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We have investigated the intermediate stages of electron capture into Rydberg states of multiply charged ions
�core charge Z�1, principal quantum number nA�1� escaping solid surfaces at low velocity. The time-
symmetrized, two-state vector model of the process is proposed by using both initial and final states of the
ion-surface system. The two conditions determine two wave functions and both are used to describe the system
at intermediate stages. The appropriate probabilities and rates are defined and calculated from the correspond-
ing mixed flux. Taking into account both the surface polarization and the polarization of the electronic cloud of
the ionic core, the probabilities and rates are obtained in a simple analytical form; the population of the
Rydberg levels of the ions Ar VIII, Kr VIII, and Xe VIII interacting with an Al surface is considered as an example.
The quasiresonant character of the process is demonstrated, as well as the complementarity of the neutraliza-
tion and ionization processes for the AZ+ ions escaping the surface and the A�Z−1�+ ions approaching the surface,
respectively. The neutralization distances for the ions finally detected in a given Rydberg state are obtained
from the calculated rates. Although defined under different physical conditions, the results obtained are in
agreement with the coupled-angular-mode theoretical predictions.
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I. INTRODUCTION

Electron exchange during the interaction of ions with
solid surfaces has been studied intensively both theoretically
and experimentally; namely, understanding of the ionization
and neutralization processes is essential for describing a va-
riety of complex surface processes �plasma-wall interaction,
plasma processing of materials, nanoscale electronic devices,
arrangement of the ions on the surface, surface chemical re-
actions, surface analytic methods, etc.�. Aside from the prac-
tical relevance, the investigation of the intermediate stages of
electron transfer offers the possibility of testing some new
theoretical concepts; for example, the problem can be formu-
lated in a time-symmetric way.

Up to now, several theoretical models and approaches for
an investigation of the electron exchange processes have
been proposed; here we mention the classical over-barrier
�COB� method �1,2�, and its extended dynamic version �3,4�,
the perturbation method �5�, the coupled-angular-mode
�CAM� method �6,7�, the complex scaling method �8–11�,
the stabilization method �12,13�, and the time-dependent
close-coupling technique �14,15�. We also mention the re-
cently formulated wave packet propagation approach �16�.
The following two methods �in some cases combined� have
also been proposed: the etalon equation method �EEM�
�17–19� suitable for description of resonant ionization, and
the two-state vector model �TVM� �20–23�, for the time-
symmetrized description of the neutralization processes.

Treatments of the electron exchange between a highly
charged ion �core charge Z�1� and a conducting solid sur-
face can be classified according to the direction of the ionic
motion �approaching or escaping the surface� and according
to the range of the ionic velocities v. The basic process char-

acteristic of ions slowly approaching the surface �v�1 a.u.�
is stepwise resonant neutralization, in which the electrons are
successively captured into Rydberg states �nA�1�; for a re-
view, see Ref. �1�. Recently �19�, the problem of ionization
of these ions was treated independently of the neutralization
problem. It was found that, for any given Z�1, there are
such Rydberg states, with sufficiently high nA values, where
the resonant ionization ends before the neutralization cascade
has begun.

Theoretical studies �21–23� of one-electron capture into
Rydberg states of multiply charged ions �neutralization� es-
caping the surface have been performed in the intermediate
velocity range �v�1�. It was demonstrated that the interme-
diate stages of the ion-surface interaction require more de-
tails in quantum dynamics; thus the appropriate TVM was
developed. Also, it was demonstrated that a back transfer of
active electrons from the moving ion into the solid, i.e., the
reionization of previously populated states, can be important
for some Rydberg states �17�. The theoretical studies men-
tioned were focused on the final population probabilities
Pfin; they were sufficient to explain the available results of
beam-foil experiments.

In the present paper, we analyze electron capture �neutral-
ization� into Rydberg states of multiply charged Rydberg
ions escaping solid surfaces at low velocity, considering the
ion-surface system within the time interval between initial
and final “measurements.” We adapt the TVM to the low-
velocity case and the intermediate stages of the process;
namely, instead of calculating the final probabilities Pfin, we
consider the intermediate probabilities and rates. The main
output of this analysis, from the standpoint of an experiment,
is the neutralization distances Rc

N for the ions finally detected
in a given Rydberg state. We point out that, up to now, direct
observation of the electron exchange “localization” was ex-
perimentally performed only for the ionization of neutral Ry-
dberg atoms �Z=1� �24,25� and H2 molecules �26� slowly*hekata@ff.bg.ac.yu
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approaching solid surfaces. The localization of the electron
capture into a particular �critical� Rydberg state of multiply
charged ions under grazing impact can be deduced from the
measured projectile kinetic energy gains �27,28�. The first
neutralization distances so estimated for the stepwise neutral-
ization correlate with the corresponding Rc

N values obtained
in the present paper.

The TVM of the intermediate stages of the Rydberg level
population represents a form of the time-symmetric formula-
tion of quantum mechanics introduced by Aharonov et al.
�29�, and formulated in a closed mathematical form in Ref.
�30�. Independent of the cited references, the Demkov-
Ostrovskii type of two-state vector model �31� has been in-
troduced in surface physics in Ref. �20�, in which proton
neutralization was considered; the model was further elabo-
rated in Refs. �21–23� devoted to the neutralization of highly
charged ions. Within the framework of the TVM, the state of
a single electron is described by two state vectors ��1�t�� and
��2�t��. The first state evolves �in the first scenario� from the
initial state ��1�tin��= ��M� toward the future. The second
state evolves “teleologically” �in the second scenario� toward
the fixed final state ��2�tfin��= ��A� detected at the final time
t= tfin. The states ��1�t�� and ��2�t�� are characterized by the
parabolic quantum numbers �M of the electron initially lo-
calized in the solid and the spherical quantum numbers �A of
the electron finally detected in the ion, respectively.

In the proposed model, the result of any measurement
performed in the time t� �tin , tfin� depends on both the initial
and final quantum conditions ��M and �A�. The TVM enables
us to define �20–23� the two-state probability amplitude
A�M,�A

�t� and the corresponding probability T�M,�A
�t�. In the

Rydberg-level population problem discussed in the present
paper, we define the neutralization probability P�A

�t� as a
“sum” over the initial quantum numbers �M of the quantity
T�M,�A

�t�; for description of the intermediate stages of the

process we use the normalized probability P̃�A
�t�= P�A

/ P�A

fin,

and the corresponding rate �̃�A
�t�.

By definition, the quantity P̃�A
�t� represents the neutral-

ization probability at time t under the condition that the state
��A� is populated at time t→ tfin. In the treatment of interme-
diate stages of neutralization, the polarization of the solid as
well as the polarization of the electronic cloud of the ionic
core is taken into account. The basic physical quantity in the

calculation of P̃�A
�t� �20–23� is the mixed flux through the

moving Firsov plane SF, separating the solid and the ionic
subsystems. We point out that the mixed flux, outside the
time-symmetrized context, was introduced by Bardeen �32�.
The wave functions �1�r� , t� and �2�r� , t� that constitute the
mixed flux will be considered within the framework of the
quasistationary approximation and calculated with
asymptotic accuracy. Our attention will be focused on ionic
states with large eccentricities �low-lA states�.

This paper is organized as follows. In Sec. II the general
formalism of the TVM is presented. In Sec. III we derive
expressions for the mixed flux and the intermediate prob-
abilities and rates. In Sec. IV we present explicit results con-
sidering the Rydberg-level population for ions Ar VIII, Kr VIII,
and Xe VIII �all with core charge Z=8�; the probabilities and

rates obtained will be compared with the CAM �7� results.
The calculated neutralization distances Rc

N for the cited ions
will be compared with the EEM �19� ionization distances; for
the particular critical quantum number, the neutralization dis-
tances will be compared with the values estimated by the
COB model, as well as with the values deduced from the
available energy gain experimental data �27,28�. The con-
cluding remarks are given in Sec. V.

Atomic units �e2=�=me=1� will be used throughout the
paper unless indicated otherwise.

II. FORMULATION OF THE PROBLEM

A. Neutralization in two scenarios

We consider electron capture into the Rydberg state of
multiply charged ions �core charge Z� escaping a solid sur-
face with velocity v=dR /dt�1 a.u., where R=vt is the in-
stant ion-surface distance. We take into account both the ac-
tive electron’s initial state at the time t= tin=0 and the final
state at the time t= tfin→�. In other words, we analyze a
system that is “preselected” in the “metallic” parabolic state
��M�, where �M = ��M ,n1M ,mM� and “postselected” in the
spherical “atomic” state ��A�, where �A= �nA , lA ,mA�, and cal-
culate the intermediate probabilities and rates for the neutral-
ization process �see Fig. 1�.

