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We apply the linear density response theory to the electron-impact ionization including autoionizing reso-
nances of atoms. Such a single-electron-like method takes into account the electron-electron dynamic correla-
tion effect through the first-order perturbation theory. The method allows us to study the dynamic correlation
in the process of electron-impact excitation with ionization background. We take the autoionizing resonances
of Ar atoms as an example to show the simpleness and effectiveness of the present method. Our calculated
electron impact ionization cross sections including autoionizing resonances are in reasonable agreement with
the experimental measurements.
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I. INTRODUCTION

The electron dynamic correlation effects play a funda-
mental role in atomic and molecular physics �1,2�. Atomic
photoabsorption spectra of excited discrete levels which are
embedded into ionization continuum have been studied by
many authors. The dynamic correlation problem in the case
of energy loss spectra by charged particle impact is also im-
portant and has been studied extensively �3–7�. Unlike the
photoabsorption experiments, the electron-impact experi-
ment measures not only the optically allowed transitions but
also the optically forbidden transitions. Furthermore, the
scattering angle of the incident electron opens another di-
mension to study the contribution of dynamic correlation in
the optically allowed and forbidden transitions. For example,
the autoionizing resonance line profile observed by the
electron-impact experiment depends not only on the speci-
fied transition, but also on the momentum transfer of the
incident electron. Thus we can select the resonance line pro-
file tuning the momentum transfer. The dynamical correla-
tion in the autoionizing resonances has been studied by many
authors �1,2,8–11� using various theoretical tools, such as the
configuration interaction and stabilization method �12�, the
hyperspherical coordinate method �13�, the close-coupling
�14�, the R-matrix theory �15�, and others. Here we only
quote the most recent paper for respective method. Concern-
ing these documents, a more detailed list can be found in the
references in a paper by Yuan et al. �16�. However, most of
the above papers treated only resonant energy positions and
resonance widths and did not pay attention to the energy loss
spectra and the momentum transfer dependence. Recently,
the detailed energy loss spectra for He atoms have been mea-
sured �17� and the relevant calculations have been performed
�16� using the R-matrix theory. In principle, the electron-
impact autoionizing resonance can be studied by the
R-matrix theory for many-electron systems as well. The
computational effort will increase dramatically as the num-
ber of electrons increases. Thus, we would like to find a
simple, yet effective method to study the electron-impact au-
toionizing resonance.

The linear density response theory combined with the
self-interaction free density function theory has been used
successfully to study the autoionizing resonances �18� and
giant resonances �19,20� in the photoabsorption processes.
This is a simple single-electron-like theory in which the
electron-electron dynamic correlation is taken into account
through the first-order perturbation theory. The computa-
tional effort increases linearly as the number of electrons
increases. We extend the method to study the energy loss
spectra of incident charged particle as a function of the scat-
tering angle or momentum transfer. Here we use an opti-
mized effective potential and incorporate a self-interaction
correction. We take the electron-impact autoionizing reso-
nance of Ar atoms as an example to show the effectiveness
of the method. Argon is one of the most basic species in the
problem. Fano �1,2� has studied the Ar photoabsorption spec-
tra, which were experimentally observed by Madden et al.
�4� at the early stage of this type of research. Burke and
Taylor �21� calculated the photoexcitation of inner-valence
3s electron of Ar atoms using the R-matrix method. Recently
Wu et al. �22� measured the energy-loss spectra of the high-
energy electron impact on Ar atoms in the energy losses
around 25–31 eV, which covers the excitations from the 3s
electron to the np, nd, and ns Rydberg series below the
3s�3p6��2S� ionization threshold at different scattering
angles. Additionally a Japanese group �23� has also measured
the energy loss spectra using a relative lower incident elec-
tron beam. Thus, the electron-impact autoionizing resonance
of Ar atoms serves as a good candidate to test our method. In
the following, we describe the detailed theoretical method in
Sec. II and present our results and the comparison with the
experiments in Sec. III.

