H2
+ for solving the TDSE, we

select the ground �1�g� and first excited �1�u and 1�u� states
at the internuclear separation R=2 a.u. Since there is no
stable H2

+ molecule in excited electronic states at this inter-
nuclear separation, these configurations may be considered
as a result of a resonant excitation from the ground state by a
laser field with the appropriate wavelength. Recent experi-
ments �11� show that this way of populating the excited elec-
tronic states is quite practical. In this work, we study the fast
electronic motion while the nuclei are kept at their original
positions. However, possible experimental observation is not
the only purpose of presenting the results for excited elec-
tronic states in the present work. As to be shown, these states
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possess a symmetry quite different from that of the ground
state, and the symmetry of the electronic state and the corre-
sponding electron density distribution dramatically influence
the MPI and HHG dynamics of the molecule. The electron
orbitals with the same symmetry exist in stable multielectron
diatomic molecules which are a subject of extensive experi-
mental �12� and theoretical explorations recently. Multielec-
tron systems, however, are much more difficult to treat theo-
retically. Approximate models such as molecular Ammosov-
Delone-Krainov �ADK� �13� and Keldysh-Faisal-Reiss
�KFR� �14�, etc., are often used. The models, however, have
their intrinsic limitations that may prevent a correct quanti-
tative description of the phenomena. On the other hand, H2

+

is a unique one-electron molecular system which allows for
almost exact solution in the field-free case as well as for
accurate treatment in the laser field. Thus the results obtained
in this work for both the ground and excited electronic states
of H2

+ can provide useful insight for the understanding of
MPI and HHG in multielectron diatomic and polyatomic
molecules. We note that ab initio nonperturbative study of
the MPI and HHG processes from the ground electronic
states of diatomic molecules such as H2 �15�, N2, O2, F2
�16�, and CO �17� molecules can now be treated rather accu-
rately by means of the self-interaction-free time-dependent
density functional theory �TDDFT�.

The organization of the paper is as follows. In Sec. II, we
describe the version of the generalized pseudospectral dis-
cretization of wave functions and operators developed in the
present work. It makes use of the prolate spheroidal coordi-
nates and sets of grid points that allow accurate account of
the boundary conditions and produce high precision wave
functions and eigenvalues for moderate numbers of grid
points. We also describe here our implementation of the
split-operator technique for accurate and efficient time
propagation of the discretized wave functions. Finally, in this
section we discuss how we calculate the ionization probabili-
ties and HHG spectra from the time-dependent wave func-
tions. In Sec. III, we present our results regarding MPI and
HHG of the ground and excited electronic states of H2

+. The
resonance and two-center interference effects in the HHG
spectra are discussed in details as well as the influence of the
orbital symmetry on the MPI and HHG processes. Section
IV contains concluding remarks.

II. THEORY AND NUMERICAL TECHNIQUES

To calculate the ionization probability and HHG spectra,
we solve the time-dependent Schrödinger equation for the
molecule H2

+ in the laser field. The initial wave function is
an unperturbed eigenfunction of H2

+. For our calculations,
we select the ground �1�g� and two excited �1�u and 1�u�
electronic states. The nuclei are fixed at their positions, and
the nuclear motion is not taken into account. To describe the
diatomic molecular ion H2

+, we make use of the prolate
spheroidal coordinates �, �, and � which are related to the
Cartesian coordinates x, y, and z as follows �18�:

x = a���2 − 1��1 − �2� cos � ,

y = a���2 − 1��1 − �2� sin � ,

z = a�� �1 � � � �, − 1 � � � 1� . �1�

In Eq. �1� we assume that the molecular axis is directed
along the z axis, and the nuclei are located on this axis at the
positions −a and a, so the internuclear separation R=2a.

A. Generalized pseudospectral method and solution
of time-independent eigenvalue problem

First, we solve the unperturbed eigenvalue problem and
obtain the eigenvalues and eigenfunctions:

�− 1
2�2 + U��,���	��,�,�� = E	��,�,�� . �2�

Here the kinetic energy operator in the prolate spheroidal
coordinates reads as:

−
1

2
�2 = −

1

2a2

1
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��
��2 − 1�

�

��
+

�

��
�1 − �2�

�

��

+
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��2 − 1��1 − �2�
�2

��2� , �3�

and the Coulomb interaction with the nuclei is as follows
�the charge of each center is unity�:

U��,�� = −
2�

a��2 − �2�
. �4�

For the unperturbed molecule, the projection m of the angu-
lar momentum onto the molecular axis is conserved. Thus
the wave function 	�� ,� ,�� can be represented in a sepa-
rable form,