At the time t� �tin , tfin� the state of the considered active
electron is described by two state vectors. The first state
evolves by the first scenario according to the law

��1�t�� = Û1�tin,t���M� . �2.1�

The second state ��2�t�� evolves backward in time �by the
second scenario� from the fixed final state according to the
law

��2�t�� = Û2�tfin,t���A� . �2.2�

By Ûi�t1 , t2�, i=1,2, we denoted the evolution operators in
the ith scenario. In the TVM applied in the present paper, the

evolution operators Û1�tin , t� and Û2�tfin , t� are determined by

the “in- and out-channel” Hamiltonians Ĥ1 and Ĥ2, respec-
tively.

The one-electron Hamiltonians Ĥi outside the solid are
given by

FIG. 1. Schematic time-symmetrized description of
neutralization.
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Ĥi�R� = −
1

2
�2 + UA

�i� + US
�i�, i = 1,2, �2.3�

where UA
�i� is the effective potential energy of the active elec-

tron in the field of the polarized ionic core. The surface po-
tential US

�i� in Eq. �2.3� is the electron potential energy in the
field of the polarized solid.

The potentials that include the surface and ionic polariza-
tions are not known exactly. There is a variety of “true”
surface potentials US

�i� which are finite at the surface and are
smoothly connected with the bulk potential at the surface
�see, for example, Refs. �1,7,9,14� and references therein�.
However, taking into account that the TVM is based on cal-
culation of the mixed flux through the Firsov plane placed
sufficiently far from the surface �see the Introduction�, our
model is almost independent of the form of the near-surface
potential. Also, in the first approximation the dynamical re-
sponse of the surface can be neglected. Due to this, it is
sufficiently accurate to use the classical electrostatic image
potentials; in the coordinate system with the origin at the
surface and the z axis oriented along the ionic motion �per-
pendicular to surface�, we have

US
�i� = UM

�i� + UAM
�i� , z � 0, �2.4�

where UM
�i�=−1/ �4z�, and UAM

�i� =Z /�	2+ �z+R�2, whereas 	2

=x2+y2. At sufficiently large ion-surface distance �R�1�
and in the narrow cylindrical region around the z axis
�	�0�, we have

US
�i� � −

1

4z
+

Z

z + R
	 US. �2.5�

In the vicinity of the ionic core �z�R� and for 	�R, the
expression for the surface potential can be further simplified:

US �
2Z − 1

4R
. �2.6�

The interaction of the active electron with the polarized
ionic core can also be expressed by different model poten-
tials. For the bare nucleus, or at very large distances rA be-
tween the active electron and projectile when it can be
treated as a point charge �first scenario�, UA

�i� is simply the
Coulomb interaction:

UA
�1� = −

Z

rA
. �2.7�

In the second scenario the active electron moves closer to the
charge cloud of the electrons already bound to the nucleus.
In that case, the active electron interacts with the ion through
the corresponding effective potential. For rA�1, the suffi-
ciently accurate expression for UA

�2� is the Simons-Bloch po-
tential �33�

UA
�2� = −

Z

rA
+ 


l�=0

� cl�

rA
2 P̂l�, �2.8�

where P̂l�= �l���l�� is the projection operator onto the sub-
space of a given angular momentum l�. The effective poten-

tial UA
�2� accounts for the experimentally observed quantum

defects of the energy spectra ẼA=−�̃A
2 /2 through the con-

stants cl�. Using the expression �2.8�, the eigenvalue problem

of the Hamiltonian Ĥ
˜

2=−�2 /2+UA
�2� can be solved exactly.

In the region inside the solid �z
0�, the in and out Hamil-
tonians are expressed by the following forms:

Ĥ1 = −
1

2
�2 − U0, Ĥ2 = −

1

2
�2 −

Z

rA
, �2.9�

where U0 is the depth of the potential well of the Sommer-
feld model of the solid. The Coulomb interaction inside the
solid in the second scenario is introduced for convenience.
By the above two forms we take into account that the elec-
tron motion in the first scenario is infinite, and that the elec-
tronic state of the second scenario corresponds to the bound-
state configuration.

We point out that the use of two scenarios has a practical
advantage: the main effects of the polarization of the solid
surface and the polarization of the ionic projectile, character-
ized by different symmetries, can be treated independently.
That is, in the first scenario the dominant effect is the polar-
ization of the solid surface, which pertain to parabolic sym-
metry, and in the second one the spherically symmetric po-
larization of the ionic core prevails.

B. The time-symmetrized description of neutralization

In order to describe intermediate stages of neutralization,
we define the two-state probability amplitude �23�

A�M,�A
�t� = ��2�t��P̂A�t���1�t�� , �2.10�

where P̂A�t�=�VA
�r�A��r�A �dV is the projection operator onto

the ionic region VA. The amplitude A�M,�A
�t� satisfies the

initial condition A�M,�A
�tin

* �=0, where tin
* � tin is the time at

which the neutralization begins. The intermediate neutraliza-
tion probability per unit �M is given by

T�M,�A
�t� = �A�M,�A

�t��2. �2.11�

Taking into account the multielectron character of the pro-
cess, the intermediate neutralization probability P�A

�t� is de-
fined as the integral over the solid conduction band energy
parameter �M and the sum over n1M and mM of the quantity
T�M,�A

�t�:

P�A
�t� =
 


n1M,mM

T�M,�A
�t�d�M . �2.12�

The neutralization probability T�M,�A
�t� per unit �M can be

expressed via the mixed flux I�M,�A
�t� through the surface

SA�t� containing the ion, partially consists of the Firsov plane
SF positioned between the ion and the surface, i.e., for
t� tin

* we get

T�M,�A
�t� = �


tin
*

t

I�M,�A
�t�dt�2

, �2.13�

where
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I�M,�A
�t� = − �

SA�t�
�j�12 − 	12u�� · dS� , �2.14�

where u� is the velocity of the surface element dS� . The mixed
flux is determined by the “two-amplitude” 	12�r� , t�
=�1�r� , t��2

*�r� , t� and the “two-current” density j�12�r� , t�
= ��2

*�� �1−�1�� �2
*� / �2i�; for the terminology, see Ref. �30�.

Moreover, the neutralization dynamics is completely deter-
mined by the behavior of these quantities exclusively on the
Firsov plane SF, i.e., in the region of negligible ion-surface
interaction.

The intermediate stages of the neutralization can be char-
acterized by the normalized probability

P̃�A
�t� =

P�A
�t�

P�A

fin , �2.15�

where P�A

fin=limt→tfin
P�A

�t�. The introduced probability P̃�A
�t�

tends to 1 for t→ tfin, i.e., it is defined under the condition
that the considered Rydberg state ��A� is finally populated

with certainty. The probability P̃�A
�t� can be used for the

calculation of the corresponding neutralization rate

�̃�A
�t� =

dP̃�A
�t�

dt
. �2.16�

The kinematics of the Firsov plane is determined by the
variational requirement

�P̃�A
�t�

�a�t�
= 0, �2.17�

where a=a�t� is the position of the SF plane with respect to
the ion: zA=−a. Equation �2.17� reflects the fact that the

probability P̃�A
�t� should be independent of the small varia-

tions of the SF plane position.

We point out that the rates �̃�A
�t�, with a=a�t� obtained

from Eq. �2.17�, are directly related to the problem of local-
ization of the neutralization process. That is, the maxima of

the rates �̃�A
�t� determine the neutralization distances Rc

N

�22� for the process AZ++M�e�→A�Z−1�++M in which the
electron e is in a given Rydberg state ��A� for t→ tfin.

III. THE MIXED FLUX AND INTERMEDIATE
PROBABILITY

A. The functions �1„r� , t… and �2„r� , t…

The electron capture into Rydberg states of multiply
charged Rydberg ions occurs at large ion-surface distances R,
and all our calculations are performed on the Firsov plane,
which is sufficiently far from the surface as well as from the
ionic core. Therefore, it is possible to apply the appropriate
asymptotic methods in the calculation of the functions
�1�r� , t� and �2�r� , t�.

In order to obtain the functions �1�r� , t� and �2�r� , t�, first

we consider the eigenvalue problems of the Hamiltonians Ĥ1

and Ĥ2 at a given ion-surface separation R. The Hamiltonian

Ĥ1 describes the parabolically symmetric system; it can be

completed by the Runge-Lenz operator Âz and the operator

L̂z, where L�̂ is the orbital angular momentum operator. The

energy spectrum of Ĥ1 is continuous: EM =−�M
2 /2, where �M

is the continuous energy parameter; the corresponding eigen-
functions will be denoted by �MA,�M

. On the other hand, the

Hamiltonian Ĥ2 describes the spherically symmetric ion-

surface system, i.e., the operators Ĥ2, L̂2, and L̂z constitute

the complete set of observables. The operator Ĥ2 has a dis-
crete spectrum EA=−�A

2 /2 with the eigenfunctions �AM,�A
.

