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We perform a detailed analysis of high-order harmonic generation in diatomic molecules within the strong-
field approximation (SFA), with emphasis on quantum-interference effects. Specifically, we investigate how the
different types of electron orbits, involving one or two centers, affect the interference patterns in the spectra.
We also briefly address the influence of the choice of gauge and of the initial and final electronic bound states
on such patterns. For the length-gauge SFA and undressed bound states, there exist additional terms, which can
be interpreted as potential energy shifts. If, on the one hand, such shifts alter the potential barriers through
which the electron initially tunnels, and may lead to a questionable physical interpretation of the features
encountered, on the other hand, they seem to be necessary in order to reproduce the overall maxima and
minima in the spectra. Indeed, for dressed electronic bound states in the length gauge, or undressed bound
states in the velocity gauge, for which such shifts are absent, there is a breakdown of the interference patterns.
In order to avoid such a problem, we provide an alternative pathway for the electron to reach the continuum,
by means of an additional attosecond-pulse train. A comparison of the purely monochromatic case with the
situation for which the attosecond pulses are present suggests that the patterns are due to the interference
between the electron orbits which finish at different centers, regardless of whether one or two centers are

involved.
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I. INTRODUCTION

In the past few years, high-order harmonic generation
(HHG) and above-threshold ionization (ATI) from aligned
molecules in strong laser fields of femtosecond duration have
proven to be a powerful tool for resolving, or even control-
ling, processes in the subfemtosecond and sub-A scale. For
instance, one may employ HHG and ATTI in the tomographic
reconstruction of molecular orbitals [1] and in the attosecond
probing of dynamic changes in molecules [2].

This is possible due to the fact that the physical mecha-
nisms governing both phenomena take place in a fraction of
the laser period, i.e., within hundreds of attoseconds [3], and
involve the recombination or the elastic scattering of an elec-
tron with its parent molecule [4]. Thereby, high-order har-
monics or high-energy photoelectrons, respectively, are gen-
erated. Thus, the spectral features are highly dependent on
the spatial configuration of the ions with which the electron
rescatters or recombines, and yield patterns which are char-
acteristic of the molecule. Furthermore, they also depend on
the alignment angle of the molecule with respect to the laser-
field polarization.

Due to their simplicity, in particular, diatomic molecules
have been investigated and minima and maxima have been
encountered in their HHG and ATI spectra. Such patterns
have been observed both theoretically [5-18] and experimen-
tally [19], and have been attributed to the interference be-
tween high-order harmonics or photoelectrons generated at
different centers in the molecule. They are, in a sense, the
microscopic counterpart of those obtained in a double-slit
experiment. Furthermore, the energy positions of the maxima
and minima depend on the alignment angle and on the inter-
nuclear distance and, additionally, reflect the bonding or an-
tibonding nature of the highest occupied molecular orbitals
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in question [14,15,18]. Such features have been studied ei-
ther numerically, by solving the time-dependent Schrodinger
equation (TDSE) [14,15,18], or semianalytically, by employ-
ing the strong-field approximation (SFA) [5-13,16,17]. In
particular, in Ref. [15], the contributions to the yield from
each molecular center have been singled out within a TDSE
computation. Therein, it has been explicitly shown that the
maxima and minima in the spectra are obtained due to the
interference between contributions from different centers, in
agreement with the double-slit model in Refs. [15,18].

Specifically in the SFA framework, the transition ampli-
tude can be written as a multiple integral, with a semiclassi-
cal action and slowly varying prefactors. The structure of the
molecule (and thus its double-slit character) can be either
incorporated in the prefactors or in the action. The latter
approach also takes into account processes in which an elec-
tron rescatters or recombines with a center in the molecule
different from the site of its release [5,9-11,13].

An open question is, however, which types of electron
orbits are responsible for specific interference features. For
instance, are the dips and maxima originated by the interfer-
ence between orbits in which the electron leaves and returns
to the same center (regardless of which), or between those in
which the electron leaves one atom and recombines with the
other? On the other hand, it could also be that the interfer-
ence patterns result from the combined effect of all such
orbits, and one is not able to attribute them to specific sets.

Since the strong-field approximation is a semianalytical
method, and allows an immediate association with the clas-
sical orbits of an electron returning to its parent molecule, it
appears to be an ideal tool for tackling this problem. This
approximation, however, possesses several drawbacks. First,
the SFA is gauge dependent, which leads to different prefac-
tors and action, depending on whether the velocity gauge or
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the length gauge is taken. Second, even for a specific gauge,
the precise expressions for the prefactors are not agreed
upon, and some of them lead to interference patterns which
are in disagreement with the experiments, and with results
from other methods [15,20].

The main objective of this work is to make a detailed
assessment of the contributions and relevance of the different
types of recombination scenarios to the above-mentioned in-
terference patterns, within the strong-field approximation, for
a diatomic molecule. Throughout the paper, we approximate
the strong, infrared field by a linearly polarized monochro-
matic wave E(f)=E, sin(wf)e, and consider a linear combi-
nation of atomic orbital (LCAO) approximation. In general,
we consider that the electron reaches the continuum by tun-
neling ionization. As an exception, however, we also take an
attosecond-pulse train superposed to the monochromatic
wave [21-24]. The attosecond-pulse train provides an addi-
tional pathway for the electron to reach the continuum and,
recently, has proven to be a powerful tool in order to control
high-order harmonic generation [21,23,24] and above-
threshold ionization [22,23]. In the context of the present
work, it is a convenient way to avoid problems related to
spurious potential-energy shifts. These shifts are present in
the length gauge and artificially modify the potential barrier
through which the electron tunnels. Hence, they may lead to
a questionable physical interpretation as far as the relevance
of the different sets of orbits to the patterns are concerned.