	��,�,�� = 
m��,��exp�im�� , �5�

and separate eigenvalue problems for different �m� are ob-
tained,

−
1

2a2

1

��2 − �2�	 �

��
��2 − 1�

�

��
+

�

��
�1 − �2�

�

��
−
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�2 − 1

−
m2

1 − �2

m −
2�

a��2 − �2�

m = E
m. �6�

To solve Eq. �6�, we first convert it to equivalent variational
forms, different for even and odd m. This is done to ensure
accurate numerical solutions of the differential equations for
both even and odd projections of angular momentum
�note that the exact eigenfunctions have factors
��2−1��m�/2�1−�2��m�/2 which are nonanalytical at nuclei for
odd �m��. The variational forms of Eq. �6� and detailed de-
scription of GPS discretization of the coordinates � and �
can be found in the Appendix.

The matrix eigenvalue problems which appear upon dis-
cretization of Eq. �6� can be written as follows for even m
values,

�
i�j�

	Tij;i�j�
e + � m2

2a2��i
2 − 1��1 − � j

2�

−
2�i

a��i
2 − � j

2���ii�� j j�
�m;i�j� = E�m;ij , �7�

and odd m values,
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�
i�j�

	Tij;i�j�
o + � m2 − 1

2a2��i
2 − 1��1 − � j

2�
+

1 + �i
−2

a2��i
2 − � j

2�

−
2�i

a��i
2 − � j

2�
��ii�� j j�
�m;i�j� = E�m;ij , �8�

respectively. Here the quantities �m;ij are related to the wave
function at the discretized coordinates,


m��i,� j� =
�m;ij

��i�� j�
�1 − yj

2

1 + xi

PNx
�xi�PNy

� �yj�

��i
2 − � j

2
, �9�

PNx
�x� and PNy

� �y� being the Legendre polynomial and its

derivative, respectively. The kinetic energy matrices Tij;i�j�
e

and Tij;i�j�
o are calculated as follows:

Tij,i�j�
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1
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� � j�
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x
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2 �

k=1
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2
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2�

dkj
y dkj�

y �
�10�

and

Tij,i�j�
o =
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y � . �11�

The discretized coordinates �i and � j, as well as the colloca-
tion points xi and yj, are defined in the Appendix. Note that
the potential terms are diagonal in the pseudospectral
method. They are represented by their values at the dis-
cretized coordinates, so no calculation of potential energy
matrix elements is required. The kinetic energy matrices are
given by simple analytical expressions �10� and �11� which
can be readily programmed into the computer code. Straight-
forward programming implementation and high accuracy for
moderate number of collocation points constitute the most
attractive features of the generalized pseudospectral method.

Solving the eigenvalue problems �7� and �8�, we obtain
unperturbed energy values and eigenstates of H2

+, which are
used as initial states for time propagation as well as for con-
struction of propagation matrices.

B. Solution of the time-dependent Schrödinger equation
in the laser field

The time-dependent Schrödinger equation in the laser
field is solved by means of the split-operator method in the
energy representation previously developed for our Floquet
calculations �7,19�. We employ the following split-operator,
second-order short-time propagation formula:

	�t + �t� = exp�− i 1
2�tH0�exp�− i�tV��,�,t + 1

2�t��


exp�− i 1
2�tH0�	�t� + O„��t�3

… . �12�

Here �t is the time propagation step, H0 is the unperturbed
electronic Hamiltonian which includes the kinetic energy and
the interaction with the nuclei, V�� ,� , t� is the term due to
the coupling to the external field. We assume that the laser
field is linearly polarized and the dipole approximation is
well justified. Without loss of generality, we can also assume
that the polarization vector of the field lies in the plane x-z.
Then using the length gauge, we can write the potential
V�� ,� , t� in the following form:

V��,�,�,t� = aF�t���� cos � + ���2 − 1��1 − �2� cos � sin �� .

�13�

Here � is the angle between the polarization vector of the
laser field and the molecular axis. The time-dependent func-
tion F�t� contains the carrier and envelope factors. In our
calculations, we use the sine-squared pulse shape, then the
function F�t� can be written as follows:

F�t� = F0 sin2 �t

T
sin �0t . �14�

In Eq. �14�, F0 is the peak field amplitude, �0 is the carrier
frequency, and T is a pulse duration. Our pulse contains 20
optical cycles.