Hence,

Ĥ1�MA,�M
= −

�M
2

2
�MA,�M

, �3.1a�

Ĥ2�AM,�A
= −

�A
2

2
�AM,�A

. �3.1b�

In the vicinity of the Firsov plane, the wave function �MA,�M
exponentially decreases in the direction from the metal �M�
to the ionic core �A�. On the other hand, the wave function
�AM,�A

behaves as an exponentially decreasing function in
the direction A→M. In the solid region, these two functions
have the following behaviors: the function �MA,�M

repre-
sents the sum of the incoming and outgoing waves with re-
spect to the surface, while the function �AM,�A

is negligible.
The eigenvalue problem �3.1a� can be solved in the region

of dominant electron transitions �the narrow cylindrical re-
gion around the z axis� by the method of separation of vari-
ables in the parabolic coordinates 
=rA+zA, �=rA−zA, �A,
taking that �MA,�M

=X�
�Y���eimM�A /�
�. The effective ei-
genvalue problem along the 
 direction reduces to Whittak-
er’s differential equation, so that the solution X�
� can be
expressed in terms of Whittaker’s function M�,��x�. How-
ever, the eigenvalue problem along the � axis can be solved
only approximately; a suitable method for obtaining a suffi-
ciently accurate eigenfunction Y��� is the Jeffreys-Wentzel-
Kramers-Brillouin �JWKB� method �34�.

The function X�
� that satisfies the condition X�0�
=X���=0 is given by

X�
� = M−L/�M,mM/2��M
� , �3.2�

where −L /�M =n1M + �mM +1� /2. Furthermore, taking into
account that the condition 
�0 is satisfied in the vicinity of
the z axis, the Whittaker function in expression �3.2� can be
significantly simplified. The solutions Y��� inside the solid
���2R� and in the vicinity of the Firsov plane �zA�−a ,�
�2a� are given by the following expressions:

Y��� = K�1�WL/i�M,mM/2�i�M�� + K�2�W−L/i�M,mM/2�− i�M�� ,

�3.3a�
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Y��� = KM�Z+L�/�M,mM/2��M�� , �3.3b�

respectively, where M�,��x� and W�,��x� are Whittaker’s func-
tions, and �M =�2U0−�M

2 . For sufficiently large ion-surface
distances R, i.e., �MR�1, the solutions �3.3a� and �3.3b� can
be connected through the barrier within the framework of the
JWKB method �35�. In that way, under the condition
K�2�=exp�i��K�1�, we get the relation between the constants
K and K�1�; the remaining unknown constant K can be ob-
tained from the normalization condition ��MA,�M

��MA,�M�
�

=���M −�M� �. We point out that the ambiguous surface poten-
tial US in the near-surface region ��2R appears only in the
unimportant phase factor �.

The function �MA,�M
in the vicinity of the Firsov plane

can be expressed as

�MA,�M
= DMQ�M

�R�

mM/2

��
e−�M
/2

� MZ/�M−n1M−�mM+1�/2,mM/2��M��eimM�A,

�3.4�

where, up to a phase factor,

DM =
1

�
� �n1M + mM�!

2n1M!
�1/2

�
��− Z/�M + mM + 1 + n1M�

�mM ! �2 �M
Z/�M+�mM+1�/2

� �2�M�1/2�M−n1M−�mM+1�/2�2e�1/4�M . �3.5�

By Q�M
we denoted the following R-dependent quantity:

Q�M
�R� = RZ/�M−n1M−�mM+1�/2+1/4�Me−�MR. �3.6�

The eigenvalue problem of the Hamiltonian Ĥ
˜

2

=−�2 /2+UA
�2� of an ion with a polarized core �with eigenen-

ergies ẼA=−�̃A
2 /2 and eigenfunctions �̃AM,�A

� can be solved
exactly, i.e., the eigenfunctions can be expressed in terms of
Whittaker’s function M�,��x� and spherical harmonics. The

full Hamiltonian Ĥ2 of the second scenario is defined by

Ĥ2= Ĥ
˜

2+US. In the first approximation, the surface potential
US of the polarized solid is given by Eq. �2.6�. In this ap-

proximation, for the eigenenergies of the Hamiltonian Ĥ2we
get

EA�R� = −
�A

2

2
= −

�̃A
2

2
+

2Z − 1

4R
; �3.7�

in the same approximation we have �AM,�A
=�̃AM,�A

. The
solid polarization in the second scenario can be taken into
account more exactly, using the value �A instead of �̃A in the

function �̃AM,�A
. This procedure is consistent with the further

calculation of the wave function �2. We point out that the
proposed expression for the eigenfunction �AM,�A

is some-
what different from the corresponding expression used in the
intermediate-velocity case �21,22�.

According to the above considerations, the eigenfunction

�AM,�A
of the Hamiltonian Ĥ2 for the electron in the field of

the polarized ionic core and polarized solid is given by

�AM,�A
=

DA

rA
MZ/�̃A,l̃A+1/2�2�ArA�YlAmA

��A,�A� , �3.8�

where the spherical harmonics YlAmA
��A ,�A� are expressed

via the associated Legendre functions PlA
mA by the following

relation:

YlAmA
��A,�A� = NlAmA

PlA

mA�cos �A�eimA�A, �3.9a�

NlAmA
= �− 1�mA� �2lA + 1��lA − mA�!

4��lA + mA�! �1/2

. �3.9b�

The constant DA in Eq. �3.8�, obtained from the normaliza-
tion condition ��AM,�A

��AM,�A
�=1, is given by

�DA� = � 2�A�l̃A + 1��2l̃A + 2�nA−lA−1

�nA + l̃A − lA��nA − lA − 1� ! ��2l̃A + 3�
�1/2

.

�3.10�

The energy parameter �A is expressed via the parameter �̃A
=Z / ñA by Eq. �3.7�. The quantity �̃A can be obtained from

the experimentally known spectra �Eexpt= ẼA=−�̃A
2 /2�. The

modified angular momentum quantum number l̃A is defined
by

l̃A = lA + ñA − nA. �3.11�

The quantity l̃A can also be expressed in terms of the coeffi-
cients cl of the Simons-Bloch potential model �2.8� by the

following relation: l̃A=��lA+1/2�2+2cl−1/2; for pointlike

core charges �cl→0� we have l̃A→ lA and ñA→nA, i.e.,

ẼA→EA
�0�=−�A0

2 /2 where �A0=Z /nA. We point out that for
ñA=Z / �̃A obtained from experimental spectra, the model co-
efficients cl= �ñA−nA��ñA−nA+2lA+1� /2 depend not only on
lA but also on nA, so that we have a form of self-consistent
interaction of the active electron and the ionic core.

The wave functions �1�t� and �2�t� can be expressed as
space-time modifications of the eigenfunctions �MA,�M

and
�AM,�A

�21,22�:

�1�r�,t� = �MA,�M
exp� fM +

i�M
2 t

2
� , �3.12a�

�2�r�,t� = �AM,�A
exp�ivz −

iv2t

2
�exp� fA +

i�A
2 t

2
� .

�3.12b�

By fM = fM�r� , t� and fA= fA�r� , t� we denoted the correspond-
ing correction factors, whereas exp�ivz− iv2t /2� represents
the Galilei factor. The functions fM and fA follow from the
time-dependent Schrödinger equations of the first and second
scenarios, respectively. The factor fM that satisfies the initial
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condition fM�r� , t�→0 when t→ tin=0 and a /R→1 is given
by �21�

fM = Z� 1

�M
−

1

�M + iv
�ln� a

R
�

+ Z� 1

�M
−

1

�M − iv
�ln�2 −

a

R
� . �3.13�

On the other hand, for the factor fA, calculated with the “ex-
act” expression for US, Eq. �2.5�, along with the final condi-
tion fA�r�A , t�→0 when t= tfin→� and a /R→0, we get

fA = −
�2Z − 1�

4�̃A

a

R
+

1

4
� 1

�̃A

−
1

�̃A + iv
�ln�1 −

a

R
�

− Z� 1

�̃A

−
1

�̃A + 2iv
�ln�1 −

a

2R
� . �3.14�

For a pointlike ionic core ��̃A→�A0� from Eq. �3.14� we
obtain the corresponding expression in Ref. �21�.