This paper is organized as follows. In Sec. II, we discuss
the strong-field approximation transition amplitude for high-
order harmonic generation, starting from the general expres-
sions (Sec. IT A) and, subsequently, addressing the specific
situation of a diatomic molecule in the LCAO approximation
(Sec. I B). Thereby, we consider the situation for which the
structure of the molecule is either incorporated in the pref-
actor, or in the semiclassical action, in the presence and ab-
sence of the attosecond-pulse train. When discussing the
former case, we emphasize the role of the overlap integrals,
in which the dipole moment and the atomic wave functions
are localized at different centers in the molecule. In the latter
case, we follow the model in Ref. [11], for a purely mono-
chromatic driving field, and our previous work [23] when the
attosecond pulses are present, very closely. Subsequently
(Sec. III), we investigate the interference patterns. Finally, in
Sec. IV we summarize the paper and state our main conclu-
sions.

II. TRANSITION AMPLITUDES

A. General expressions

In general, the strong-field approximation (SFA) consists
in neglecting the influence of the laser field when the elec-
tron is bound, the atomic or molecular binding potential
when the electron is in the continuum, and the internal struc-
ture of the system in question, i.e., contributions from its
excited bound states. The SFA transition amplitude for high-
order harmonic generation reads, in the specific formulation
of Ref. [26] and in atomic units
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bo=i f dt f dt' J dpd; (p(1))dion(P(1'))
exp[iS(t,t',Q.Kk)] +c.c. (1)

with the action
1 t
S(t,t',Q,p)=— Ef [p+ A(DPdr- Ip(t -+ Qr (2)
t/

and the prefactors  dyo(P(1))=(p(1)|Ogyp-€,|thp) and
dion(P(t"))=(p(t")|H;y(t")|hp). In the above equations, Ogp,
e, Hyy(t'), I, and Q) denote the dipole operator, the laser-
polarization vector, the interaction with the field, the ioniza-
tion potential, and the harmonic frequency, respectively. The
explicit expressions for p(¢) are gauge dependent and will be
given below. The above-stated equation describes a physical
process in which an electron, initially in a field-free bound
state |t), is coupled to a Volkov state |p(¢')) by the interac-
tion H,,(t') of the system with the field. Subsequently, it
propagates in the continuum and is driven back toward its
parent ion, with which it recombines at a time ¢, emitting
high-harmonic radiation of frequency (). In Eq. (1), addition-
ally to the above-mentioned assumptions, the further ap-
proximation of considering only transitions from a bound
state to a Volkov state in the dipole moment has been made.
In the single-atom case, this has been justified by the fact
that the remaining contributions, from the so-called
“continuum-to-continuum” transitions, were very small. For
a discussion of the various formulations of the SFA see, e.g.,
Refs. [25-27] and, in particular, Ref. [28].

Due to the fact that it can be carried out almost entirely
analytically, the SFA is a very powerful approach. It pos-
sesses, however, the main drawback of being gauge depen-
dent (for general discussions see, e.g., Ref. [30], and for the
specific case of molecules, Ref. [11]). Apart from the obvi-
ous fact that the interaction Hamiltonians H;,(¢'), which are
present in d;,,(p(¢')), are different in the length and velocity
gauges [31], in most computations where the SFA is em-
ployed, field-free bound states are taken, which are not gauge
equivalent. Indeed, a field-free bound state |¢E)L)> in the
length gauge would be gauge equivalent to the field-dressed
state |zﬂf)v)>= XUH,|1,0(()L)) in the velocity gauge, with x,.;
=exp[iA(¢)-r]. Such a phase shift causes a translation p
—p—A(f) on a momentum eigenstate |p). Hence, for field-
free bound states in both gauges it leads to different dipole
matrix elements d,..(p(¢)) and d,,,(p(2)). Explicitly, in the
length gauge p(f)=p+A(z), while in the velocity gauge
p(1)=p.

For computations involving a single atom, the latter arti-
fact can be avoided by placing the system at the origin of the
coordinate system. For systems composed of several centers,
such as molecules, however, this ambiguity will always be
present. Indeed, in the literature, different results have been
reported for molecular SFA computations in the velocity and
in the length gauge [7,8,11,17]. Recently, in modified ver-
sions of the length-gauge SFA, this problem has been elimi-

nated for ATI by considering the initial bound state |z,~b§)L)>
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=exp[—iA(t’)-r]|1//éL)>. Such a state is gauge equivalent to a
field-free bound state in the velocity gauge and, physically,
may be interpreted as a field-dressed state in which the laser-
field polarization is included [17,32]. For HHG, one may
proceed in a similar way, with the main difference that the
dressing should also be included in the final state, with which
the electron recombines. In the dressed modified SFA, p(z)

=p.

B. Diatomic molecules

We will now apply the SFA to a diatomic molecule. For
this purpose, we will consider the simplest scenario, namely,
a one-electron system and frozen nuclei. Furthermore, we
will assume that the molecular orbital from which the elec-
tron is released and with which it may recombine is a linear
combination of atomic orbital (LCAO) approximation. Ex-
plicitly, the molecular bound-state wave function reads

o(r) = Cy Ly (r)) + el ()], (3)

where e=+1, rj=r—R/2, and r,=r+R/2 denote the posi-
tions of the centers C; and C,, respectively, and Cy is a
normalization constant. For homonuclear molecules, which
we will consider here, ¢81)= f)z)=<po. The positive and nega-
tive signs for € correspond to bonding and antibonding orbit-
als, respectively. Within this context, there exist two main
approaches for computing high-order harmonic spectra,

which will be discussed next.

1. Prefactors

The simplest and most widely used [6-8,12,15,17,20] ap-
proach is to incorporate the structure of the molecules in the
prefactors d,..(p(7)) and d;.,(p(?)), and to employ the same
action S(z,¢',€),p) as in the single-atom case. The multiple
integral in the transition amplitude (1) can then either be
solved numerically, or using saddle point methods [29]. The
latter procedure can be applied for high enough intensities
and low enough frequencies, and consists in approximating
(1) by its asymptotic expansion around the coordinates
(t;,7.,p,) for which S(¢,#',Q),p) is stationary. This implies
that 9,5(¢,¢",€Q,p)=3,S(¢,¢",,p)=0 and 9,S(¢,1",,p)=0.
In this paper, we employ the specific saddle-point approxi-
mations discussed in Ref. [33].

