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Cross sections for dissociation of H2 due to collision with He are calculated for highly excited rovibrational
states using the quantum-mechanical coupled-states approximation. An L2 Sturmian basis set with multiple
length scales is used to provide a discrete representation of the H2 continuum which includes orbiting reso-
nances and a nonresonant background. Cross sections are given over a range of translational energies for both
resonant and nonresonant dissociation together with the most important bound-state transitions for many
different initial states. The results demonstrate that it is possible to compute converged quantum-mechanical
cross sections using basis sets of modest size. It is found that collision-induced dissociation competes with
inelastic scattering as a depopulation mechanism for the highly excited states. The relevance of the present
calculations to astrophysical models is discussed.
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I. INTRODUCTION

The role of hydrogen molecules in a variety of astrophysi-
cal environments, including photodissociation regions, star-
forming regions, circumstellar shells, and other molecular
regions, is far-reaching. Hydrogen molecules are pivotal to
establishing the temperature and density structure of gas and
provide diagnostics through emission, absorption, and fluo-
rescence. However, these environments are typically of low
density, may be exposed to shocks, and are usually irradiated
in the uv by nearby hot stars which likely result in a signifi-
cant departure from equilibrium for the chemical, ionization,
and internal energy states of the gas �1–3�. Therefore, to
accurately model these environments, and thereby interpret
results from spectroscopic observations, requires a quantita-
tive understanding of a variety of microphysical processes
including collisional dissociation and, at high density, three-
body recombination.

Hydrogen atom recombination in the presence of helium
is a fundamental problem that has been studied for over
30 years. The original theoretical approaches �4,5� calculated
the rate of stabilization of a steady-state population of H2
orbiting resonances due to collisions with helium as a third
body. The full set of resonances �6–8� was reduced to a set of
6 after energy and lifetime considerations were taken into
account. Classical trajectories were computed for the re-
stricted set of resonances, and the recombination rate con-
stants were determined. The reverse process of collision-
induced dissociation �CID� of H2 by He was later studied
using similar methods based on classical trajectories �9�.
More recently, Sakimoto and co-workers have reported re-
sults for semiclassical �10� and quantum-mechanical �11–14�
calculations of CID for He+H2. The quantum-mechanical
studies assumed either a restricted geometry �11,12� or else a

sudden approximation �13,14�. Comparison of the semiclas-
sical and quantum-mechanical results have clarified the use-
fulness of the various approximations that have been applied
to the He+H2 system. Because these studies were limited to
the ground and low-lying rovibrational states of the mol-
ecule, it is not clear what role, if any, the excited and reso-
nant states would play in a kinetic model for this system. The
contribution of resonance states to the total dissociation cross
section was found to be small for initial ground-state mol-
ecules �10�. However, classical trajectory studies �9� pre-
dicted a relatively large resonance contribution for excited
states and resonant recombination calculations �5� are in
good agreement with experiment �15�. Because the effi-
ciency of transitions for large changes of vibrational quan-
tum number is known to be relatively small, it is likely that
for many systems, particularly those that are not initially in a
Boltzmann distribution of states, the path to dissociation be-
gins with �i� a series of upward steps to highly excited levels
or �ii� electronic excitation via uv photons or energetic elec-
trons followed by fluorescence decay into near-dissociative
levels of the ground electronic state with the actual dissocia-
tion taking place in either case via small quantum jumps into
the continuum.

The results of the resonant classical trajectory studies sug-
gest that it would be desirable to perform quantum-
mechanical calculations for initial excited states which in-
clude coupling to both resonant and nonresonant states in the
H2 continuum. This paper describes such calculations for the
highest bound vibrational level for a given initial rotational
level ranging from 0 to 20. Quasiresonant energy transfer
between rovibrational bound states has been found for many
of these initial levels �16�, and we investigate here whether
similar transitions may occur for dissociation into the reso-
nant or nonresonant continuum. In the next section, the
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quantum-mechanical method for CID is presented along with
details of the numerical parameters. The resulting cross sec-
tions from the calculations are presented in Sec. III. Section
IV briefly addresses the astrophysical relevance of the cur-
rent work, and a summary follows in Sec. V. Atomic units
are used throughout unless otherwise noted.