Equations �3.12a� and �3.12b�, in which the eigenfunc-
tions �MA,�M

and �AM,�A
are given by Eqs. �3.4� and �3.8�,

and the space-time correction factors fM and fA are given by
Eqs. �3.13� and �3.14�, complete the two-state vector descrip-
tion of the electron state at the time t� �tin , tfin�. The wave
functions �1�r� , t� and �2�r� , t� evolve in two opposite direc-
tions of time, from the given initial and final states, respec-
tively. For t= tin and t= tfin, these functions are characterized
by the energy parameters �M,in and �A,fin of the initially oc-
cupied energy level of the solid and the postselected ionic
state. At intermediate stages, the dynamical correlation with
all conduction band states and all ionic states is included in
the wave functions �1�r� , t� and �2�r� , t� via fM and fA. How-
ever, for sufficiently small fM and fA, the time evolutions of
the wave functions �1�r� , t� and �2�r� , t� are quasistationary:
the functions behave as eigenfunctions, with the energy pa-
rameters �M =�M,in+O�1/R2� and �A=��̃A

2 − �2Z−1� / �2R�
+O�1/R2�, Eq. �3.7�. Therefore, for sufficiently large R, with
accuracy of O�1/R2�, the values of the parameter �M remain
within the initially occupied conduction band of the solid and
the parameter �A increases with increasing R toward the
value �A,fin= �̃A.

B. The mixed flux and the probability T�M,�A
„t…

All relevant physical quantities associated with the inter-
mediate stages of the time-symmetrized description of neu-
tralization can be expressed via the mixed flux I�M,�A

�t�, Eq.
�2.14�.

Therefore, it is necessary to calculate the following sur-
face integral �21�:

I�M,�A
�t� =

i

2



SF

��� �1

�1
−

�� �2
*

�2
* − 2iv�1 −

da

dR
�e�z�

� �2
*�r�,t��1�r�,t� · dS� , �3.15�

where SF is the Firsov plane �zA=−a�. Taking into account
the localization of the SF plane in the asymptotic region

�z�1, rA�1� we get �� �1 /�1�−�Me�z and �� �2
* /�2

*

�−�Ae�rA
− ive�z. With the former two expressions, the mixed

flux can be expressed in the following form:

I�M,�A
�t� =

i

2
exp�iwt���M + �A + iv�1 − 2

da

dR
��

�exp�fA
* + fM�


SF

�AM,�A

* �MA,�M
dS ,

�3.16�

where

w =
1

2
��M

2 − �A
2� −

v2

2
�1 − 2

a

R
� . �3.17�

For further calculations it is convenient to express the
mixed flux as follows:

I�M,�A
�t� = I�M,�A

�0� �t�I�M,�A
�R� , �3.18�

where

I�M,�A

�0� �t� = i� exp�iwt���M + �A + iv�1 − 2
da

dR
��

�exp�fA
* + fM�DA

*DMQ�M
�R�NlAmA

* �mA,mM
,

�3.19�

whereas

I�M,�A
�R� = 


0

� 	

rA


mM/2

��
e−�M
/2PlA

mA�cos �A�

�MZ/�̃A,l̃A+1/2�2�ArA�

�MZ/�M−n1M−�mM+1�/2,mM/2��M��d	 . �3.20�

In Eq. �3.20� we have rA=�	2+a2, while 
=rA−a,
�=rA+a and cos �A=zA /rA=−a /rA. The mixed flux I�M,�A

�t�
depends explicitly on the time t via the factor exp�iwt�, and
implicitly via R=vt, �A=�A�R�, a=a�R�, and w=w�R�.

In the calculation of the mixed flux we take into account
that in the vicinity of the Firsov plane we have 2�ArA�1
and �M�=�M�rA+a��1, so that we can use the asymptotic
expressions for both Whittaker’s functions appearing in Eq.
�3.20�. Furthermore, in the low-velocity case considered in
the present paper, the electron transitions are quasiresonant,
i.e., �A�R���M. Under this condition, considering that the
main contribution to the neutralization is given by the metal-
lic electrons with n1M �0, and mM =mA=0, as well as that
our consideration is restricted to the ionic states with large
eccentricities �low-lA states�, the integral I�M,�A

can be ex-
pressed by the following approximate form:

I�M,�A
�R� =

��2l̃A + 2�

��l̃A + ñA + 1�

ei��nA−1�

��− Z/�M + n1M + 1�

� �A
Z/�̃A−1�M

−Z/�M+n1M+1/2

� �2a�Z/�̃A−Z/�M+n1Me−��A−�M�a. �3.21�

We point out that the position of the Firsov plane depends on
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R, i.e., a=a�R�=gR, where g�const �see Sec. III C�.
For that reason, we have exp�−�Aa�=exp�−�AgR�
�exp�−�̃AgR�exp��2Z−1�g / �4�̃A��.

The neutralization probability T�M,�A
�t� per unit �M fol-

lows from Eq. �2.13�, in which the mixed flux I�M,�A
�t� is

integrated over time from t= tin
* to t. The time tin

* corresponds
to the minimal ion-surface distance at which the neutraliza-
tion process is energetically possible. In the case of qua-
siresonant neutralization, the quantity Rin

* can be defined by
the condition EA=−�̃A

2 /2+ �2Z−1� / �4R�=−�, where � is the
solid work function, i.e.,

Rin
* =

�2Z − 1�
2��̃A

2 − 2��
. �3.22�

Within the framework of the asymptotic methodology
used throughout the paper, considering exclusively the nor-

malized neutralization probability P̃�A
�t� and for the Rydberg

states nA�Z�1, lA�nA, and mM =mA=0, we get

T�M,�A
�t� � C�M,�A

�R��1 − � R

Rin
* ��̃

e−��R−Rin
* ��2

,

�3.23�

where C�M,�A
�R�, depending weakly on R via �A, is given by

C�M,�A
�R� =

�2lA + 1�
8�v2

��2l̃A + 2�

�2�l̃A + ñA + 1�

�2l̃A + 2�nA−lA−1

�nA + l̃A − lA��nA − lA − 1�!
�A

2Z/�̃A−121/�M−2n1M−1�M
1/�M+1�2e�1/2�M

��g�2 − g��2Zv2/�M��M
2 +v2��1 − g�v2/2�̃A��̃A

2+v2��1 −
g

2
�−8Zv2/�̃A��̃A

2+4v2�

��2g�2Z/�̃A−2Z�M+2n1M
��M + �A�2 + v2�1 − 2g�2

�̃2 + w2/v2
Rin

*2�̃e−2�̃Rin
*

. �3.24�

In the above expressions, we introduced the quantities � and

� as in Ref. �21�, as well as the quantities �̃ and �̃, by the
following expressions:

� =
Z

�̃A

−
3

2
+

1

4�M
	 �̃ − 1, �3.25a�

� = �M + ��̃A − �M�g − i
w

v
	 �̃ − i

w

v
. �3.25b�

On the basis of Eq. �3.23�, we obtain the following prop-
erties of the quantity T�M,�A

�t� for t= tin
* and t= tfin:

lim
t→tin

*
T�M,�A

�t� = 0, �3.26a�

lim
t→tfin

T�M,�A
�t� = T�M,�A

fin = C�M,�A
�R�/�A→�̃A

. �3.26b�

Due to the factor exp�i�w /v��R−Rin
* �� in Eq. �3.23�, the

quantity T�M,�A
�t� approaches the final value T�M,�A

fin in the
oscillatory regime, characteristic for interference effects.
Also, the �M dependence of the probability density T�M,�A

�t�
is rather complicated and changes with the ion-surface dis-
tance R.

C. The normalized intermediate probabilities and rates

The intermediate probability P�A
�t�, Eq. �2.12�, for the

considered Rydberg ion being partially neutralized at the dis-

tance R from surface �under a fixed final condition� can be
obtained by integration of the quantity T�M,�A

�t� over all pos-
sible values of the energy parameter �M � ���=�2� ,�U

=�2U0� of the solid, and performing the summation over
n1M and mM. In the low-velocity case, considered in the
present paper, we get

P�A
�t� � �1 − � R

Rin
* ��̃

e−��R−Rin
� ��

�M=�max

2

� 

��

�U



n1M

C�M,�A
�R�d�M , �3.27�

where �max is the energy parameter of the solid which gives
the main contribution to the neutralization at a given R and
mM =mA=0. The quantity �max can be determined from the
position of maximum of the quantity C�M,�A

�R� with respect
to �M. In deriving the expression �3.27� it was assumed that
�max is independent of n1M.

The probability P̃�A
�t� is defined by Eq. �2.15� as a ratio

of P�A
�t� and P�A

fin, where

P�A

fin = lim
t→tfin

P�A
�t� � 


��

�U



n1M

C�M,�A
�R�/�A→�̃A

d�M .

�3.28�

Therefore, taking into account that �
C�M,�A
d�M

��
C�M,�A
/�A→�̃A

d�M, we obtain
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P̃�A
�t� � �1 − � R

Rin
* ��̃

e−��R−Rin
* ��2

, �3.29�

i.e.,

P̃�A
�t� = �1 + f2�R� − 2f�R�cos�w

v
�R − Rin

* ��� ,

�3.30�

where

f�R� = � R

Rin
* ��̃

e−�̃�R−Rin
* � �3.31�

and �M =�max. According to Eqs. �3.23� and �3.29�, the prob-
ability density T�M,�A

�t� can be expressed in the following
form:

T�M,�A
�t� � C�M,�A

�R�P̃�A
�t� . �3.32�

The quantity T�M,�A
�t� represents the product of the probabil-

ity P̃�A
�t�, defined for a fixed final electronic state, and the

quantity C�M,�A
�R�, in which the initial and final conditions

are mixed and which is weakly dependent on the time.