For a single atom placed at the origin of the coordinate
system, this leads to the equations

[p+A()=-2I, (4)
J, ddp+A(D]=0, (5)

and
20Q-1)=[p+ADT. (6)

Equation (4) expresses the conservation of energy at the time
t" at which the electron reaches the continuum by tunneling
ionization. This equation possesses no real solution, which
reflects the fact that tunneling has no classical counterpart. In
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the limit 1,—0, one obtains such a condition for a classical
particle reaching the continuum with vanishing drift velocity.
Equation (5) constrains the intermediate momentum of the
electron, so that it returns to its parent ion, and, finally, Eq.
(6) describes the conservation of energy at a later time ¢,
when the electron recombines with its parent ion and a high-
frequency photon of frequency () is generated.

The matrix element d,e.(p)=(P|Oyi,- €,/ t)y) then reads

dree(p) = (Z—C;gq[eimz(rl) + e PRI()] ()

where
ry+r _
I(r) = J odip(%) e explip - rle(r)d’r;  (8)

and Odip(¥) is the dipole moment. In the length gauge,
which we are mostly adopting in this paper, p(z)=p+A(2).
Unless strictly necessary, in order to simplify the notation,
we do not include the time dependence in p. The dipole
moment can be written in several forms. If one considers the
length form a natural choice is Ogi)p(r)z—er+er,+er2=er.
Other possibilities are to consider the operator Oy, in its
velocity and acceleration forms [20,34].
Inserting Og;,(r) in Eq. (8) yields

I(r) =« Zr) +Z;,(r), with j=1,2 and v#j, (9)
where
Ij(rj) = f Odip(rj) -e,exp[ip - l'j](PO(l‘j)d3Vj (10)
and
Ijv(rj) = f Odip(rv) -eexpip - l'j]€0o(l’j)d3rj, v#j.

(11

Specifically, if the dipole is in the length form, the above-
stated integrals read

Ir) == 50, 9(0) (12)
and
L) =Sl ity o) + RG] (13)
where
d(p) = J exp[ip - r/leo(r)d’r;. (14)

In Z;, €=+1 for j=1 and €;=-1 for j=2. Equation (7) is
then explicitly written as

d(b)

rec

2iC
®)= 5 [— cos(9)7, B(B) + ~sin(9)(5)

(15)

for bonding molecular orbitals (i.e., €>0), or
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2C R
d)(p) = @g% sin()d; () ~ ~“cos(9) 4(p)

(16)

in the antibonding case (i.e., €<0), with 9=p-R/2.

In Egs. (15) and (16), the terms with a purely trigonomet-
ric dependence on the internuclear distance yield the double-
slit condition in Ref. [18]. The maxima and minima in the
spectra which are caused by this condition are expected to
occur for

p-R=2nm and p-R=Q2n+ 1), (17)

respectively, for bonding molecular orbitals (i.e., €>0). For
antibonding orbitals, the conditions are reversed, i.e., the
maxima occur for the odd multiples of 7 and the minima for
the even multiples. If the velocity gauge is taken, the above
stated conditions hold for p(r)=p, instead of p(r)=p+A(z).
This is due to the fact that the initial and final free-field states
are not gauge equivalent, as discussed in Sec. IT A.

The remaining terms grow linearly with the projection R,
of the internuclear distance along the direction of the laser-
field polarization and may lead to unphysical results [11,20].
For this reason, they are sometimes neglected in the integrals
Z,,(r)) [16]. There exists, however, no rigorous justification
for such a procedure. Indeed, only recently, it has been
shown that such terms can be eliminated by considering an
additional interaction which depends on the nuclear coordi-
nate. This interaction is present in a modified molecular SFA,
in its dressed and undressed versions [17], and leads to con-
tributions which cancel out the linear term in R,.

In the length gauge, if the length form of Oy, is taken,
dyee(P())=dion(P(1')), with p()=p+A(z), while in the veloc-
ity gauge,

12
) = SR AL 9o (18)

ion (2 7T)3/2

or

"N12
) =- i CARFAO] @, (19)

d@
(2 77) 32

on
with p(r)=p, for bonding and antibonding molecular orbit-
als, respectively.

2. Modified saddle-point equations

Physically, if one employs the prefactors (15) and (16),
this means that one is not modifying the saddle-point Egs.
(4)—(6). Therefore, the orbits along which the electron is
moving in the continuum remain the same as in the single-
center case. This approach is questionable in several ways.
From the technical viewpoint, there is no guarantee that such
prefactors are slowly varying, as compared to the semiclas-
sical action, especially for large internuclear distances [9,11].
Furthermore, in general, they do not incorporate processes in
which the electron leaves one center of the molecule and
recombines with the other, which, physically, are expected to
be present in molecular HHG [5,11].

A slightly more sophisticated approach is to exponential-
ize the prefactors obtained in the two-center case and incor-
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porate the terms in p-R/2 in the action. This procedure has
been adopted in Ref. [11] and will be closely followed in this
work. For the sake of simplicity, we will consider the modi-
fied prefactor

~ 2iC R
dre2(B) =~ (2—77)3%{(5 E)ﬁﬁxcb(ﬁ)}, (20)

for which the second term in Eq. (13) is absent. Equation
(20) is also very similar to the dipole matrix element in the
velocity form, apart from the fact that, in the latter case,
aﬁﬁ{’(ﬁ) is replaced by p@(p) [20]. In the expression for the
antibonding case, the cosine term in Eq. (20) should be re-
placed by sin(p-R/2).

This leads to the sum

M=2 2 M, (21)

of the transition amplitudes

C t
MAV=—LJ dt'Jdtf Epyp.t.r)
J (27T)3/2 0
X expliS;,(p.1,1')], (22)

with n(ﬁ,t,t’)={8ﬁx¢[ﬁ(t)]}*ﬁﬁr¢(ﬁ(t’)). The terms S;, cor-
respond to a modified action, which incorporates the struc-
ture of the molecule.

Explicitly, for the undressed length-gauge SFA,

S;i=8(p.Q,0,1") + (= 1T (R,1,1") (23)
and
SjV= S(p’Q’t’t,) + (_ 1)V+1§2(R’tat’)7

where & (R,t,t')=[A(1)-A(')]-R/2 and &(R,t,t')=p-R
+[A(1)+A(¢')]-R/2. Equations (23) and (24) may be di-
rectly related to physical processes involving one or two cen-
ters in the molecule, respectively, as will be discussed next.