II. THEORY

The atom-diatom Hamiltonian in the center-of-mass
frame is given by

H = −
1

2m
�r

2 −
1

2�
�R

2 + v�r� + VI�r,R,�� , �1�

where r is the distance between the hydrogen atoms, R is the
distance between the helium atom and the center of mass of

the diatom, � is the angle between r� and R� , m is the reduced
mass of the diatom, and � is the reduced mass of the helium
atom with respect to the diatom. The three-dimensional po-
tential energy surface is separated into a diatomic potential
v�r� and an interaction potential VI�r ,R ,��. As in the case of
bound-state transitions, the first step in the computation of
dissociation cross sections is to find the appropriate set of
solutions to the diatomic Schrödinger equation

� 1

2m

d2

dr2 −
j�j + 1�
2mr2 − v�r� + �vj��vj�r� = 0, �2�

where v and j are the vibrational and rotational quantum
numbers for the eigenstate �vj. We have found previously
that transitions between different vibrational and rotational
states occur primarily through �v= ±1 steps for nearly all
bound levels of H2. Therefore, we consider dissociation from
an initial state �v0 , j0� where v0 is the quantum number of the
last bound vibrational level for the rotational level j0. The
dissociative continuum is described by positive energy states,
often called pseudostates, with v�v0. The bound rovibra-
tional wave functions and the positive-energy pseudostates
are obtained by diagonalization of the diatomic Hamiltonian
in the orthonormal Laguerre polynomial Ln

�2j+2� basis set:

� j,n�r� =� an!

�n + 2j + 2�!
�ar� j+1 exp�− ar/2�Ln

�2j+2��ar� .

�3�

A modest basis set �N�50� using a single length scale �a
�20� is capable of providing good estimates for the entire
set of bound-state energies. The pseudostate spectrum, how-
ever, is not constrained by a variational principle and is very
sensitive to the number of basis functions and to the length
scale. Resonant energies are stable with repect to variations
in the length scale over a limited range when the number of
functions is held constant. However, the optimal scale factor
for one resonance may be quite different than that of another
resonance. Therefore, we have found it convenient to use
multiple scale factors �i.e., a→aj in Eq. �3�� in order to
represent both the resonant and nonresonant continuum
states. Tables I and II show the energies of all the H2 reso-
nances obtained using the stabilization method with 90 basis

functions for each j and a coarse optimization. Our calcula-
tions use the fit �17� to the Ad potential of Ref. �8�, and we
show Schwenke’s results for the Ad potential in the tables for
comparison. The results are in good agreement for widths
below a few wave numbers. For the broad resonances, our
basis set is not large enough to accurately determine the reso-
nance energy, so we simply tune the scale parameter to give
an energy near the accepted value �8�. The CID cross sec-
tions were found to be insensitive to aj→aj ±5 and to in-
creasing the number of Laguerre basis functions.

The distinction between resonant and nonresonant disso-
ciation is somewhat artificial for the broad resonances in
Tables I and II. These resonances, which become important
at high energies, could equally be regarded as quadrature
points of the nonresonant background. Nevertheless, we will
use the term resonant dissociation to mean dissociation into
one of the resonant states given in Table I or II, and nonreso-
nant dissociation to mean dissociation into the background
continuum. The total dissociation cross section is then the
sum of the resonant and nonresonant contributions, which is

TABLE I. Resonance parameters for para-H2 �X 1	g
+�.

j

Present Schwenke

aj �a.u.� E �cm−1� E �cm−1� 
 �cm−1�

4 20 0.906 0.842 8.4�10−6

8 30 85.94 86.26 1.485

12 50 386.4 380.5 69.49

14 50 475.3 475.8 17.43

16 50 581.8 581.8 2.826

18 50 721.9 721.8 0.509

20 55 917.4 917.2 0.161

22 60 1181.8 1181.6 0.093

24 60 233.88 233.77 1.1�10−21

24 60 1523.7 1523.5 0.083

26 70 600.56 600.44 1.9�10−15

26 70 1948.45 1948.26 0.097

26 70 2508 2695 268

28 70 1062.54 1062.40 2.1�10−12

28 70 2459.50 2459.34 0.124

28 70 2876 3263 264

30 75 1619.65 1619.48 1.4�10−10

30 75 3059.57 3059.40 0.155

30 75 3545 3914 259

32 75 432.70 432.68 6.0�10−34

32 75 2271.31 2271.16 1.8�10−9

32 75 3750.66 3750.57 0.166

32 75 3962 4657 247

34 80 3016.86 3016.77 5.5�10−9

34 80 4535.04 4534.92 0.138

34 80 4800 5497 218

36 90 5414.5 5414.32 0.061

36 90 6120 6443 166

38 90 6795 7506.67 86.46
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equivalent to summing over the full pseudostate spectrum. It
is also noteworthy that transitions to long-lived resonances
are assumed here to contribute to dissociation, whereas in
many kinetic models such states would effectively behave as
bound states.