The time propagation process based on Eq. �12� can be
described as follows. Since the unperturbed Hamiltonian
commutes with the projection of the angular momentum on
the molecular axis, the field-free propagator exp�−i 1

2�tH0� is
block diagonal and can be represented in the following form:

exp�− i 1
2�tH0� = �

m=−�

�

exp�− i 1
2�tH0

��m����m�
m� , �15�

where H0
��m�� are the unperturbed Hamiltonians corresponding

to particular angular momentum projections m, as expressed
by Eqs. �7� and �8�, and �m�
m� are the projecting operators
onto the states with definite m. The propagator matrices
exp�−i 1

2�tH0
��m��� are built of the unperturbed eigenvectors


k
��m�� and eigenvalues Ek

��m�� when the eigenvalue problems
�7� and �8� are solved,

exp�− i 1
2�tH0

��m��� = �
k

exp�− i 1
2�tEk

��m����
k
��m���

k

��m��� .

�16�

Working in the energy representation, we can control the
contributions to the sum �16�. For example, removing the
contributions with very high energies, we can get rid of spu-
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rious transitions to irrelevant regions of the energy spectrum
and improve the numerical stability of the propagation. To
apply the propagator in the form �15�, we expand the total
time-dependent wave function in the Fourier series with re-
spect to the angular coordinate �,

	��,�,�,t� = �
m=−�

�


m��,�,t�exp�im�� . �17�

Then each term in the series �17� is acted upon by only one
term in the series �15�, and the result of the field-free propa-
gation can be written as follows:

	�1���,�,�,t� � exp�− i 1
2�tH0�	��,�,�,t�

= �
m=−�

�

exp�im��exp�− i 1
2�tH0

�m��
m��,�,t� .

�18�

Using this procedure for the field-free propagation step, we
can significantly reduce the dimensions of the propagator
matrices and speed up the computations. In practical calcu-
lations, the infinite series �17� should be truncated. We found
that for our present calculations retaining the m values −8 to
8 is sufficient to obtain converged results.

The external field operator exp�−i�tV� is a multiplication
in coordinate representation when using the length gauge,
and the next part of the short-time propagation is achieved
straightforwardly,

	�2���,�,�,t� � exp�− i�tV��,�,�,t + 1
2�t��


	�1���,�,�,t� . �19�

Then 	�2��� ,� ,� , t� is reexpanded in the Fourier series,

	�2���,�,�,t� = �
m=−�

�


m
�2���,�,t�exp�im�� , �20�

and the next unperturbed propagation is applied,

	�3���,�,�,t� � exp�− i 1
2�tH0�	�2���,�,�,t�

= �
m=−�

�

exp�im��exp�− i 1
2�tH0

�m��
m
�2���,�,t� .

�21�

This completes the short-time propagation according to Eq.
�12� since 	�3� is the wave function 	 at the time t+�t,

	��,�,�,t + �t� = 	�3���,�,�,t� . �22�

The procedure described above is to be applied sequentially
starting at t=0 and ending at t=T. As a result, the wave
function 	�� ,� ,� , t� is obtained on a uniform time grid
within the interval �0,T�.

The numerical parameters of the present calculations are
as follows. We used 72 grid points in � and 24 grid points in
�, accordingly the dimension of the propagator matrices is
1728
1728. This coordinate grid allows to reproduce the
ground state and low-lying excited states energies of H2

+

with the machine accuracy. We keep the angular momentum

projections from −8 to 8. As test calculations show, this is
enough for convergence even at the highest intensity 3

1014 W/cm2 used in the calculations. For the time propa-
gation, we use 4096 time steps per optical cycle �81920 steps
for the whole pulse�. Again, this is a safe choice for the laser
field frequency and intensities used in the calculations. For
efficient matrix-vector multiplications we use basic linear al-
gebra subroutines �BLAS� found in the Intel math kernel
library �MKL�. Developing a parallel computer code also
helps to speed up the computations.

C. Ionization probability and high-order harmonic
generation spectra

Once the wave function is computed, we can proceed to
calculate the ionization probability of H2

+ in the laser field
and spectra of the produced high-order harmonic radiation.
The ionization probability Pi can be calculated through the
survival probability Ps,

Pi = 1 − Ps. �23�

The latter can be defined as a probability of finding the elec-
tron within sufficiently large volume v around the nuclei,

Ps = �
v

d3r�	�2. �24�

Since we use an absorber, the normalization of the wave
function is not preserved during the time propagation. The
outgoing electron current is not reflected back, and the right-
hand side of Eq. �24� is a decreasing function of time. The
volume v is selected by inequality ��20; before the laser
pulse the integral �24� is equal to unity with very high accu-
racy, and we assume the electron density that leaves this
volume during the interaction with the laser field represents
unbound states. With the time-dependent wave function
	�� ,� ,� , t�, we can calculate the time-dependent ionization
probability Pi�t�, and Pi�T� is the ionization probability after
the laser field is switched off.