For this purpose, we will solve the multiple integrals
in Eq. (22) employing saddle-point methods. The
conditions  d,S;,(p.Q.t,t')=0, 4,;,(p.Q,t,t')=0, and
3yS;(p,L2,t,1')=0 upon the derivative of the action yield
saddle-point equations, which, as in the previous section, can
be related to the orbits of an electron recombining with the
molecule. Explicitly, for the modified action S;; [Eq. (23)],
the saddle-point equations read

v#j, (24)

12
W =-1,-E()-R22, 2
2
Wq)—lﬁE(t)'R/2 26)
for j=1 or
"2
w=—lp+E(ﬂ)‘R/2’ @7)
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2
w =Q-1,-E()-R2 (28)
for j=2. The saddle point Egs. (25) and (27) correspond to
the tunnel ionization process from center C; and C,, respec-
tively. Curiously, both equations contain extra terms, if com-
pared to Eq. (4) for the single-atom case. Such terms are
dependent on the internuclear distance R and the external
laser field E(¢') at the time the electron is freed, and may be
interpreted as potential-energy shifts in the barrier through
which the electron tunnels out. Similar terms are also ob-
served in Egs. (26) and (28) for the energy conservation at
the time the electron recombines, as compared to the single-
atom expression (6).

The remaining saddle point equation is given by the same
expression as in the single-atom case, i.e., Eq. (5), and means
that, for M; and M,,, the electron is ejected and returns to
the same center. If on the other hand, we consider the modi-
fied action (24), this yields

f [p+A(s)]ds+R=0, (29)

which, physically, mean that the electron is leaving from one
center and recombining with the other. The negative and
positive signs refer to the transition amplitudes M, (center
C, to center C,) and M,; (center C, to center C,), respec-
tively. In the former case, the remaining saddle-point equa-
tions are given by (28), i.e., the electron tunnels from C; and
recombines with C,, whereas in the latter case they are given
by Egs. (27) and (26), which physically, expresses the fact
that the electron is ejected at C, and recombines with C;.

The energy shifts +E(7)-R/2, 7=t,1' in Egs. (25)-(28)
are absent in the velocity gauge SFA [11], and in a modified
length-gauge SFA, in which the electric field polarization is
incorporated in the initial and final electronic bound states.
In both cases, the action S i associated to orbits involving
only one center, is given by the single-atom expression (2),
which leads to the saddle-point Eqgs. (4)-(6). The action S;,
related to two-center orbits reads

S;=Sp.Q.1.t") + (- D*'p-R, v#j. (30)

The above-stated expression leads to the single-atom Egs. (4)
and (6) for tunneling and rescattering, together with the two-
center return condition (29). The prefactors, however, are
different in both cases. In the dressed modified length-gauge
SFA 77D(p,t,t’):[&ptrﬁ(p)]*&p;ﬁ(p), while in the velocity
gauge 7"(p.1,1')=[d, ¢(p)]"(p)[p+A(:") /2.

One should note that, within the specific model employed
here, the physical process in which the electron moves di-
rectly from one center to the other, without reaching the con-
tinuum, is not being considered. Such a process leads to a
strong set of harmonics in the low-energy range of the spec-
tra. Since, however, we are focusing on the plateau harmon-
ics, the contributions from this extremely short set of orbits
are not of interest to the present discussion. For a detailed
study of this case, see, e.g., Refs. [5,10].

PHYSICAL REVIEW A 76, 043407 (2007)

3. Additional attosecond pulses

The role of the energy shifts observed in Egs. (25)—(28) is
not well understood. A way of eliminating such terms is to
modify the length-gauge SFA and include the influence of
the laser field in the initial and final states. However, even
without such modifications, it is possible to provide an addi-
tional pathway for the electron to reach the continuum, so
that, at least in the context of ionization, these shifts can be
avoided. For instance, if the electron is ejected by a high-
frequency photon, it does not have to tunnel through poten-
tial barriers with energy shifts whose physical meaning is not
clear. Such a pathway can be provided by a time-delayed
attosecond-pulse train E,(¢) superposed to a strong, near in-
frared field E,(t)=E, sin wte,. Indeed, it has been recently
shown that such pulses can be used to control the electron
ejection in the continuum, and thus high-harmonic genera-
tion and above-threshold ionization [21-23].

In Refs. [23,24], we employed such a scheme to control
quantum-interference effects for high-harmonic generation
and above-threshold ionization for the single-atom case,
within the SFA framework. Our previous findings suggest
that the probability of the electron reaching the continuum,
in case it is ejected by the attosecond pulses, is roughly the
same for all sets of orbits. Indeed, it appears that the sole, or
at least main factor determining the intensities in the spectra
is the excursion time of the electron in the continuum. In the
specific case studied in Ref. [23], there was a set of very
short orbits, which led to particularly strong harmonics.
Therefore, an attosecond pulse train superposed to a strong
laser field is an ideal setup to avoid any artifacts due to
modified tunneling conditions.

In Ref. [23], we have approximated the attosecond pulse
train by a sum of Dirac-Delta functions in the time domain.

This yields
§<I_H_td>6x7 (31)
w

where w, E;, and o(¢) denote the laser field frequency, the
attosecond-pulse strength, and the train temporal envelope,
respectively. This approximation is the limiting case for a
train composed of an infinite set of harmonics, and has the
main advantage of allowing an analytic treatment of the tran-
sition amplitudes involved up to at most one numerical inte-
gration. Furthermore, it is a reasonable asymptotic limit for
pulses composed by a large high-harmonic set. We consider
here o=const, which, physically, corresponds to an infinitely
long attosecond-pulse train. Clearly, the total field is given
by E(1)=E,(t) +E,(1).