The dependence of P̃�A
�t� on the Firsov plane position a

=gR can be minimalized using the variational requirement

�2.17� for the factor g: �P̃�A
�t� /�g=0. Inserting Eq. �3.30� in

the last condition, we obtain

− ��̃A − �M�f�R� + ��̃A − �M�cos�w

v
�R − Rin

* ��
+ v sin�w

v
�R − Rin

* �� = 0. �3.33�

The above equation reduces to the conditions w=0 and �̃A
=�M. From the condition w=0, for �M ��A, we get

g =
1

2
�1 +

�A
2 − �M

2

v2 � =
1

2
, �3.34�

meaning that the Firsov plane is positioned at the half dis-
tance between the ionic core and the solid surface. We note
that the value g=1/2 is obtained with the expression �3.30�
for P̃�A

�t� valid in the region R�Rc
N, most relevant for the

neutralization process. On the other hand, the space-time cor-
rection factors fM and fA were obtained under the conditions:
g=a /R→1 for R→Rin=0 and g=a /R→0 for R→Rfin→�.

With the known expression for g, the probability P̃�A
�t�

can be calculated from Eq. �3.30�. The corresponding rate

�̃�A
�t�=dP̃�A

�t� /dt is given by

�̃�A
�t� = 2vf�R��� �̃

R
− �̃�� f�R� − cos�w

v
�R − Rin���

+
w

v
sin�w

v
�R − Rin���

�M=�max

. �3.35�

Equations �3.30� and �3.35� completely determine the prob-

ability P̃�A
�t� and rate �̃�A

�t�, respectively, providing that the

value �max is known. The variational requirement

�P̃�A
�t� /�g=0 leads to the quasiresonant condition �max

=�A�R�. In the next section we shall demonstrate that the
same condition follows from the very definition of �max.

The neutralization distances Rc
N can be obtained on the

bases of the neutralization rates �̃�A
�t� from the following

condition �22�:

�d�̃�A
�t�

dt
�

R=Rc
N

= 0. �3.36�

We point out that, taking the quantity T�M,�A
�t� into consid-

eration, the following, more general, problem can be formu-
lated: if the electron is initially in the metal in the state ��M�,
and finally is found bounded to the ion in the given Rydberg
state ��A�, where does the charge exchange take place? In the
present paper, we restrict the problem, by considering the
neutralization distances for the fraction of ions with a given
final state �A= �nA , lA ,mA�, but with an arbitrary initial state
�M; thus the neutralization distances Rc

N defined by Eq.
�3.36� depend only on �A.

We also point out that the multichannel character of the
neutralization, which is manifested in the stepwise neutral-
ization with formation of hollow atoms, has a different con-
notation within the framework of the TVM; namely, the
quantum ensemble describing the intermediate stages of the
process is formed only of ions with populated Rydberg states
�A= �nA , lA ,mA� at t→ tfin.

IV. RESULTS

A. Determination of �max and explicit expressions for P̃�A
„t…

and �̃�A
„t…

We apply the TVM developed in the present paper to the
ions Ar VIII, Kr VIII, and Xe VIII characterized by the same
value of core charge Z=8, but with different core polariza-
tions.

The relevant values of �̃A=�−2ẼA calculated according to
Ref. �36� are given in Table I. The presented data correspond
to the ground-state configuration of the ionic core with zero
angular momentum and spin, i.e., the total orbital angular
momentum of the considered Rydberg ions is L= lA and spin
S=1/2; the data in Table I are for minimal total angular
momentum J= �lA−1/2�.

We begin the analysis of the results obtained with deter-
mination of the energy parameter �M =�max, which gives the
main contribution to the neutralization process at a given R.
The values �max can be obtained from the �M behavior of
T�M,�A

�t��C�M,�A
�R�. For g=1/2 and w= ��M

2 −�A
2� /2, we

have

T�M,�A
�t� = T�A

�0��t�21/�M�M
1/�M+1�2e�1/2�M�3

4
�2Zv2/�M��M

2 +v2�

�
��M + �A�2

�̃2 + w2/v2
Rin

* 1/2�Me−�MRin
*

, �4.1�

where T�A

�0��t� is independent of �M. Taking into account that
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the position of the maximum of the above function deter-
mines the value �max, we conclude that �max depends on R
�via �A�, the principal quantum number nA, the orbital quan-
tum number lA, the core charge Z, and the velocity v; �max is
independent of n1M, which was assumed in Eq. �3.27�.

In Fig. 2 the quantity T�M,�A
/T�M,�A

max as a function of the
energy parameter �M for the neutralization of the Ar8+ ions
escaping the solid surface with velocity v=0.01 a.u. is pre-
sented. In Figs. 2�a�–2�c� we consider the population of the
Rydberg states of Ar VIII ion with the principal quantum num-
bers nA=6,8, and 10, respectively, orbital quantum number
lA=0 and mA=0, for the following characteristic ion-surface
distances: R=Rin

* , R=Rin
* +�R for �R=5 a.u., and R=Rfin

→�. The full and dashed curves correspond to the cases
with and without polarization of the ionic core, respectively.
The energy parameter �M varies from �� �Fermi level� to �U;
in Fig. 2 we consider the Al surface with ��5 eV and U0
�15 eV. The bounds of the solid conduction band are
marked by vertical lines. By T�M,�A

max we denote the maximum
value of the quantity T�M,�A

considered as a function of �M.
From Fig. 2 we can see that during the ion escaping the

surface, �max shifts from the value �� toward the energy
parameter �U. For a given R, the values �max can be com-
pared with �A�R�= ��̃A

2 − �2Z−1� / �2R��1/2. For R=Rin
* we

have �max=��=�A�Rin
* �. At ion-surface distances R=Rin

*

+�R for nA=6 we have �max=1.151 and �A�R�=1.150, for
nA=8, we have �max=0.794 a.u. and �A�R�=0.795, and for
nA=10, we have �max=0.676 and �A�R�=0.678; all values
�expressed in a.u.� are for lA=0 and mA=0. Finally, for
t→ tfin, we have �max� �̃A=�A�Rfin�. For example, for
nA=8, lA=0,mA=0 we have �max=1.067 a.u. and

�̃A=1.069 a.u. Similar conclusions hold for lA�0 and for
other sufficiently small ionic velocities v, as well as for the
ions Kr VIII and Xe VIII.

From the above analysis, we conclude that

TABLE I. Energy parameter �̃A �a.u.� for the ions Ar VIII, Kr VIII,
and Xe VIII, and the values �A0=Z /nA �a.u.�.

nA lA=0 lA=1 lA=2 lA=3 �A0

Ar VIII

6 1.459 1.414 1.354 1.335 1.333

7 1.235 1.202 1.158 1.146 1.143

8 1.069 1.046 1.012 1.002 1.000

9 0.941 0.925 0.897 0.889 0.889

10 0.885 0.829 0.807 0.802 0.800

11 0.750 0.735 0.725 0.727

12 0.672 0.667 0.667

Kr VIII

6 1.714 1.638 1.497 1.353 1.333

7 1.411 1.358 1.260 1.160 1.143

8 1.198 1.160 1.088 1.011 1.000

9 1.043 1.015 0.959 0.899 0.889

Xe VIII

6 2.045 1.936 1.727 1.474 1.333

7 1.626 1.555 1.416 1.244 1.143

8 1.349 1.297 1.202 1.077 1.000

9 1.156 1.117 1.045 0.950 0.889

FIG. 2. Quantity T�M,�A
/T�M,�A

max for the population of Rydberg
states �A= �nA , lA=0,mA=0� for the Ar VIII ion �v=0.01 a.u.� with
nA� �a� 6, �b� 8, and �c� 10, at ion-surface distances R=Rin

* ,
R=Rin

* +�R for �R=5 a.u., and R=Rfin→�. Dashed curves corre-
spond to the pointlike ionic core case.
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�max � �A�R� . �4.2�

In fact, the quasiresonant condition �4.2� is well satisfied for
the most relevant ion-surface distances �R�Rc

N�. The dis-
crepancy recognized in Fig. 2�c� for R=Rfin is unimportant.
Note that, for large R, we have �max= �̃A+O�1/R�, in agree-
ment with the assumption �max�const used in the calcula-
tion of the normalized rate. The values �max given by Eq.
�4.2� are independent of the projectile velocity v. In determi-
nation of �max we restricted the analysis to the values of �M
corresponding to the initially occupied conduction band
states �see the comment at the end of Sec. III A�; hence, the
quasiresonant condition, expressed by Eq. �4.2�, is valid with
accuracy O�1/R2�. We point out that in the intermediate-
velocity case �v�1�, the electron transitions are nonresonant
�21–23�.