To calculate HHG spectra, we employ the widely used
semiclassical approach, where the basic expressions come
from the classical electrodynamics but the classical quanti-
ties such as dipole moment and its acceleration are replaced
with the corresponding quantum expectation values. For
nonmonochromatic fields �as in our case�, the spectral den-
sity of the radiation energy emitted for all the time is given
by the following expression �20�:

S��� =
4�4

6�c3 �D��2. �25�

Here � is the frequency of radiation, c is the velocity of
light, and D� is a Fourier transform of the time-dependent
dipole moment,

D� = �
−�

�

dtD�t�exp�i�t� . �26�

The time-dependent dipole moment is evaluated as an expec-
tation value of the electron radius vector with the time-
dependent wave function 	�� ,� ,� , t�,
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D�t� = 
	�r�	� . �27�

The total energy E emitted in the harmonic radiation can be
calculated as

E = �
0

�

d�S��� . �28�

For a single laser pulse �14�, the radiation energy spec-
trum �25� contains peaks corresponding to odd harmonics of
the carrier frequency �0. The width of a peak is inverse
proportional to the pulse duration.

III. RESULTS AND DISCUSSION

First, we have performed the field-free calculations of the
electronic eigenstates of H2

+ at the internuclear separation
2 a.u. We do not list all the eigenvalues as they are well-
known in the literature �see, e.g., �21��. In Table I the ener-
gies of the first five bound states are compared with the pre-
vious most accurate results. Note that the number of grid
points we use is intended for accurate propagation involving
the continuum states and well in excess for accurate descrip-
tion of low-lying bound states. For example, to achieve 14
digit accuracy for the ground state energy with the present
discretization scheme, it is sufficient to have only 14 and 10
grid points in the � and � coordinates, respectively. The ei-
genvalues shown in Table I are computed with 16 byte rep-
resentation of real numbers, all digits are accurate. Although
such accuracy exceeds the limits of applicability of Eq. �2�,
the results can be used as numerical reference data. Thus the
GPS method with the parameters given above can reproduce
the initial states for the time propagation procedure as well
as the propagation matrices with sufficiently high accuracy.

We have also computed the electron densities of 1�g, 1�u,
and 1�u orbitals at R=2 a.u. The ground 1�g state density
manifests an almost spherical symmetry, and one can expect
a relatively smooth dependence of MPI probability and HHG
energy spectra on the orientation angle between the molecu-
lar axis and the polarization direction of the laser field. On

the contrary, the excited states have distinct features which
are responsible for more anisotropic density distributions.
These are the nodal plane perpendicular to the molecular axis
for the 1�u state, and the molecular axis for the 1�u state
where the wave function exactly turns zero. As a result, one
can expect a sharper angular dependence of MPI probability
and HHG energy than in the case of 1�g state with prominent
minima at 90° for 1�u and at 0° for 1�u.

A. Multiphoton ionization

We have computed the probabilities of multiphoton ion-
ization as functions of the orientation angle for the following
peak intensities of the laser field: 1
1014 and 3

1014 W/cm2 for the 1�g state, 5
1013 and 1

1014 W/cm2 for the 1�u state, and 5
1012 W/cm2 for the
1�u state. In all cases we used a 20-optical cycles laser pulse
with the sine-squared envelope and the carrier frequency
�0=0.056 95 a.u. corresponding to the wavelength 800 nm.
In the weak field limit, the minimum number of photons with
the frequency �0 required for ionization is 20 for the ground
state, 12 for the 1�u state, and 8 for the 1�u state. With
increasing the peak intensity, the minimum number of pho-
tons becomes larger mainly due to the increase of the pon-
deromotive potential Up. The results are presented in Figs.
1–3. As expected, the dependence of MPI probability Pi on
the orientation angle � is not strong for the 1�g state. The
probability is decreasing monotonously with � increasing
from 0° to 90°. For the intensity 3
1014 W/cm2, the ratio
Pi�0° � / Pi�90° � is equal to 1.7 what is in a fairly good agree-
ment with the results of Ref. �22� ��2�, where a different
pulse shape was used. Note that this ratio becomes larger
with increasing laser peak intensity; for the intensity 1

1014 W/cm2, Pi�0° � / Pi�90° �=1.25. The same trend can
be observed in the calculations of Ref. �22�. These results
mean that deformations of the electron density become very
significant at the specified intensities and give rise to more
anisotropic ionization for more intense fields. Such density

TABLE I. Energies of the ground and first excited electronic
states of H2

+ at the internuclear separation R=2 a.u.