We will now assume that the attosecond pulses are the
only cause of ionization and that the subsequent propagation
of the electron in the continuum is determined exclusively by
the monochromatic field. Hence, E(¢')=E,(¢') and A(z)
=A,(r) in Egs. (1) and (22). This eliminates the integral over
the ionization time in the transition amplitudes. Hence, the
values for which the single atom-action S(z,¢',{),K), or the
modified action §;, is stationary must be determined only
with respect to the variables ¢ and p. Physically this means

N 0k
E, (1) =E, g} o(0)
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that the recombination and return conditions remain the
same, with regard to the purely monochromatic case, but that
there is no longer a saddle-point equation constraining the
initial electron momentum. In fact, the electron is being
ejected in the continuum with any of the energies Nw—1,,
since all harmonics composing the train are equivalent. For
the other extreme limit, namely, a high-frequency monochro-
matic wave, we refer to Ref. [24], where we provide a de-
tailed discussion within the SFA.

Explicitly, if the action is not modified, these assumptions
lead to the transition amplitude

C -
EZD) _ ME (- 1)"J dtf &*p exp[iS(p,Q,1,1")]

(2 )3/2 =

X droe(B(0) dion(P(1')) . (32)

In case one considers the transition amplitudes (22), this
yields

My= s )3,22( ”"L dtf Epylpint) (33)

Xexp[iS;,(p,Q.1,1")]. (34)

In both equations, t'=t,+n7/w. The saddle-point Egs. (5)
and (6) for the single atom case can then be combined as

sin wr — (= 1)"sin wt,;=[w(t —t,) — n)

Q-1
X(cos wt ¥ —E> , (35)
2U

p

which will give the return times 7. If, on the other hand, these
equations are modified, it is possible to distinguish four main
scenarios. Specifically, for the processes in which the elec-
tron leaves and returns to the same center, the saddle-point
equations differ from Eq. (35) only in a shift 7,

+E,(r)-R/2. The negative and positive signs correspond
to My, and M,,, respectively. For the scenarios involving
two centers, the saddle-point equations read

R.w
sin wt — (= 1)" sin wt;+ 62L

P
:[w(t—td)—nﬂ'](cos wt F QZ_I_]:E)’ (36)

with 7,,:1,,+eE,(t)~R/2. The case e=—1 and e=+1 corre-
sponds to M, and M,, respectively.

III. HARMONIC SPECTRA

We will now present high-harmonic spectra, in the pres-
ence and absence of the attosecond pulses. We restrict the
electron ionization times to the first half cycle of the driving
field. We also consider the six shortest pairs of orbits for the
returning electron. Due to wave-packet spreading, the contri-
butions from the remaining pairs are negligible [35]. For
simplicity, we employ a bonding combination of 1s states,
for which
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FIG. 1. (Color online) High-harmonic spectra computed em-
ploying the single-atom orbits and two center prefactors, using a
bonding (e=+1), linear combination of atomic orbitals, for internu-
clear distances 1 a.u.=R=8 a.u. and parallel alignment. The up-
per and lower panels correspond to the dipole prefactors (15) and
(20), respectively. The atomic system was chosen as H,*, which
was approximated by the linear combination of 1s atomic orbitals
with [,=0.5 a.u. We took the driving field intensity and frequency
to be /=1X 10" W/cm? and 0=0.057 a.u., respectively.

1
[p*+21,]*

and assume that the molecule is aligned parallel to the laser-
field polarization, so that R,=R.

d(p) ~ (37)

A. Prefactors

We will commence by considering the single-center ac-
tion (2) and the prefactors discussed in the previous section.
In Fig. 1, we depict high-harmonic spectra computed for a
wide range of internuclear distances, employing the prefactor
(15) or the modified expression (20), for which the linear
term in R, is absent (upper and lower panels, respectively).
The figure illustrates how the linear term masks the interfer-
ence patterns. In fact, for a.u. |=R=3 a.u., it counterbal-
ances the influence of the purely trigonometric term, and no
clear minima and maxima are observed. As the internuclear
distance increases, this term starts to play a dominant role,
displacing the maxima and minima away from the double-
slit condition (17). Furthermore, it seems that the patterns
become more distinct with increasing harmonic order.

A rough estimate of the influence of each term in Eq. (15)
on the spectra agrees with Fig. 1. Since the trigonometric
functions in Eq. (15) are bounded, the ratio between
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FIG. 2. (Color online) Spectra computed employing the single-
atom orbits and two center prefactors (black thin lines), as com-
pared to those obtained employing modified saddle-point equations
(green thick lines). We consider here the modified length form (20)
of the dipole operator, which excludes the term with a linear depen-
dence on R,. The atomic system was chosen as H,", which was
approximated by the linear combination of 1s atomic orbitals with
1,=0.5 a.u. The internuclear distance and the alignment angle are
R=5 au. and 6=0, respectively. The driving field intensity and
frequency are given by /=1X 10" W/cm? and w=0.057 a.u., re-
spectively. The interference minima are indicated by the arrows in
the figure.

the maxima caused by each term will be ¢
; , where 6 is the alignment angle
and ¢(p) is given by Eq. (14). If s=1, the maxima will
possess the same order of magnitude and there will be no
noticeable modulation, while if s <1 the double-slit physical
picture may still be reproduced. For s>1, however, one
expects that the linear term in R will prevail. Hence, the
critical value for the internuclear distance is R,
=2|sec 69, ¢(p)/$(P)|. This expression depends on the
bound states with which the electron recombines, and also on
the harmonic energy. For instance, specifically for s states,
R.~4p, sec 6/(p*+21,). Above the ionization threshold, ac-
cording to Eq. (6), R.~2p, sec 6/€). Hence, one expects the
linear term to be more prominent as the harmonic energy
increases, leading to clearer, though incorrect, patterns. In
order to avoid such problems, we will employ the prefactor
(20) throughout.

In Fig. 2, we compare spectra computed using either the
prefactor (20) or modified saddle-point equations. Both spec-
tra are very similar, with maxima and minima at harmonic
frequencies Q=1p+n2ﬂ2/(2R§), as expected from the
double-slit condition. This similarity holds not only for the
gross features, but, additionally, for the substructure caused
by other types of quantum interference. Close to the minima,
however, the yield from the latter case is larger. Neverthe-
less, the very good overall agreement shows that, in fact, the
patterns obtained can also be interpreted as a result of the
quantum interference between different types of electron or-
bits.
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FIG. 3. (Color online) Contributions to the high-harmonic yield
from the quantum interference between different types of orbits, for
internuclear distance R=5 a.u. The remaining parameters are the
same as in Fig. 3. (a) Orbits involving similar scattering scenarios,
2 and |M,+My;|. (b) Orbits ending at the same
center, i.e., [M,,+My|* and |M,+My,|?. (e) Orbits starting at the
same center, i.e., 2. For comparison, the
full contributions |My,+Myy+M +M ,|* are displayed as the light
gray circles in the picture.