Taking into account Eq. �4.2�, as well as the fact that the
position of the Firsov plane is determined by the parameter
g=1/2, we obtain w=0 at all relevant ion-surface distances
R. With this value of w, the expressions for the probability

P̃�A
�R� and the corresponding rate �̃�A

�R�, Eqs. �3.30� and
�3.35�, respectively, are significantly simplified. We get

P̃�A
�t� = �1 − � R

Rin
* ��̃

e−�̃�R−Rin
* ��2

, �4.3a�

�̃�A
�t� = 2v� R

Rin
* ��̃� �̃

R
− �̃�e−�̃�R−Rin

* �

��� R

Rin
* ��̃

e−�̃�R−Rin
* � − 1� , �4.3b�

where �M =�A�R�. In the above equations we have

�̃= ��M + �̃A� /2 and �̃=Z / �̃A−1/2+1/ �4�M�, while Rin
* is

given by Eq. �3.22�.
Note that the probability P̃�A

�t� is independent of the ionic

velocity v; consequently, �̃�A
�t��v, i.e., the quantity

�̃�A
�t� /v is also independent of v. Therefore, the image ac-

celeration toward the surface that is present in the vicinity of
the polarized solid has no influence on the intermediate
quantities discussed within the framework of the time-
symmetrized neutralization.

B. Intermediate stages of the Rydberg-level population for the
ions Ar VIII, Kr VIII, and Xe VIII

The intermediate stages of the Rydberg-level population

are characterized by the probability P̃�A
�t� and rate �̃�A

�t�. In
the absence of core polarization, the probabilities and rates
for the ions Ar VIII, Kr VIII, and Xe VIII are the same. However,
if the core polarization is taken into account, the values �̃A,
for the same values of nA and lA, become different for differ-

ent ions �see Table I�, so that the probabilities P̃�A
�t� and

rates �̃�A
�t� will be modified, as well as the corresponding

neutralization distances.

In Fig. 3 we present the probabilities P̃�A
�t� and rates

�̃�A
�t� /v for nA=6,7 ,8 ,9, and 10 and lA=0, mA=0, for the

Ar VIII ion �Z=8� slowly escaping the Al surface. The value
lA=0 is chosen to emphasize the role of the core polarization.
We point out that the final probability P�A

fin increases with
increasing lA for lA=0,1 and 2 �21�. The solid curves in Fig.
3 correspond to the polarized ionic cores; the dashed curves
correspond to the pointlike cores ��̃A→�A0=Z /nA�. The
same quantities, but for the ions Kr VIII and Xe VIII �nA
� �6,9� , lA=0,mA=0� are presented in Figs. 4 and 5, respec-
tively.

From Figs. 3–5 we recognize the shift of the probabilities
P̃�A

�t� and rates �̃�A
�t� toward larger ion-surface distances R

with increasing nA; at the same time, the polarization of the
ionic core shifts the rates toward smaller ion-surface dis-
tances �compare the dashed curves with the full curves�. The

obtained shift of the rates �̃�A
�t� induced by the polarization

effect is characteristic for ions with the energy parameters
�̃A��A0 �see Table I�. The widths ��A

of the presented rates
increase with increasing nA, which means that the neutraliza-
tion process becomes more delocalized.

FIG. 3. �a� Probabilities P̃�A
�t� and �b� rates �̃�A

�t� /v for the
population of the Rydberg state �A= �nA , lA=0,mA=0� of the Ar VIII

ion escaping the Al solid surface. Dashed curves correspond to the
pointlike core case. The CAM curves in �a�, �b� are the quantities

P̃�A

CAM and �̃�A

CAM /v according to Ref. �7�, respectively, for the neu-
tralization of the O8+ ion with velocity v=0.01 a.u., and for the
Rydberg state nA=9,n1A=0, mA=0.
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The rates presented in Figs. 3–5 can be compared with the
available CAM theoretical results �7� only indirectly. That is,
the hybridized states of the CAM method and the corre-
sponding probabilities P�A

CAM�t� and rates ��A

CAM�t� are labeled
�approximately� by the parabolic quantum numbers �A
= �n2A ,n1A ,mA�; on the other hand, the states �1 and �2

correspond to the quantum numbers �M and �A, respectively,

while the normalized neutralization rate �̃�A
�t� is labeled by

the spherical quantum numbers �A= �nA , lA ,mA�. The low-lA

predictions of the present paper could be compared with the
low-n1A normalized CAM probabilities and rates defined in
terms of semiclassical rate equation. That is, one can define
the probability P�A

CAM�t�=1−exp�−�tin
*

t
��A

CAM�t�dt�, the normal-

ized probability P̃�A

CAM�t�= P�A

CAM�t� / P�A

CAM���, and the corre-

sponding normalized rate �̃�A

CAM�t�=dP�A

CAM�t� /dt. In Figs.

3–5 we present the quantities P̃�A

CAM�t� and �̃�A

CAM�t� /v, calcu-
lated with the rates ��A

CAM�t� taken from Ref. �7�, in which the

neutralization of the fully stripped ion O8+ �i.e., the ioniza-
tion of the O7+ ion� has been analyzed for the case nA=9 and
different values of n1A and mA. As states with large eccen-
tricities, we consider states with n1A=0, and for the ionic
velocity we take the value v=0.01 a.u.; the value Rin

*

=21 a.u. is taken as the lower one for which the correspond-
ing CAM rate is calculated in Ref. �7�. The normalized CAM
probability and the corresponding rate indicate that the neu-
tralization is almost instantaneously, localized at nearly the
same position as it is predicted within the framework of the
TVM, for the point-like core cases �dashed curves in Figs.
3–5�.

In Fig. 6 we present the rates �̃�A
�t� �scaled by v� for

electron capture into the Rydberg states �A= �nA=8,10; lA
=0,1 ,2 ,3; mA=0� of the Ar VIII ion slowly escaping the Al
surface. In the absence of core polarization �dashed curves in
Fig. 6�, the rates are independent of lA; see Eq. �4.3b�. If the
core polarization is included, the rates shift toward smaller
ion-surface distances R. This shift is significant for lA=0, and
becomes negligible for lA=3.

FIG. 4. �a� Probabilities P̃�A
�t� and �b� rates �̃�A

�t� /v for the
population of the Rydberg state �A= �nA , lA=0,mA=0� of the Kr VIII

ion escaping the Al solid surface. Dashed curves correspond to the
pointlike core case. The CAM curves in �a�, �b� are the quantities

P̃�A

CAM and �̃�A

CAM /v according to Ref. �7�, respectively, for the neu-
tralization of the O8+ ion with velocity v=0.01 a.u., and for the
Rydberg state nA=9, n1A=0, mA=0.

FIG. 5. �a� Probabilities P̃�A
�t� and �b� rates �̃�A

�t� /v for the
population of the Rydberg state �A= �nA , lA=0,mA=0� of the Xe VIII

ion escaping the Al solid surface. Dashed curves correspond to the
point like core case. The CAM curves in �a�, �b� are the quantities

P̃�A

CAM and �̃�A

CAM /v according to Ref. �7�, respectively, for the neu-
tralization of the O8+ ion with velocity v=0.01 a.u., and for the
Rydberg state nA=9, n1A=0, mA=0.
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The maxima of the rates, exposed in Figs. 3�b�, 4�b�, 5�b�,
and 6, determine the neutralization distances Rc

N. In Table II
we present the quantities Rc

N for the ions Ar VIII, Kr VIII, and
Xe VIII. The presented neutralization distances Rc

N are inde-
pendent of v.

The neutralization distances increase with increasing nA,
i.e., Rc

N�Z / �̃A�nA
2 /Z, and, for a given nA, the Rc

N values
increase with increasing lA, approaching the values obtained
in absence of the core polarization �data in parentheses in
Table II�. The latter behavior is a consequence of the de-
creasing of �̃A with increasing lA �see Table I�. For example,
Rc

N= �1.7+0.1lA�nA
2 /Z a.u. in the case of the Ar VIII ion.

In Table II we also present the critical values Rc at which
the energy level EA�R� becomes resonant with the potential
barrier top. According to Ref. �19�, in the absence of the core
polarization we have Rc=2.38nA

2 /Z. If the ionic polarization
is included, the critical distances can be estimated as Rc
�2.38ñA

2 /Z, where ñA=Z / �̃A.
We point out that population of the levels �nA=11; lA=0;

mA=0� and �nA=12; lA=0,1; mA=0� for Ar VIII �and for the
other considered ions� is impossible. The same results hold if
the polarization is neglected; in that case we have P�A

fin�0 for
the population of these Rydberg states. In Ref. �22� it was

demonstrated that, even in the nonresonant neutralization in
the intermediate-velocity region, we have the thresholds �
nthr=12 for lA=1,2, mA=0 and nthr=11 for lA=0,mA=0� in
the corresponding final population distributions.