State Energy �a.u.�

1�g −1.1026342144949464615089689a

−1.1026342144949b

1�u −0.6675343922023829303619702a

−0.6675343922024b

1�u −0.4287718198958564363139601a

−0.4287718198959b

2�g −0.3608648753395038450386998a

−0.3608648753383b

2�u −0.2554131650864845614172502a

−0.2554131650857b

aPresent work.
bReference �21�.
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FIG. 1. Scaled MPI probabilities of the ground 1�g state of H2
+

for the laser field peak intensities 1
1014 W/cm2 �A� and 3

1014 W/cm2 �B� vs the orientation angle �. The probabilities are
obtained by multiplying the data by 10−5 �A� and 10−4 �B�.
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deformations can lead not only to quantitative but also to
qualitative changes in the angular dependence of the MPI
probability, as we can see for the 1�u state �Fig. 2�.

For weaker intensity 5
1013 W/cm2, the maximum in
the dependence Pi��� is located approximately at �=25°,
with the local minimum at �=0°. However, for higher inten-
sity 1
1014 W/cm2, the maximum is shifted to �=0°, and
the minimum disappears. For the both intensities used in the
calculations, the MPI probabilities demonstrate a deep mini-
mum at the orientation angle 90°. This is an anticipated re-
sult based on the electron density distribution of the 1�u state
and the fact that the interference of the contributions to the
ionization amplitude from the two nuclei is always destruc-
tive for this state at �=90°. As opposed to the 1�g state, MPI
becomes less anisotropic with increasing the laser peak in-
tensity. The ratios of MPI probabilities at maximum and at
minimum of their orientation angle dependence are summa-
rized in Table II.

The calculations for the 1�u state were performed at a low
peak intensity 5
1012 W/cm2. With the photon frequency
�0, we fall in the close vicinity of a one-photon resonance
with the 2�g state. That is why the ionization of the 1�u state
is strongly enhanced even at the low peak intensity of the
laser field. An exception is made by the case �=0°, that is
the laser field directed along the molecular axis. As we dis-
cussed above, the ionization of the 1�u state should be sup-
pressed in this case because of the specific electron density
distribution. Additionally, the transition 1�u→2�g is not al-
lowed at �=0° since it requires changing the angular mo-
mentum projection that is not possible in the laser field po-
larized along the molecular axis. Thus the resonance
enhancement of ionization does not occur at �=0°, and the
MPI probability here is two orders of magnitude lower than
at �=20°, where the orientation angle dependence has its
maximum.

B. High-order harmonic generation

We have performed calculations of the HHG energy spec-
tra emitted by H2

+ in the 1�g and 1�u electronic states for
various orientation angles. We used the peak intensities 3

1014 and 1
1014 W/cm2 for the 1�g state and 1

1014 W/cm2 for the 1�u state. According to the well-
known atomic recollision model �23�, the HHG spectra dem-
onstrate a plateau region with a cutoff at the energy �Ei �
+3.17Up where �Ei� is the ionization energy of the initial
state and Up is the ponderomotive potential. For the linearly
polarized laser field, Up= I / �4�0

2�, I being the field intensity.
For diatomic molecules, besides the collision with the parent
core which resembles the single atom case and leads to the
same harmonic spectrum cutoff position irrespectively of the
laser field intensity and internuclear separation, the collisions
can occur also with the other nucleus. In the latter case, the
return kinetic energy of the electron depends on the field
intensity and frequency as well as on the distance between
the nuclei �24�. For the field parameters used in the present
calculations, two different classical trajectories may be re-
sponsible for the high kinetic energy of the electron when it
returns to the other nucleus. However, the corresponding
maximum recombination energies appear quite close to the
atomic energy �Ei�+3.17Up.

For the initial state and peak field intensities used in our
calculations, the cutoff positions are supposed to be at 56�0
and 32�0 for the 1�g state and at 24�0 for the 1�u state,
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FIG. 2. Scaled MPI probabilities of the 1�u state of H2
+ for the

laser field peak intensities 5
1013 W/cm2 �A� and 1

1014 W/cm2 �B� vs the orientation angle �. The probabilities are
obtained by multiplying the data by 10−3 �A� and 10−1 �B�.
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FIG. 3. Scaled MPI probability of the 1�u state of H2
+ for the

laser field peak intensity 5
1012 W/cm2. The probability is ob-
tained by multiplying the data by 10−2.