B. Interference effects

In order, however, to identify which sets of orbits cause
the dips and the maxima, we will analyze the interference
between their individual contributions. Such results are
shown in Fig. 3. In the upper panels, we present the spectra
computed from topologically similar sets of orbits, i.e., from
processes involving only one or two centers [Fig. 3(a)]. In
this case, the main interference patterns are absent. This
strongly suggests that they are due to the quantum interfer-
ence of topologically different sets of orbits: the orbits along
which an electron leaves and returns to the same center, and
those along which it reaches the continuum at one center and
recombines with the other. Physically, this could be attrib-
uted to the fact that, in this case, there would be an appre-
ciable phase difference between the two sets of orbits, since
the latter are much longer than the former. This phase differ-
ence would cause the overall modulation.

Hence, there are two remaining possibilities. Concretely,
the modulation can be due to the quantum interference either
between processes in which the electron leaves from differ-
ent centers and recombines with the same center (i.e., be-
tween the orbits which start at C; and end at C,, with v# Js
and those starting and ending at C and j=1,2), or between
those in which an electron starts at the same center and re-

043407-7



C. FIGUEIRA DE MORISSON FARIA

VP b s
LR TN N .

‘ [ ;’(uﬂ\ /N
i

28| ]

Log, ,Harmonic Yield (arb. units)

'
W e A
RSN
TR T
Vi vy
[

20 40 60 80 100 120 140
Harmonic Order N

FIG. 4. (Color online) Contributions to the high-harmonic yield
from specific types of orbits, for internuclear distance R=5 a.u.
The remaining parameters are the same as in Fig. 3. (a) Yield from
the orbits starting and ending at the same center, i.e., transition
probabilities [M,|> and |M,|*. (b) Yield from the orbits starting and
ending at different centers, i.e., transition probabilities |M,|> and
M.

combines with different centers (i.e., the electron is ejected at
C i and recombines at C,, v# j, or it is freed and recombines
at C;, with j=1,2). In Fig. 3(b), we consider the former
processes, whereas in Fig. 3(c) we depict the latter. Interest-
ingly, only in case the electron leaves from the same center,
the interference patterns are present. Furthermore, there is a
difference in roughly four orders of magnitude between the
two types of contributions. Such a difference is absent in the
other cases. Additionally, the full contributions to the yield
are practically indistinguishable from the transition probabil-
ity |M,;+M,|?, from the orbits starting at C,.

In order to understand this better, one must have a closer
look at the individual contributions from different sets of
orbits, and, in particular their orders of magnitude. Such con-
tributions, depicted in Figs. 4(a) and 4(b), show that the tran-
sition probabilities |M,,|> and |M,;|?, which correspond to
the orbits starting from the center C,, are roughly four orders
of magnitude larger than |M,,|> and |M,,|?, i.e., than those
from the orbits starting at C;. Therefore, it is not surprising
that the yield is dominated by |M,,+My,|? in the previous
figure. Furthermore, these results exhibit no maxima and
minima. Hence, they support the assumption that such fea-
tures are due to the interference of different types of orbits.
Finally, the contributions from orbits starting at the same
center possess the same order of magnitude. This suggests
that tunneling ionization is the main mechanism determining
the relevance of a particular type of orbits to the spectra, and
that are local differences in the barrier through which the
electron must tunnel, depending on the center it starts from.

An inspection of the imaginary parts Im[z'] of the start
times provides additional insight into this problem. Due to
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FIG. 5. (Color online) Imaginary parts of the start times " of the
shortest pairs of orbits, which contribute to the matrix elements M»,
and M, [panel (a)] and to M,, and M, [panel (b)], for the same
field and atomic parameters as in the previous figure.

the fact that tunneling ionization is a process which has no
classical counterpart, this quantity is always nonvanishing,
even if the energy range in question is lower than the maxi-
mal harmonic energy. The larger Im[#'] is, the less probable
it will be that tunneling ionization takes place. Such an in-
terpretation has been successfully employed in Ref. [36] in
order to determine the dominant pairs of orbits, in the con-
text of nonsequential double ionization with few-cycle laser
pulses, and will be also considered in this work. For that
purpose, we will take the shortest pairs of orbits utilized in
the computation of the transition probabilities in Fig. 4 and,
for each case, display Im[¢']. These are the dominant pairs of
orbits. The longer pairs have a less significant influence on
the spectra, due to the spreading of the electronic wave
packet [35].

Such results are depicted in Fig. 5. Clearly, Im[#'] is
around four times larger for the orbits starting from the cen-
ter C;, as compared to those starting from C,. This means
that, in order to reach the continuum, the electron must over-
come a larger barrier if it comes from C,. Since, roughly
speaking, the ionization probability per unit time decreases
exponentially with Im[#'], one expects the contributions from
the orbits starting from C; to be around four orders of mag-
nitude smaller than those from the orbits starting at C,. An
inspection of Fig. 4 shows that this is indeed the case.

The above-stated effect could, however, be an artifact of
the strong-field approximation in the length gauge. Indeed,
the terms +E(z')-R in the saddle-point Egs. (25) and (27)
can be interpreted as potential energy shifts, due to the fact
that the ions in the molecule are displaced from the origin
[11,17]. Such terms increase or sink the potential barrier for
C, or C,, respectively, and, consequently, change the orders
of magnitude in the contributions starting from different cen-
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FIG. 6. (Color online) High-harmonic spectra for a molecule
aligned parallel to the laser-field polarization and internuclear dis-
tance R=3.5 a.u., for an attosecond pulse train superposed to a
strong, near-infrared field, and exhibiting vanishing time delay (¢
=0) with respect to it. We consider a bonding combination of 1s
atomic orbitals, and take the intensity of the attosecond-pulse train
to be 1,=1;/10. The remaining parameters are the same as in the
previous figures. (a) Spectra computed employing the modified ver-
sion of the two-center prefactors in the length form [Eq. (20)] and
single-atom saddle-point equations, compared to that obtained using
modified saddle-point equations. (b) Contributions from individual
scattering scenarios, i.e., from |Mj,, 2 with j=1,2 and v=1,2. The
interference minima are indicated by arrows in the figure.

ters. Even though, as a whole, the results match those ob-
tained by other means, their physical interpretation is contro-
versial.