II. THEORETICAL METHOD

Based on the Born approximation, the electron-impact ex-
citation or ionization can be studied by the generalized os-
cillator strength �GOS�, which is define as �atomic units e
=�=m=1 are used unless otherwise specified�
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f��E,Q� =
2�E

Q2 ��� f��
j

eiQ·rj��0	�2
. �1�

Here, �0 and � f are the initial and final states of the target
atoms with energies E0 and Ef, �E, and Q are the impact
electron energy loss and momentum transfer during the col-
lision and summation j runs over all the electrons of the
target atom. For a many-electron system, the calculation of
the high precision correlated wave functions �0 and � f is
still a challenge to the atomic structure studies, especially for
the final state � f, which contains both discrete and con-
tinuum states. With the independent particle approximation
�IPA�, the above equation can be simplified as

f��E,Q� =
2�E

Q2 �
i,j

ni�1 − nj���� j�ei�Q·r���i	�2. �2�

Here �i and � j are the initial and final states of the single
electron transition with corresponding energies �i and � j, and
occupation numbers ni and nj. The calculation of Eq. �2� is
straightforward and it can be used to study the electron-
impact excitation or ionization processes. Unfortunately, it
cannot be used to study the autoionizing resonances because
the interaction between the discrete and continuum states are
completely ignored in the above equation.

The linear density response theory �24,25� has been suc-
cessfully used to study the dynamic correlation in the photo-
ionization processes. It takes the simplicity of the IPA while
taking into account the dynamic correlation effect. We will
extend the linear density response theory to the study of
electron-impact autoionizing resonances. According to the
linear density response theory, the frequency-dependent in-
duced electron density ���r ,�� by the external potential
Vext�r ,�� can be expressed as

���r,�� =
 	�r,r�,��Vext�r�,��d3r�. �3�

For the GOS calculation, the external potential is

Vext�r,�� = eiQ·r = �
km

4
ikjk�Qr�Ykm
* �Q̂�Ykm�r̂� . �4�

The susceptibility 	�r ,r� ,�� can be determined by means of
the first-order time-dependent perturbation theory �25� and
expressed in terms of the eigenfunctions ��i� and the eigen-
values ��i� as

	IPA�r,r�,�� = �
i,j

�ni − nj�
�i

*�r�� j�r��i�r��� j
*�r��

� − �� j − � j� + i�
, �5�

where � is a positive infinitesimal used to ensure the outgo-
ing wave boundary conditions. ��i�r�� and ��i� are calculated
from the Schrödinger equation,

�− 1
2�2 + Veff�r���i�r� = �i�i�r� , �6�

where Veff�r� is an effective potential which is obtained from
the optimized effective potential method �26�. Under the
self-consistent-field approximation, the electron density
change ���r ,�� is rewritten as

���r,�� =
 	IPA�r,r�,��VSCF�r�,��dr�, �7�

where VSCF�r ,�� is obtained by the following equation:

VSCF�r,�� = Vext�r,�� +
 ���r,��
�r − r��

dr�

+ � �Vxc�r�
���r�

�
�0�r�

���r,�� . �8�

Here Vxc�r� is the exchange correlation potential and �0�r� is
the ground-state electron density. We calculate ���r ,�� and
VSCF�r ,�� solving Eqs. �7� and �8� iteratively. Detailed pro-
cedure has been shown in our previous work �19�. With the
obtained ���r ,��, the GOS is expressed as

f��E,Q� =
2�E

Q2 Im 
 Vext�r,�����r,��dr . �9�

Due to the parity conservation and the angular-momentum
conservation, we can decompose each kth pole contributions
by replacing Vext�r ,�� with

Vk
ext�r,�� = �

m

4
ikjk�Qr�Ykm
* �Q̂�Ykm�r̂� �10�

in Eqs. �7� and �8� and obtain the corresponding GOS la-
belled as fk��E ,Q�. Thus, the total GOS can be rewritten as

f��E,Q� = � fk��E,Q� . �11�

With the calculated GOS, the electron-impact excitation or
ionization cross sections are obtained as

���� =
2


T

1

�E



Qmin

Qmax f��E,Q�
Q

dQ , �12�

with T the incident electron energy and Qmin �Qmax� the mini-
mum �maximum� momentum transfer.