TABLE II. Ratios of MPI probabilities at maximum and at mini-
mum of their orientation angle dependence for 1�g and 1�u elec-
tronic states of H2

+.

State
Intensity
�W/cm2�

Max.
at

Min.
at Pi

max/ Pi
min

1�g 1
1014 0° 90° 1.25

3
1014 0° 90° 1.70

1�u 5
1013 25° 90° 81.9

1
1014 0° 90° 63.9
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respectively. The HHG spectrum S��� is shown in Figs. 4
and 5 for the 1�g state and in Fig. 6 for the 1�u state. As one
can see, the semiclassically predicted cutoff positions are in
fair agreement with our calculations. For the 1�g state, the
HHG spectra at �=0° and �=90° are comparable in their
intensity; it is also the case for all intermediate orientation
angles. This observation is in full agreement with the MPI
results which do not show any significant anisotropy for the
1�g state. One can notice the resonance structures in the
HHG spectra, more clearly seen for the intensity 1

1014 W/cm2 �Fig. 5� since less number of harmonics is
shown in this case. There are two additional strong peaks in
the HHG spectra not corresponding to an odd harmonic or-
der. The first peak is located near the 7th harmonic; we at-
tribute it to the resonance with the first excited �1�u� state.
The second resonance peak appears close to the 11th har-
monic; it is attributed to the resonance with the 1�u state.
Note that in accordance with the selection rules for dipole
transitions, the transition 1�g→1�u is forbidden for the ori-
entation �=90°. On the other hand, the transition 1�g
→1�u is forbidden for �=0°. That is why the HHG spectra
shown in Fig. 5 have only one resonance structure each. For
the intermediate orientation angles, both resonance structures
appear on the same HHG spectrum.

In the vicinity of a resonance, the harmonic radiation is
strongly enhanced. Thus we can see that the 7th harmonic at
�=0° is much more intense than the same harmonic at �
=90°, and the 11th and 13th harmonics at �=90° are two
orders of magnitude stronger than the harmonics at �=0°.
The resonance transition 1�g→1�u also affects the HHG
spectra produced in the 1�u state. In Fig. 6 we show S��� for
the orientation angles �=15° and �=90°. We choose �
=15° instead of �=0° because the resonance structures are
more pronounced at this orientation angle. We attribute this
result to fine tuning into the resonance while changing � due
to different ac Stark energy level shifts at different orienta-
tion angles. Unlike the case of HHG radiation from the 1�g
state, the resonance between 1�u and 1�g does not lead to
enhancement of the harmonic radiation in the vicinity of the
resonance energy since it essentially populates the low-lying
1�g state. In general, for the initial 1�u state the HHG signal
decreases when the orientation angle is increased from 0° to
90°. As one can see from Fig. 6, the signal at �=90° is
several orders of magnitude weaker than that at �=15°. The
same behavior we observed for the ionization signal �see
Sec. III A above�.

Recently there was an active discussion in the literature
�22,25,26� regarding the interference effects in the harmonic
spectra due to the two-center nature of diatomic molecules.
Based on a simple recollision model, Lein et al. �25� sug-
gested that the position of the interference minimum in the
harmonic spectrum is given by the relation

R cos � = �/2, �29�

where R is the internuclear separation, and � is the de
Broglie wavelength of the recolliding electron. Provided all
the kinetic energy of the electron is converted into the har-
monic photon energy, Eq. �29� can be recast as

cos � =
�

R�2N�0

, �30�

with N being the harmonic order. It follows from Eq. �30�
that not all harmonics can exhibit minimum in their intensity
while the angle � is varied. For the parameters of our calcu-
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FIG. 6. �Color online� HHG spectrum S��� from 1�u state of
H2

+ for the laser field peak intensity 1
1014 W/cm2 and orienta-
tion angles 15° �solid line� and 90° �dashed line�. Arrows mark the
resonance peaks in the spectrum.
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+ for the laser field peak intensity 3
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lations �R=2 a.u., �0=0.056 95 a.u.�, we find that N�23. In
Fig. 7 we show the angular dependence of the harmonic
signal for several harmonics in the plateau region for the
laser peak intensity 3
1014 W/cm2. For better viewing, all
the signals are normalized to unity at �=0°. As one can see,
the harmonic signals for N=35, 45, 55, and 65 have broad
minima in their dependence on the orientation angle �. The
positions of the minima are in remarkable agreement with
the predictions of Eq. �30�. However, agreement is not that
good for the laser peak intensity 1
1014 W/cm2. The har-
monics still exhibit minima in their orientation angle depen-
dence but the minima positions are shifted to larger angles as
compared with the predictions of Eq. �30�. That means, for
weaker intensities the simple semiclassical model that leads
to Eq. �30� becomes less accurate. The results regarding the
interference minima are summarized in Table III.