One may, however, avoid this problem by providing an
additional pathway for the electron to reach the continuum.
For that purpose, we shall superpose a time-delayed attosec-
ond pulse train to the strong laser field, employing the model
discussed in Sec. I B 3 and in our previous work [23,24].
The maximal harmonic energies for this specific model are
strongly dependent on the time delay 7, between the
attosecond-pulse train the infrared field, extending from the
ionization potential, for ¢=0.757 to I,+1.8U,, for ¢=nm.
Furthermore, there exist many intermediate delays, for which
a double plateau is present. This substructure may be detri-
mental to the identification and physical interpretation of the
interference patterns. In order to avoid such problems, we
will consider here vanishing time delay, i.e., ¢=0.

In Fig. 6, we depict the spectra obtained for a diatomic
molecule subjected to such a field, assuming either a two-
center prefactor and the single-center saddle-point Eq. (35),
or the modified saddle point Egs. (36) [Fig. 6(a)]. Both com-
putations exhibit a minimum near the harmonic frequency
0 =7lw, in agreement with Eq. (17). If only the contribu-
tions |M iv|2 from the individual scattering scenarios are
taken, such a minimum is absent [Fig. 6(b)]. Therefore, it is
due to interference effects between different sets of orbits.
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FIG. 7. (Color online) Contributions to the high-harmonic yield
from the quantum interference between different types of orbits, for
the same field and molecular parameters as in Fig. 7. (a) Contribu-
tions from topologically similar scattering scenarios, i.e., contribu-
tions from |My,+My|> and |M,+M,|>. (b) Contributions from
orbits starting at the same center. (¢) Contributions from orbits end-
ing at the same center. For comparison, the overall spectra are dis-
played as the blue symbols in the figure. The interference minimum
is indicated by the vertical lines near 1=71w.

One should note that, in contrast to the purely monochro-
matic case, all contributions exhibit the same order of mag-
nitude. This is due to the fact that, if the attosecond pulses
are present, the electron is being ejected in the continuum
with roughly the same probability, regardless of the center it
left from.

The precise role of the various recombination scenarios is
illustrated in Fig. 7. For clarity, we concentrate on the pla-
teau region around the interference minimum. The main dif-
ference observed, with regard to the purely monochromatic
case, is that the overall shape of the spectrum and, conse-
quently, its minimum, is due to the collective interference of
several types of orbits. This is in contrast to the previous
results, for which they were caused by the processes starting
at a center C ¥ and ending at different centers, i.e.,
|M]~U+ij 2, with v#j and »,j=(1,2). Indeed, a modulation
is even present for the probability |M;+My|* involving
only one-center scenarios. This is shown in Fig. 7(a), and
contradicts the previously made assumption that such fea-
tures are due to the interference between topologically dif-
ferent sets of orbits. In fact, it seems that the absence of
overall maxima and minima for the one-center contributions,
in the purely monochromatic case [Fig. 3(a)], is due to the
different orders of magnitude for M, and My, [cf. Fig. 4(a)].

Furthermore, one needs several different processes in or-
der to obtain the correct position of the minimum. For in-
stance, in Fig. 7(a), the overall spectrum closely follows
|M,+M,|? in the low-energy region. In the vicinity of the
minimum and for higher energies, however, it follows neither
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FIG. 8. (Color online) High-order harmonic spectra for the same
field and molecular parameters as in Fig. 2, but computed with the
field-dressed modified length-gauge formulation of the strong-field
approximation [panel (a)], compared to its field-undressed velocity-
gauge counterpart [panel (b)]. The arrows in the figure indicate the
harmonic order for which a minimum is observed, and the vertical
line marks the rough estimate for such a minimum. The solid and
dotted lines correspond to the prefactor (19) and to the situation for
which cos p-R/2 has been set to 1, respectively.

such contributions nor |M,+My,|?, from two-center pro-
cesses. In Fig. 7(b), where we display the contributions
|ij+Mj,, 2, with v#j and v,j=(1,2), from the orbits start-
ing from the same center, the spectrum closely follows
|M,,+M,|? before the minimum, and |M,+M,|* after the
minimum.

The remaining panel [Fig. 7(c)] depicts the contributions
from |M,,+M,|*, with v#j and v,j=(1,2), which give the
orbits finishing at the same center. In this case, the interfer-
ence minimum is absent. This is strong evidence that the
relevant condition for the presence of such features is that the
orbits taken into account end at different centers, instead of
being topologically different [which is the case for both Figs.
7(b) and 7(c)]. Therefore, these results agree with the
double-slit picture, which has been put across in Ref. [18].

The additional attosecond pulses have the advantage of
not introducing changes in the standard length-gauge SFA
formulation. They modify, however, the physics of the prob-
lem, since they provide a different mechanism for the elec-
tron to reach the continuum. Clearly, there is also the possi-
bility of eliminating the spurious potential energy shifts, by
considering a different version of the SFA, such as the field-
dressed length-gauge formulation proposed in Ref. [17], or
the velocity-gauge formulation.

In Fig. 8, we display high-order harmonic spectra for the
field-dressed SFA in the length gauge, and for the field-
undressed SFA in the velocity gauge [Figs. 8(a) and 8(b),
respectively]. For simplicity, we exhibit the results obtained
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with the modified prefactor (20), instead of a modified ac-
tion. We also provide curves for which only the cosine term
has been set to one, in order to facilitate the identification of
interference effects. As an overall feature, we do not observe
the interference patterns exhibited in the previous figures.
Indeed, the curves with and without the cosine term are very
similar. There is, however, a minimum near ()=115w for the
former case.