Note that in the above equations the electron energy loss
�E and the transition energy � are equal to each other due to
the energy conservation. The above equations are derived for
the spin-paired system. It is straightforward to extend them
to the spin-unpaired system as we did for the photoionization
studies �19�.

III. ELECTRON IMPACT AUTOIONIZING RESONANCES
OF Ar ATOMS

Autoionizing resonances of Ar atoms below the 3s ioniza-
tion threshold have been studied extensively by the photo-
ionization or the electron-impact ionization both experimen-
tally �27–30� and theoretically �31�. We would like to take
the electron-impact autoionizing resonances of Ar atoms as
an example to show the effectiveness of our present method.
The GOS formula was derived under the Born approxima-
tion so it should be valid for the high-energy electron-impact
experiment. Wu et al. �22� have measured the GOS using a
2.5 keV electron beam at scattering angles 0° and 2°. For the
0° scattering angle, the measured spectra approach to the
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oscillator strength, which corresponds to the photoabsorption
spectra. We first compare our results with their measurement
as shown in Fig. 1. For scattering angle 
=0°, the excitations
from 3s to np series form diplike resonances as shown in
Fig. 1�a�. For the lowest resonances, namely 4p and 5p, our
results are in agreement with the measured ones in the abso-
lute value. Due to the experimental energy resolution, they
did not observe the narrow resonances of the highly excited
states, which show up in our simulations. The zero degree
scattering spectra is a mimic of the photoabsorption spectra
since the GOS goes to the optical oscillator strength as Q
approaches zero. In the simulation, since Q is a finite value,
we still observe a tiny contribution from the excitation of 3s
to nd series as shown in Fig. 1�a�. The tiny peak around
27.5 eV in the experimental spectra could come from the 3s
to 3d transition. Such a transition is forbidden by the dipole
selection rule and it does not appear in the photoabsorption
spectra by synchrotron radiation �4�.

As for scattering angle 
=2°, the optical forbidden tran-
sitions, namely, 3s to ns and nd series, appear with sharp
resonances. To identify the measured resonance, we also plot
fk��E ,Q� for k=0,1 ,2 in Fig. 1�b�. Comparing our results
with the experimental ones, we identify that the observed
peak around 27.5 eV is attributed to the 3s to 3d transition
with a minor contribution from 3s to 4s. Note that we scale
the experimental results, which were presented by arbitrary
units in their original paper �22�, to our results in absolute
value. Overall, our results are in reasonable agreement with
the experimental ones. The discrepancies mainly come from

the experiment energy resolution, which we do not take into
account in our simulation. To compare with the measured
spectra, we shift our calculated energy loss by 0.9 eV, which
is originated from the energy difference between our calcu-
lated 3s ionization potential and the measured one.

The GOS is only valid to describe the electron-impact
excitation or ionization processes for the high-energy elec-
tron beam. Now we want to know what is the criterion for
the high energy. Figure 2 shows the GOS of Ar atoms with a
fixed scattering angle at 
=3° with 200, 100, and 50 eV
incident electron energies, respectively. Our simulation
shows that GOS in the near forward direction is not sensitive
to the incident energy when the incident energy is above
100 eV in the present case. Here we calculate the GOS with
the Q value corresponding to the momentum transfer. We
need to compare the relevant experiments to check if the
Born approximation is valid for the lower incident energies.
Fortunately, the Japanese group �23� has performed such an
experiment recently. Comparing with their results, we find
that our results of autoionizing resonance are in reasonable
agreement for the incident energy above 100 eV. For the
lower incident energy, namely 50 eV or even lower, such as
35 eV, our results differ from the experimental ones signifi-
cantly. Thus we conclude that the Born approximation could
be valid for the incident electron energy above 100 eV in the
present case, which is about 3 times of the 3s ionization
threshold.