The large number of pseudostates needed to represent the
continuum precludes the use of a fully coupled channel
method for performing the scattering calculations, particu-
larly at high energies. Therefore, we use the coupled-states
�CS� approximation to decouple the orbital angular momen-
tum of the atom from the orbital angular momentum of the
molecule. In the CS approximation �18,19�, the wave func-
tion in the body-fixed frame is expanded for total angular
momentum J in the set of diatomic eigenstates as

�J�R� ,r�� =
1

R
	
v,j

Cvj�R��vj�r�Y j��,0� , �4�

where  is the body-fixed projection of both J and j. The
centrifugal term in the total Hamiltonian will give diagonal

matrix elements proportional to J�J+1�+ j�j+1�−22. The
CS approximation is made by neglecting the off-diagonal
coriolis couplings that arise in the body-fixed frame. Differ-
ent variations of the CS approximation have been studied by
Krems �20� who found that the J-labeled variant introduced
by Pack �18� often performs best; however, it does not allow
s-wave scattering for rotationally excited states of the dia-
tom. Therefore, we follow our previous work �16� and use
the l-labeled variant originally proposed by McGuire and
Kouri �19� which assumes that the diagonal eigenvalue of the

orbital angular momentum operator l̂2 is approximated by
l�l+1� where l is a conserved quantum number. This proce-
dure yields the set of coupled equations

� d2

dR2 −
l�l + 1�

R2 + 2�Evj�Cvj�R�

= 2� 	
v�,j�

Cv�j��R�
vj�VI�v�j�� , �5�

where


vj�VI�v�j�� = 	
�=0

�max

�− 1���2j + 1��2j� + 1��1/2

�  j� � j

0 0 0
� j� � j

 0 − 
�
�vj�V���v�j��

�6�

and V� are coefficients for the expansion of the interaction
potential in terms of Legendre polynomials P�:

VI�r,R,�� = 	
�=0

�max

V��r,R�P��cos �� . �7�

Here �¯� denotes a 3j symbol. Equation �5� shows that the
CS formulation requires a set of calculations for each value
of . Therefore, the computational effort scales with max
= j0. The collision cross section is given by

�vj→v�j� =
�

2�Evj�2j + 1� 	
J=0

Jmax

�2J + 1� 	
=0

max

�2 − �0�

��� j j��vv� − Svj;v�j�
J �2, �8�

where Svj;v�j�
J is the scattering matrix and Evj =E−�vj is the

translational energy for state �vj. The set of coupled equa-
tions �5� may be conveniently solved using the general in-
elastic scattering program MOLSCAT �21�. For H2 dissocia-
tion, the potential energy surface �PES� should provide an
accurate representation for large values of H-H separation.
The PES of Muchnick and Russek �MR� �22� was recently
used for states of H2 near dissociation �16�. The cross sec-
tions were found to be relatively insensitive to changes in the
PES for large stretching of the H-H bond where the param-
etrization of the surface is poorly constrained. Similar tests
were performed in the present work for dissociation into the
low-energy H-H continuum. Again, the scattering results
were found to be insensitive to changes in the PES for large
H-H stretching, so we believe that the MR potential should

TABLE II. Resonance parameters for ortho-H2 �X 1	g
+�.