For the dressed length-gauge SFA, the above-stated fea-
tures can be attributed to the fact that the condition for
maxima and minima is now given by Eq. (17), with p instead
of p=p+A(¢). The harmonic frequencies for which they oc-
cur can be easily obtained from condition (6), and are given
by

Q=1,+ 7R, + 2nmA()/R, + AX(D))/2.  (38)

An upper bound for ) can be estimated as follows. At the
electron return times, the vector potential is roughly A(z)
sz\@. This yields, for the parameters in Fig. 8,
~ 121w, which is slightly larger than the minimum encoun-
tered.

A breakdown of the interference patterns also occurs in
the velocity gauge, for the very same reasons. Indeed, the
interference condition for the SFA in the velocity gauge and
for the field-dressed SFA in the length gauge are identical.
This is a direct consequence of the fact that field-free initial
and final electron states in the velocity gauge are gauge
equivalent to the field-dressed states considered in this paper.
This gauge equivalence will lead to identical recombination
form factors de.(p)=(p|Og;,-€,|th). Since the interference
conditions (17) are mainly determined by d,..(p), they will
be the same. Hence, the harmonic orders for which the
maxima and minima occur are given by Eq. (38), and there-
fore are unrealistically high. The discrepancies between both
yields stem from the form factors dj,(p)={p|H;n(t")|t),
which are gauge dependent.

One may, however, consider field-dressed states in the
velocity gauge, which are gauge equivalent to field-free
states in the length gauge. This is achieved by applying the
transformation Yy, ;=exp[iA(z)-r] in the initial and final
length-gauge electronic bound states. This leads to a shift
p— p+A(t) on a momentum eigenstate |p), which is exactly
the opposite shift induced in the field-dressed length-gauge
SFA. This shift has the main consequence that the interfer-
ence condition (17) now holds for p=p+A(z), even in the
velocity gauge. The results obtained employing such dressed
states in the velocity-gauge SFA, depicted in Fig. 9, are in-
deed very similar to those obtained using its field undressed,
length gauge formulation. In fact, we have observed mainly
quantitative differences, due to different prefactors d;,,(p)
[37].

One should note, however, that the transformation y,.;
introduces the same additional potential energy shifts in the
modified action as in the undressed length-gauge case. Thus,
the price one pays for recovering the correct interference
conditions is the loss of a direct connection to simple classi-
cal models.
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FIG. 9. (Color online) High-order harmonic spectra for the same
field and molecular parameters as in Fig. 2, but computed with the
field-dressed modified velocity-gauge formulation of the strong-
field approximation. In order to facilitate the comparison, the un-
dressed length-gauge version of the SFA is provided, and the
velocity-gauge yield has been normalized in approximately 2 orders
of magnitude, to match the length-gauge results. In both cases, for
simplicity, the modified prefactor (18) has been employed, instead
of modified saddle-point equations.

IV. CONCLUSIONS

The present results support the viewpoint that the maxima
and minima in the high-order harmonic spectra of diatomic
molecules are due to the interference of electron orbits fin-
ishing at different centers in the molecule. This seems to hold
regardless of whether the electron has been released in one
center at the molecule and recombines with a different cen-
ter, or whether it is ejected and returns to the same center.
Such conclusions have been reached by employing modified
saddle-point equations, within the strong-field approxima-
tion. These modifications lead to orbits involving different
centers, and are a slightly more refined approach than the
standard procedure of considering single-center saddle-point
equations and modified prefactors.

In this framework, we considered that the electron has
been ejected by tunneling ionization and by an additional
attosecond-pulse train, and compared the similarities and dif-
ferences from both physical situations. In the former case,
depending from which center the electron is leaving, it must
overcome unequal potential barriers to reach the continuum,
whereas in the latter case it is ejected with roughly equal
probability. Especially in the purely monochromatic case, we
observed that the contributions from orbits starting at one of
the centers, namely, C,, were much larger than those from
C|, due to a narrower potential barrier. In particular, there
exist potential-energy shifts which are proportional to the
electric field at the ionization time and the internuclear dis-
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tance, which cause such differences. It is, however, notewor-
thy that the electron excursion times have been confined to
the first half-cycle of the laser field. If the other half-cycle
had been taken, the potential barrier would reverse and the
contributions starting from C; would be more prominent.

The above-mentioned potential-energy shifts, however, do
not possess a clear-cut physical interpretation. In fact, they
are only present in the standard length-gauge formulation of
the strong-field approximation, i.e., if field-free bound states
are taken when the electron is ejected and recombines, and
are the source of several problems. For instance, they reflect
the fact that the SFA is translation-dependent. Moreover, due
to their existence, it is difficult to establish an immediate
connection between this approach and the classical equations
of motion of an electron in the laser field.

On the other hand, it seems that such shifts are necessary
in order to obtain the correct energy position of the maxima
and minima in the HHG spectra. In fact, an improved formu-
lation of the SFA, in which the influence of the laser field is
included in the electron bound states, restores its translation
invariance, provides an unproblematic classical limit [17],
but yields incorrect energy positions for the interference pat-
terns. This discrepancy is related to the fact that the field
dressing alters the double-slit interference conditions (17). A
similar absence of interference features has been reported
very recently in Ref. [38], for HHG computations using a
field-dressed version of the SFA in the length gauge.

Finally, when employing different gauges, from our re-
sults it is clear that the dressing of the initial and the final
states plays a far more important role than the different in-
teraction Hamiltonians H,(t'). If the dressing is applied
consistently so that the electronic bound states are gauge
equivalent, the interference patterns will remain the same.
This is due to the fact that the interference condition (17)
will then remain invariant. For instance, the spectra obtained
in the velocity-gauge SFA with undressed states are very
similar to those computed in the length gauge with field
dressed states. The same holds for the undressed length
gauge, and the dressed velocity-gauge SFA spectra. In the
two former cases, there is a breakdown of the interference
patterns, as compared to the field-undressed length gauge
SFA. However, such patterns can be restored in the velocity
gauge, by dressing the electronic bound states appropriately.
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