In Figs. 7�a�–7�c� we present the neutralization
distances Rc

N for the population of the Rydberg states
�A= �nA , lA=0,mA=0� for Ar VIII, Kr VIII, and Xe VIII ions, re-
spectively. Comparing the neutralization distances for the
given nA, we conclude from Fig. 7 that Rc

N�Xe VIII�

Rc

N�Kr VIII�
Rc
N�Ar VIII�, i.e., the Rc

N values for Ar VIII are
the closest to those obtained for the pointlike core case
�dashed curves�. The same conclusion is valid for lA�0 for
the low-lA cases considered. The quantities Rc

N presented in
Fig. 7 represent the most probable ion-surface distances for
the neutralization process. The finite widths ��A

of the rates

�̃�A
�t� cause the process to be localized within the interval

�Rc
N−��A

/2 ,Rc
N+��A

/2�; in Fig. 7 this fact is illustrated by
bar symbols. The relative position of this interval with re-
spect to �Rin

* ,Rc�, indicates the character of the electron tran-
sitions: for R� �Rc

N−��A
/2 ,Rc

N+��A
/2�� �Rin

* ,Rc� the transi-
tions are mainly over-barrier in character; for the Rydberg
states with Rc

N+��A
/2�Rc the tunneling process becomes

important.

C. Comparison with experiments

The normalized probabilities P̃�A
�t� tend to 1 for t→�, so

that the quantity P̃�A

fin cannot be used for a direct comparison
with the experiments in which the final probability distribu-
tions or similar quantities �charge state, total yield, neutral
fraction� are measured. The theoretical predictions of the
TVM concerning the final population probabilities in the
beam-foil geometry and comparison with the corresponding
experiments are given in Refs. �21–23�. The main purpose of
the present paper is to elucidate the intermediate stages of the
process, characterized by the neutralization distances Rc

N.
At present, the experimental evidence for the considered

ions exists only for projectiles impinging on the surface un-
der grazing geometry, and only for very particular Rydberg
states. The corresponding neutralization distances can be de-
duced from the measured projectile kinetic energy gains �E
�27,28�.

Assuming that the energy gain is due to the image accel-
eration, and that the projectile is completely and instanta-
neously neutralized at R=Rc

N, the quantities �E and Rc
N can

be connected by the relation �E=Z2 / �4Rc
N�. The neutraliza-

tion distance Rc
N, calculated from the experimentally ob-

tained energy gain, corresponds to electron capture from the
Fermi level into the atomic energy level resonant with the
potential barrier top Uef f ,�, i.e., the quantity Rc

N=Z2 / �4�E�
corresponds to the critical value nc of the quantum number
nA. We recall that the critical quantum number nc is defined
by the condition Rc=RF, where the Fermi distance RF is
defined by the condition EA�RF�=−� and the critical distance
Rc corresponds to the case EA�Rc�=Uef f ,��Rc�; for the work
function �=5 eV we get nc=10 �in Ref. �19� the value
nc=9 corresponds to �=4.2 eV�.

FIG. 6. Rates �̃�A
�R� /v for the Ar VIII ion in the Rydberg states

�a� nA=8, lA=0,1 ,2 ,3, and mA=0, and �b� nA=10, lA=0,1 ,2 ,3,
and mA=0. Dashed curves correspond to the pointlike core case.
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In the escaping geometry considered in the present paper,
the empty level nA=10 is the highest one that can be reso-
nantly populated �from the Fermi level�, so that the neutral-
ization distances for n=nc �and independently of lA� can be
estimated from the values obtained on the basis of energy
gains; for the simulation of energy gain within the frame-
work of the COB model, see Ref. �4�. The corresponding
values are presented in Figs. 7�a� and 7�c� for the ions Ar VIII

and Xe VIII, respectively �full dots�; in both cases we use the
scaling �E�Z3/2 �4� to obtain the energy gains for the case
of Z=8 from the available experimental data �27,28�. We
point out that the first neutralization distance proposed by the
COB method is given by Rc

N=�8Z+2/ �2�� �3,37�. For the
case considered in the present paper the last formula yields
Rc

N=22.09 a.u., the empty dots in Fig. 7.
From Fig. 7�a�, in which we analyze the localization of

the charge exchange into the Rydberg levels of Ar VIII, we
conclude that the TVM Rc

N value for n=nc lies between the
value derived from the experimentally obtained energy gain
�27� �full dot� and the value estimated by the COB expres-
sion �3,37� �empty dot�. In the case of the Xe VIII ion, Fig.
7�c�, and for nA=nc, only the values for the neutralization
distances in the absence of core polarization are available
�dashed curves�, so that the comparison with experiment �28�
yields only a qualitative agreement.

We point out that the experimental setup �27,28� used in
the measurement of the energy gain and the TVM theoretical
considerations of the present paper are devoted to different
physical problems, cascade neutralization in grazing impact
geometry and neutralization in the escaping geometry with
the postselected final state �A= �nA , lA ,mA�.

D. Complementarity of the neutralization and ionization
processes

The neutralization and ionization processes at solid sur-
faces of multiply charged ions �escaping and approaching
surfaces, respectively; see Fig. 8� can be considered as two
complementary processes.

In Fig. 9 we present the neutralization probabilities P̃�A
�t�

and rates �̃�A
�t� obtained in the present paper and EEM ion-

ization probabilities P�A

I �t� and the corresponding total rates

�̃�A

I �t� taken from Ref. �19�; by �A and �A we denote the
atomic spherical and atomic parabolic quantum numbers, re-
spectively. The neutralization probabilities �solid curves in
Fig. 9�a�� increase from zero to unity, when the ions escape
the surface, while the ionization probabilities �dashed curves
in Fig. 9�a�� have the same behavior when the ions approach

the surface. From Fig. 9�b� we conclude that the rates �̃�A
�t�

and �̃�A

I �t� offer complementary evidence about the electron
exchange process.

The discussed neutralization and ionization processes are
mainly localized at distances Rc

N and Rc
I �positions of the

maxima of the corresponding rates�. In Table III we present
the Rc

N and Rc
I values for the pointlike core charge Z=8. In

Table III we also present the corresponding Fermi distances
RF: EA�RF�=−�. Note that the Fermi distance represents the
initial ion-surface distance for the neutralization �RF=Rin

* ;
see Eq. �3.22��. If neutralization and ionization are possible
for the same nA �in the case nA=nc=10, for �=5 eV�, we
have Rc

I �Rc
N. For nA�nc, the values Rc

I are complementary
to the Rc

N values.

TABLE II. The neutralization distances Rc
N for the ions Ar VIII, Kr VIII, and Xe VIII obtained within the

framework of the TVM and the critical distances Rc in �a.u.�. Numbers in parentheses the are the neutraliza-
tion distances and critical distances for point-like ionic cores.

nA lA=0 lA=1 lA=2 lA=3 Rc

Ar VIII

6 7.4 �8.6� 7.8 �8.6� 8.4 �8.6� 8.7 �8.6� �10.7�
7 10.0 �11.7� 10.6 �11.7� 11.3 �11.7� 11.6 �11.7� �14.6�
8 13.3 �15.4� 13.9 �15.4� 15.0 �15.4� 15.3 �15.4� �19.0�
9 17.7 �20.6� 18.4 �20.6� 20.1 �20.6� 20.6 �20.6� �24.1�
10 20.8 �29.8� 26.2 �29.8� 28.7 �29.8� 29.4 �29.8� �29.7�
11 �48.3� 40.4 �48.3� 45.3 �48.3� 49.3 �48.3� �36.0�
12 �99.2� �99.2� 91.0 �99.2� 98.7 �99.2� �42.8�

Kr VIII

6 5.5 �8.6� 6.0 �8.6� 7.1 �8.6� 8.5 �8.6� �10.7�
7 7.8 �11.7� 8.4 �11.7� 9.7 �11.7� 11.3 �11.7� �14.6�
8 10.6 �15.4� 11.4 �15.4� 12.8 �15.4� 15.0 �15.4� �19.0�
9 14.1 �20.6� 15.0 �20.6� 16.9 �20.6� 19.9 �20.6� �24.1�
Xe VIII

6 4.1 �8.6� 4.4 �8.6� 5.4 �8.6� 7.2 �8.6� �10.7�
7 6.1 �11.7� 6.6 �11.7� 7.8 �11.7� 9.9 �11.7� �14.6�
8 8.7 �15.4� 9.2 �15.4� 10.6 �15.4� 13.1 �15.4� �19.0�
9 11.4 �20.6� 12.2 �20.6� 13.9 �20.6� 17.2 �20.6� �24.1�
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In Fig. 10 we present the neutralization distances Rc
N and

ionization distances Rc
I , as well as the distances RF and the

critical distances Rc, for the two processes considered and for
the pointlike core charge Z=8. The value nc=10 is marked
by an arrow. The Rc

N and Rc
I curves increase with increasing

nA and intersect in the vicinity of nA=nc. In the same figure,
we present �bar symbols� the widths ��A

and ��A

I of the rates

FIG. 7. Neutralization distances Rc
N, critical distances Rc, and

initial distances Rin
* �solid curves� for the Ar VIII, Kr VIII, and Xe VIII

ions �Z=8�, escaping the Al surface with v�1 a.u., for electron
capture into the Rydberg state �A= �nA , lA=0,mA=0�. Dashed
curves correspond to the pointlike core case. The bar symbols are
the values ��A

�a.u.�. By the full dots in �a� and �c� we mark the
neutralization distances derived from the measured energy gains,
�27� and �28�, respectively. Empty dots are the COB values �3,37�.