j

Present Schwenke

aj �a.u.� E �cm−1� E �cm−1� 
 �cm−1�

5 30 44.49 43.82 15.22

9 40 185.63 191.26 48.28

11 40 211.56 211.48 2.34

13 40 195.39 195.25 4�10−3

15 55 189.95 189.78 3.2�10−6

15 55 683 687 159

17 60 228.83 228.65 3.6�10−8

17 60 888 883 96.3

19 60 331.56 331.40 1.3�10−8

19 60 1105.9 1117.1 59.7

21 65 510.22 510.08 3.7�10−8

21 65 1401.1 1402.69 40.5

23 70 772.19 772.07 2.2�10−7

23 70 1753.6 1751.13 31.2

25 75 1121.86 1121.73 1.3�10−6

25 75 2175.6 2171.1 27.2

27 75 1561.72 1561.58 6.9�10−6

27 75 2665.7 2669.19 25.8

29 80 474.28 474.14 8.2�10−25

29 80 2093.15 2092.99 2.6�10−5

29 80 3249.1 3251.0 25.3

31 85 1061.40 1061.27 1.5�10−18

31 85 2716.92 2716.74 6.6�10−5

31 85 3920.5 3921.4 24.2

33 90 1744.49 1744.44 8.8�10−16

33 90 3433.52 3433.34 1.0�10−4

33 90 4684.8 4685.1 20.9

35 95 4243.37 4243.24 8.3�10−5

35 95 5546.9 5546.8 14.4

37 100 6511.2 6510.9 5.95
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be adequate for the calculations considered here.
For j0�10, we expect quasiresonant vibration-rotation

�QRVR� energy transfer to dominate. This process is charac-
terized by very efficient transitions that follow the specific
propensity rule �j=−2�v for highly excited initial states.
Therefore, we select basis states such that j0−10� j� j0
+10 with vibrational levels restricted by

vmin�j� = v0 −
1

2
�j − j0� − m , �9�

vmax�j� = v0 −
1

2
�j − j0� + n . �10�

This basis set was also found to be sufficient for j0�10 with
jmin=0 for para-H2 and jmin=1 for ortho-H2. As described
below, we generally use m=2 which allows transitions to the
most probable bound states. For low energies before disso-
ciation becomes possible, it is sufficient to set n=1. This
gives a total of 44 coupled states and allows the QRVR and
non-QRVR bound-state transitions to be easily calculated for
small Jmax. This approach worked very well for cold colli-
sions near dissociation �16�. For energies above the dissocia-
tion threshold, the value of n must be increased in order to
get a good representation of the resonant as well as a few
nonresonant background states for each j. Ideally, we would
like to increase n until full convergence of the background
contribution is achieved; however, the increasingly large
value of Jmax with energy limits what is practical. In the
calculations reported in this work, we have used Jmax=50 for
translational energies between 100 and 1000 cm−1, Jmax
=100 for energies between 1000 and 10 000 cm−1, and Jmax
=200 for energies between 10 000 and 100 000 cm−1. Each
set of calculations gives good agreement at the overlapping
boundary. At energies above 100 000 cm−1, it should be pos-
sible to match the quantum-mechanical calculations to qua-
siclassical trajectory calculations as has been done previ-
ously for bound-state transitions �23�.

III. RESULTS

In order to see whether the basis set defined by Eqs. �9�
and �10� is adequate for dissociation, it is necessary to study
the rate of convergence as a function of collision energy.
Figure 1 shows the convergence pattern of the resonant and
nonresonant dissociation cross sections for an initial state
with v0=12 and j0=10. The resonant cross sections have
been multiplied by 10 in order to provide better visibility.
There is a small decrease in the cross sections in going from
m=1 to 2 for n=3. Further increase in m yields an even
smaller change in the cross sections. This is due to the rapid
rate of convergence for the most probable bound-state tran-
sitions �16�. The convergence rate for the dissociative transi-
tions is somewhat slower, particularly for the nonresonant
contribution. Figure 1 shows that the difference between the
n=5 and n=6 cross sections is reasonably small. Therefore,
we have used n=6 for j0=0–15 and n=5 for j0=16–20 with
m=2 in both cases. The decrease in n for high j0 helps to
compensate for the increased number of  projections

needed in Eq. �6� and provides a managable program execu-
tion time without introducing a significant loss of accuracy.
The total number of coupled states for all calculations con-
sidered in this work is then 88 and 99 for n=5 and n=6,
respectively.