For the 1�u initial state, the same recollision model of
HHG as in the case of the 1�g state can be applied. However,
now Eqs. �29� and �30� point at the maxima rather than
minima in the harmonic spectra. The results of our calcula-
tions are presented in Fig. 8. Again, for better viewing on the

same graph, the signals of different harmonics are normal-
ized to unity at �=0°. While for the 29th harmonic the maxi-
mum is weak, it is well shaped for the harmonics 31 and 33.
Unfortunately, these harmonics are already at cutoff of the
HHG spectrum and we cannot continue the analysis to higher
harmonics. To extend the plateau region in the HHG spec-
trum, one needs to use higher peak intensities �for the same
carrier frequency�. However, using higher intensities will re-
sult in complete ionization of the system since even at the
intensity 1
1014 W/cm2 the ionization probability of the
1�u state is high. The positions of the interference maxima in
Fig. 8 �12°–14°� are not in a good agreement with predic-
tions of Eq. �30� �30°–36°�. As in the case of the 1�g state, it
confirms that the intensity 1
1014 W/cm2 is probably too
weak for the semiclassical recollision model to produce ac-
curate results. For the 1�u state, however, the maxima posi-
tions obtained from our calculations are shifted to smaller
angles with respect to those from Eq. �30�.

IV. CONCLUSION

In this paper we have presented ab initio 3D nonpertur-
bative calculations of multiphoton ionization and high-order
harmonic generation from the ground and excited electronic
states of H2

+. Our method is based on the generalized pseu-
dospectral discretization of the wave functions and operators
in prolate spheroidal coordinates followed by the time propa-
gation of the wave function using the split-operator tech-
nique with the propagator matrices constructed in the energy
representation. With moderate number of grid points, the
method produces highly accurate unperturbed eigenvalues
and eigenfunctions of H2

+ and thus ensures the accuracy of
the propagator matrices.

We have found that the dependence of MPI probabilities
and HHG energy spectra on the orientation of the molecular
axis with respect to the polarization of the laser field is es-
sentially affected by the symmetry of the electronic state of
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FIG. 7. �Color online� Harmonic signal from 1�g state of H2
+

for the laser field peak intensity 3
1014 W/cm2 as a function of
orientation angle �. The harmonic signal is normalized to unity at
�=0. Shown are harmonics 35, 45, 55, 65; the curves are marked
with the harmonic order.

TABLE III. Interference minima positions for several harmonics
for the peak laser intensities 3
1014 W/cm2 and 1
1014 W/cm2

from the 1�g electronic state of H2
+.

Harmonic order

33 35 37 45 55 65

Intensity 3
1014 W/cm2

Present work 36° 46° 51° 54°

Eq. �30� 38° 46° 51° 55°

Intensity 1
1014 W/cm2

Present work 42° 45° 58°

Eq. �30� 36° 38° 40°
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FIG. 8. �Color online� Harmonic signal from 1�u state of H2
+

for the laser field peak intensity 1
1014 W/cm2 as a function of
orientation angle �. The harmonic signal is normalized to unity at
�=0. Shown are harmonics 29, 31, 33; the curves are marked with
the harmonic order.
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the molecule. For the orientations �=0° and �=90°, MPI
and HHG are suppressed by orders of magnitude for the 1�u
and 1�u states, respectively. Both MPI and HHG can be
enhanced due to multiphoton resonances between the initial
state and other bound states of the molecules. The resonance
transitions are manifested as additional �not corresponding to
odd harmonics of the carrier frequency� peaks in the HHG
spectra. If the resonance transition is made to the state with
higher energy, the ionization probability is increased as well
as production of harmonics with frequencies in the vicinity
of the transition energy. We also studied the two-center in-
terference effects in the HHG spectra. Interference minima
are found for the harmonics produced in the 1�g state, and
interference maxima are observed for the harmonics from the
1�u state. Our results confirm the simple semiclassical theory
of interference phenomena for higher laser intensity 3

1014 W/cm2 while pronounced discrepancies are revealed
for weaker intensity 1
1014 W/cm2.

The results obtained in this work for H2
+ can provide an

insight into the dynamics of multielectron diatomic mol-
ecules in strong laser fields. For example, strong suppression
of MPI and HHG for some orientations of a molecule �par-
ticularly, 0° and 90°� related to the symmetry properties of
the molecular orbitals can indicate that commonly used re-
striction to the highest-occupied molecular orbital can be in-
sufficient for correct description of orientation effects in mul-
tielectron molecules. The work on multielectron diatomic
molecules by means of the self-interaction-free time-
dependent density functional theory is in progress.
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APPENDIX: DETAILED EXPRESSIONS FOR
GENERALIZED PSEUDOSPECTRAL DISCRETIZATION