When we calculate the GOS as a function of the scattering
angle 
 we find that the GOS is not very sensitive to the
scattering angle for the lower incident energy. We plot the
GOS of the scattering angles from 0° to 2° with 2500, 500,
and 100 eV incident energies in Fig. 3. The GOS changes
largely for the higher incident energy �between the two solid
curves for 2500 eV� than that of the lower incident energy
�between the two dotted curves for 100 eV� if we fix the
scattering angular resolution. This can be easily understood
since the momentum transfer Q strikes into the scattering
angle 
 by the following equation:

Q2 = ki
2 + kf

2 − 2kikf cos 
 �13�

with ki and kf the initial and final momenta of the incident
electron. For the high incident energy, the finite scattering
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FIG. 1. �Color online� The generalized oscillator strengths of Ar
atoms as a function of the energy loss by a 2.5 keV electron beam
with scattering angles �a� 
=0° and �b� 
=2°. The filled circles are
from experiment �22�.
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FIG. 2. �Color online� The generalized oscillator strengths of Ar
atoms as a function of the energy loss by fixed scattering angle 

=3° with different incident energies.
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angular resolution covers a large range of Q, which leads to
the large uncertainty in the observed GOS. The relative
lower energy experiment will have better resolution with a
limited Q range. Therefore, we must balance the resolution
and the Q range in experiments.

The most interesting part in the GOS is the autoionizing
structure. Due to the interaction between the discrete and
continuum states, the resonance peak is of the Fano profile.
Figure 4 shows the line profiles of the transition from 3s to
4p as a function of the momentum transfer Q. Clearly we see
that the GOS decreases as the Q value increases. Meanwhile
the shape of the GOS also changes from a diplike resonance
to a peaklike resonance as the Q value increases. The reso-
nance line profile can be described by the Fano profile �2� as

f��E,Q� = f0
�2 �q + x�2

1 + x2 − �2 + 1� , �14�

with

x =
�E − Er

�/2
. �15�

Here f0 is the GOS, q is the line profile index, Er is the
resonance energy position, � is the resonance half-width, and

�2 is the correlation coefficient, which gives the proportion
of the continuum that interacts with the autoionizing states.
The q parameter describes the resonance spectra pattern, so
we plot the q parameter as a function of the momentum
transfer Q in Fig. 5. We also plot the available experimental
data in the figure. Physically speaking, the Fano q-parameter
can be expressed as

q =
��0�Vext��c	
��0�Vext��b	

. �16�

Here �0, �c, �b are the initial, final discrete, and final con-
tinuum wave functions and Vext� j1�Qr�. The initial and ex-
citation wave functions are localized in a small region and
the transition matrix element ��0�Vext��b	 is not sensitive to
the changes of the Q value. The transition matrix element
��0�Vext��c	 is sensitive to the changes of the Q value. This
is only a qualitative analysis. A quantitative calculation is
difficult since we do not know the �c, �b. We see that the q
parameter increases from a negative value to zero as Q in-
creases from 0 to 1, and then to a positive value as Q in-
creases further. This trend is consistent with the experimental
observations �22,23,32� although our q parameters are
smaller than the experimental ones. The discrepancies be-
tween our results and the experimental ones may come from
the high-order interactions which are ignored in the present
simple method. They may also come from the finite resolu-
tion of the experiments, which has been studied by Fang and
Chang �33�. One bound interacting with several continua
�34� may also contribute to the discrepancies. The discrepan-
cies call for a further study of the problem by more sophis-
ticated theoretical methods.

To summarize, we applied the linear density response
theory to the study of electron-impact autoionizing reso-
nances of Ar atoms below the 3s ionization threshold. Our
results are in good agreement with the available experiments
including the autoionizing resonance shapes. Furthermore,
we predicted that the resonance shape of the 3s to 4p transi-
tion changes from a diplike resonance to a peaklike reso-
nance as the momentum transfer Q increases. A recent ex-
periment by the Japanese group partly confirmed this
prediction and we hope further systematic experiment can
test the prediction.
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