Figure 2 shows dissociation cross sections to the resonant
states of H2 for an initial state with v0=12 and j0=10. The
relatively large cross section to the j=8 resonance is due to a
QRVR transition with �v=1. Other transitions also satisfy
the quasiresonant �j=−2�v propensity rule; however, tran-
sitions with ��v��1 have a larger angular momentum gap
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FIG. 1. Dissociation cross sections for He+H2 �v0=12, j0=10�.
The resonant cross sections have been multiplied by 10 for better
visibility. The convergence rate for the resonant cross sections ap-
pears to be faster than for the nonresonant background, particularly
at low energy. Satisfactory convergence is obtained for both contri-
butions when m=2 and n=6.
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FIG. 2. Resonant dissociation cross sections for He+H2 �v0

=12, j0=10�. The relatively large j=8 cross section is due to QRVR
�j=−2�v energy transfer. The total cross section is the sum of the
curves and is the same as the m=2 and n=6 resonant cross section
in Fig. 1.
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which produces cross sections that are smaller than that of
j=8. The thresholds for dissociation to resonant states with
increasing j occur at increasing collision energies as ex-
pected from Table I. At energies above 10 000 cm−1, the
smallest contributions to the total resonant cross section

come from j=4, j=18, and j=20. These resonances have the
largest internal angular momentum gap, and their small con-
tribution suggests that the truncation condition j0−10� j
� j0+10 is sufficient for handling dissociation to the reso-
nant states. Figure 3 shows dissociation cross sections to the
nonresonant background continuum of H2 for the same initial
state as Fig. 2. The contributions from each positive energy
pseudostate are summed over v for each j, which provides a
convenient quadrature of the background. The j�10 contri-
butions dominate the total nonresonant cross section at ener-
gies below 1000 cm−1. At higher energies, the j�10 contri-
butions become important, and at energies above
10 000 cm−1, the j=20 curve is larger than many of the other
curves, which suggests that additional angular momentum
states may be needed to achieve full convergence for disso-
ciation into the nonresonant background continuum at high
energies.

Figure 4 shows the total cross sections for transitions to
bound states, resonant states, and nonresonant continuum
states for j0=7, 10, 15, and 20. The bound-state curve in
each case includes cross sections for all possible bound-state
transitions and is dominated at low energies by QRVR en-
ergy transfer �16�. The dissociation curves include cross sec-
tions for all possible pseudostate transitions, and the total
dissociation curve in each case is the sum of the resonant and
nonresonant cross sections. For j0=7 and j0=10, the reso-
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FIG. 3. Nonresonant dissociation cross sections for He+H2

�v0=12, j0=10�. The total cross section is the sum of the curves and
is the same as the m=2 and n=6 nonresonant cross section in Fig.
1.
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FIG. 4. Total cross sections for He+H2 �v0 , j0� for four different initial states. The curves in all four panels are defined the same as in �a�.
The bound-state and dissociation curves include contributions from all possible bound-state and pseudostate transitions, respectively.
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nant and nonresonant curves cross near 200 cm−1 and
500 cm−1, respectively. As j0 is increased further the reso-
nant contribution dominates the dissociation cross section for
energies less than 20 000 cm−1. The total dissociation curves
for j0=7 and j0=10 cross the bound state curves around
900 cm−1 and 2000 cm−1, respectively. Above these energies,
the H2 molecule is more likely to dissociate than to transition
into another bound rovibrational level. This crossing point
does not occur for the higher-j0 states in �c� and �d� until
collision energies approaching 100 000 cm−1 are reached.

A similar analysis was performed for other initial states.
Figure 5 shows the resonant dissociation cross sections for
para-H2 with j0�20. The initial vibrational level v0, which
corresponds to the most weakly bound state for a given j0, is
also shown in the legend. Each curve represents a sum of
cross sections for all possible resonant transitions for the
indicated initial state. The j0=2 cross section is the largest
for nearly all of the energies shown. The j0=10 cross section
is also large due to the efficiency of the j=8 transition de-
scribed above. The j0=0 cross section is relatively large at
low energy but becomes the smallest of the group at energies
above 10 000 cm−1. There does not appear to be any ordered
behavior in the remaining curves at low and intermediate
energies, and all of the curves for j0�10 approach nearly the
same limiting behavior at high energies. Figure 6 shows the
corresponding nonresonant dissociation cross sections for
each of the initial states in Fig. 5. The contributions from
each positive-energy pseudostate are summed over both v
and j. The resulting curves are found to be smooth functions
of energy and are ordered with increasing j0 for j0�10 as
shown.