IN PROLATE SPHEROIDAL COORDINATES

The variational forms of Eq. �6� are as follows:
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for odd �m�. Then we apply pseudospectral discretization to
Eqs. �A1� and �A2�. The coordinate � is mapped to the inter-
val �−1,1� according to the following formulas:

� = 1 + Rl
1 + x

1 − x +
2Rl

Rb − 1

, �A3�

�� �
d�

dx
= 2Rl

1 +
Rl

Rb − 1

�1 − x +
2Rl

Rb − 1
�2 . �A4�

Here Rl and Rb are the parameters of the transformation
�A3�. The parameter Rb is the maximum value of the coor-
dinate �; it corresponds to x=1. Making this parameter finite,
we can solve the problem in the finite volume around the
nuclei that significantly improves the accuracy. The zero
boundary conditions are imposed on the wave function at �
=Rb. In our calculations we used Rb=40. In the time-
independent calculations, this value is large enough to ensure
high accuracy of sufficient number of both discrete and con-
tinuous eigenstates. When solving the time-dependent equa-
tion in the laser field, some measures should be taken to
prevent an unphysical reflection from the boundary. We use
an absorbing layer located between �=20 and �=40 which
smoothly brings down the wave function and prevents the
reflection.

The variable x is discretized using the Legendre-Gauss-
Radau scheme �xj are the collocation points and wj are the
quadrature weights� �18�,

xi: PNx
�xi� − PNx+1�xi� = 0,

wi
x =

1

�Nx + 1�2

1 + xi

�PNx
�xi��2 . �A5�

Here Nx is the number of collocation points used, PNx
�x� is

the Legendre polynomial; the collocation points are obtained
as roots of the difference of two polynomials with orders Nx
and Nx+1, respectively. The Gauss-Radau scheme allows
easily implement boundary conditions at the end of the in-
terval since x=1 is always a collocation point, irrespectively
of Nx. The integration and differentiation formulas in the
Legendre-Gauss-Radau scheme can be written as follows
�f�x� is an arbitrary function�:

�
−1

1

f�x�dx = �
i=1

Nx+1

f�xi�wi
x, �A6�

AB INITIO STUDY OF THE ORIENTATION … PHYSICAL REVIEW A 76, 043412 �2007�

043412-9



df

dx
�xi� = �

i�=1

Nx+1

Dii�
x f�xi�� . �A7�

Here the derivative matrix Dii�
x is defined as follows:

Dii�
x = dii�

x
�1 + xi��PNx

�xi�

�1 + xi�PNx
�xi��

, �A8�

dii�
x =

1

xi − xi�
�i � i��, dii

x = −
1

2�1 + xi�
,

dNx+1,Nx+1
x = 1

4Nx�Nx + 2� . �A9�

The coordinate � does not need any additional mapping
transformation since it originally spans the interval �−1,1�.
However, in the most general case such a transformation can
be applied, so we will assume that � is mapped to the vari-
able y within the interval �−1,1� �in practical calculations we
used the identity transformation �=y�. Unlike the variable x,
we discretize y using the Legendre-Gauss scheme for we do
not have to apply any boundary conditions at the points y
= ±1. The collocation points for this scheme are defined as
the roots of the Legendre polynomial PNy

, and the quadrature
weights are expressed through the derivatives of this polyno-
mial �Ny is the number of collocation points used� �18�,

yj: PNy
�yj� = 0,

wj
y =

1

�1 − yj
2��PNy

� �yj��2 . �A10�

The integration and differentiation in the Legendre-Gauss
scheme are performed as follows �g�y� is an arbitrary func-
tion�:

�
−1

1

g�y�dy = �
i=1

Ny

g�yj�wj
y , �A11�

g��yj� = �
j�=1

Ny

Djj�
y g�yj��, Djj�

y = djj�
y

PNy
� �yj�

PNy
� �yj��

, �A12�

with the derivative matrix djj�
y defined as

djj�
y =

1

yj − yj�
�j � j��, djj

y =
yj

1 − yj
2 . �A13�

Once the basic expressions of the pseudospectral discretiza-
tion are established by Eqs. �A5�–�A13�, one can proceed to
discretize the variational eigenvalue problems �A1� and
�A2�. The results are given by Eqs. �7�–�11�.
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