FIG. 8. Schematic of neutralization of AZ+ ion and ionization of
A�Z−1�+ ion moving in two opposite directions with respect to the
surface.

FIG. 9. Neutralization �solid curves� of A8+ ion escaping the Al
surface with velocity v�1 a.u., for the population of the Rydberg
state �A= �nA , lA=0,mA=0�, and ionization �19� �dashed curves� of
A7+ ion in the Rydberg state �A= �nA ,n1A=0,mA=0� approaching
the Al surface with velocity v=0.01 a.u. �a� The neutralization

probabilities P̃�A
�t� and the ionization probabilities P�A

I �t�, and �b�
the rates �̃�A

�t� and �̃�A

I �t� scaled by v �in atomic units�. All curves
are for the pointlike core charge Z=8.
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�̃�A
�t� and �̃�A

I �t�, respectively. Considering the intervals of
the neutralization �ionization� localization, we conclude that
the processes are mainly overbarrier. The exceptions are the
lower nA values in the case of neutralization and the higher
nA values in the case of ionization, in which the subbarrier
transitions become significant.

The relation �̃�A
�t�� �̃�A

I �t� that holds in the special case
nA=nc, and the agreement of the ��A

I �t� with the CAM neu-
tralization rate ��A

CAM�t� �6,7� for the critical quantum number
nc �see Fig. 2 in Ref. �19��, confirm the statement that the
TVM presented in this paper and the CAM method are com-
parable for the discussed combination of quantum numbers
�A and �A. We point out that the time-symmetrized TVM and
the CAM method are related to different formulations of the
problem.

V. CONCLUDING REMARKS

In this paper we presented a time-symmetrized neutraliza-
tion model �two-state vector model�, adapted for the low-
velocity case. The Rydberg-level population of multiply

charged ions �Ar VIII, Kr VIII, and Xe VIII� escaping a solid
surface was considered, for electron capture into the state
�A= �nA , lA ,mA�. Both the solid polarization and the ionic
core polarization effects are taken into account. The normal-

ized neutralization probability P̃�A
�t� and the corresponding

rate �̃�A
�t� are obtained in a very simple analytical form, Eqs.

�4.3a� and �4.3b�. The quantities P̃�A
�t� and �̃�A

�t�, describe
the intermediate stages of the neutralization, under the fixed
final-state condition ��2�tfin��= ��A� and for all possible ini-
tial states��1�tin��= ��M� where �M = ��M ,n1M ,mM�.

The characteristic feature of the TVM in the low-velocity
regime is the quasiresonant character of the electron transi-
tions. That is, the probability density distribution T�M,�A

�t�
�Eq. �4.1�� over the energy parameter �M of the active elec-
tron is well localized �at �M =�max�, and shifts during the
ionic motion, synchronized with the shift of the energy
EA�R� of the ionic Rydberg state, i.e., �max=�A�R�. From the

rates �̃�A
�t�, the neutralization distances Rc

N are obtained, for
electron capture into high-eccentricity Rydberg states nA
� �6,12�, lA� �0,3�, and mA=0. The obtained values of Rc

N

along with the widths ��A
of the rates �̃�A

�t� enabled us to
identify the localization and the overbarrier-subbarrier char-
acter of the neutralization process.

We also demonstrated that the time-symmetrized neutral-
ization of the ion AZ+ escaping the surface and the EEM
ionization of the ion A�Z−1�+ approaching the surface �19� are

complementary. In the special case nA=nc, we have �̃�A

� �̃�A

I . From the analysis of the nA=nc case, it was also
concluded that the normalized neutralization probabilities

P̃�A
�t� and rates �̃�A

�t� obtained in the present paper are in
agreement with the corresponding quantities of CAM
method �6,7�, at least for some combinations of quantum
numbers �A and �A. That is, the neutralization distances pre-
dicted by the TVM and CAM method are nearly the same,
but the TVM predicts more delocalized neutralization �the
widths ��A

of the TVM rates are twice the CAM rate widths�.
By using the experimental data for the projectile energy gain
�27,28�, obtained for the ions impinging the surface in the
grazing geometry, we deduced the neutralization distances
for n=nc; the values so obtained are also in agreement with
the Rc

N values calculated in the present paper. However, the
cited experimental data are not conclusive enough for the
quantum predictions of the time-symmetrized TVM ap-
proach.

Few additional comments may be relevant for further in-
vestigations of the time-symmetrized neutralization of the
multiply charged ions interacting with solid surfaces.

First, the TVM treatment of the intermediate stages of the
neutralization in the present paper is devoted to the small
ionic velocities �v�1� and the low-lA Rydberg states. This
treatment can be extended to the intermediate velocity case
�v�1�; the key difference in respect to the low-velocity
case, is that the electron transitions become nonresonant
�21,22�. Our preliminary calculations of the corresponding
probabilities and rates for the S VI, Cl VII, and Ar VIII ions
escaping the surface with intermediate velocities, indicate

TABLE III. Neutralization distances Rc
N for �A= �nA , lA=0,mA

=0� and ionization distances Rc
I �19� for �A= �nA ,n1A=0,mA=0�

and v=0.01 a.u. and Fermi distances RF, for pointlike core charges
Z=8 and Al surface.

nA

6 8 10 12 14

Rc
N �a.u.� 8.6 15.4 29.8 99.2

Rc
I �a.u.� 28.7 41.3 56.6

RF �a.u.� 5.3 11.9 27.5 97.7

FIG. 10. Neutralization distances Rc
N for the ion Z=8 escaping

the Al surface with v�1 a.u., with electron capture into the Ryd-
berg state �A= �nA , lA=0,mA=0�, and ionization distances Rc

I of the
ion Z=8 in the Rydberg state �A= �nA ,n1A=0,mA=0� approaching
the Al surface with v=0.01 a.u. �19�. Dotted and dot-dashed curves
are the Fermi distances RF and critical distances Rc, respectively.
The bar symbols are the values ��A

and ��A

I in a.u.
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that two different R regions can be distinguished. Closer to
the surface, the neutralization is unstable; the probabilities
and rates are oscillatory in character. At larger ion-surface
distances R the neutralization is stabilized; the behavior of
the probabilities and rates becomes similar to that obtained in
the present paper.

Second, the extension of the TVM developed in the
present paper to the large-lA Rydberg states of multiply
charged ions is possible, taking into account that the corre-
sponding electron transitions do not take place in the vicinity
of the z axis. The final population probability treatment
within the framework of the TVM in the intermediate veloc-
ity region, that takes into account a wide space region around
the projectile trajectory, was developed in Ref. �23�. The
treatment of the intermediate stages of the population will be
worthwhile. We point out that the recent experimental data
for the final population probabilities of the multiply charged
Rydberg ions Ar7+ and Ar8+ are obtained for the large-lA case
and ionic velocities v�0.2 a.u., implying the microcapillary
foil �38�; the population of the levels nA=7,8 , . . . ,11 �nA

�nc and nA�nc� was reported. The experimentally obtained
probability distributions could be obtained from the large-lA
TVM of the nonresonant neutralization accompanied by the
reionization.

Finally, the full two-state description �with fixed initial
and final states� of the intermediate stages of the Rydberg-
level population could be possible on the bases of Eq. �3.32�
for T�M,�A

�t�. It is indicative that the probability T�M,�A
�t� per

unit �M, considered as a function of the ion-surface distances
R, has the maximum at R=Rc

N��M ,�A�, which satisfies the
quasiresonant condition �M =�A�Rc

N�. This fact can be used
to elucidate the role of the surface states of the solid in the
neutralization process.
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