Figures 7 and 8 show the respective resonant and non-
resonant dissociation cross sections for ortho-H2. The curves
are comparable to those of para-H2, although the thresholds
tend to be shifted toward higher energies due to the deeper
binding energies of the initial states. The j0=3 and j0=7
resonant cross sections are largest at low and intermediate
energies. The efficiency of the j0=7 cross section is due to

the availability of a QRVR transition to the j=5 resonance.
The j0=1 resonant cross section is relatively large at low
energy but becomes the smallest of the group at high ener-
gies, similar to the j0=0 cross section for para-H2. Figure 8
shows that the nonresonant cross sections have smoother and
more orderly behavior than the corresponding resonant cross
sections, again similar to para-H2.

The total dissociation cross section for a given initial state
is obtained as the sum of the resonant and nonresonant con-
tributions. Likewise, the total bound-state cross section is
defined to be the sum of cross sections for all possible tran-
sitions from a given initial state to a final bound state. In
Figs. 9 and 10, the total dissociation cross section divided by
the total bound-state cross section is shown as a function of
energy for both para-H2 and ortho-H2. The results are pre-
sented as ratios in order to see the relative importance of
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FIG. 5. Resonant dissociation cross sections for He collisions
with para-H2. Each curve represents a sum of all possible resonant
cross sections for the indicated initial state.
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FIG. 6. Nonresonant dissociation cross sections for He colli-
sions with para-H2. Each curve represents a sum of all possible
nonresonant cross sections for the indicated initial state.

100 1000 10000 100000
E (cm

−1
)

10
−2

10
−1

10
0

10
1

cr
os

s
se

ct
io

n
(a

.u
.)

j0= 1, v0=14
j0= 3, v0=14
j0= 5, v0=13
j0= 7, v0=13
j0= 9, v0=12
j0=11, v0=11
j0=13, v0=10
j0=15, v0=9
j0=17, v0=8
j0=19, v0=7

FIG. 7. Resonant dissociation cross sections for He collisions
with ortho-H2. Each curve represents a sum of all possible resonant
cross sections for the indicated initial state.
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dissociation compared to bound-state transitions. For para-
H2, the j0=2 curve is largest at all energies. The j0=10 curve
is also large with a ratio that approaches 2 at the highest
energy shown. All of the curves have a ratio greater than
0.01 for energies above 1000 cm−1 and 0.1 for energies
above 2000 cm−1. For ortho-H2, the j0=3 curve is largest at
all energies followed by the j0=7 and j0=1 curves at low
energies. The remaining curves show no significant dissocia-
tion for energies below 300 cm−1. At this energy, however,
the j0=3 ratio becomes greater than unity and dissociation
becomes preferable to inelastic scattering. A similar cross-
over occurs for para-H2 around 200 cm−1 due to the j0=2
contribution.

The results suggest that dissociation is at least as impor-
tant as inelastic scattering for all j0 at high energies. At low
energies, only states with j0=0, 1, 2, 3, 7, and 10 yield sig-

nificant dissociation cross sections. The j0=7 and j0=10
states are particularly interesting because they can make very
specific QRVR transitions to the j=5 and j=8 orbiting reso-
nances prior to dissociation. Dissociation from the j0=0–3
states is very efficient due to the small energies needed to
reach the continuum; however, transitions from these states
do not follow a specific propensity rule as in the case of
QRVR transitions and a larger number of final states make a
significant contribution to the total dissocation cross section.

IV. ASTROPHYSICAL APPLICATIONS

As discussed in the Introduction, the populations of the
rovibrational levels of H2 may be very different from a ther-
mal distribution in, for example, environments which expe-
rience considerable external energy input. A particularly im-
portant case is the photodissociation region �PDR� which is
found in a variety of astrophysical sources �2�. A PDR is
produced when gas is irradiated by uv photons from a nearby
star or star cluster. This radiation can be very intense, with
typical intensities thousands of times larger than the interstel-
lar background uv field. The uv radiation can excite H2
present in the PDR into low-lying electronic states which
decay back to the ground state, but into a range of rovibra-
tional levels. The process tends to drive the rovibrational
population distribution out of equilibrium. In fact, highly ex-
cited rovibrational states of H2 have been directly observed
in a number of PDRs. An illustrative case is the PDR asso-
ciated with the reflection nebula NGC 2023 in Orion. Mc-
Cartney et al. �24� have observed the H2 fluorescent emission
spectrum in the infrared from NGC 2023 for vibrational lev-
els v=1–12 and j as high as 16; i.e., states such as v=5, j
=16, and v=9, j=13 are actually populated. Looking directly
at the illuminated star of NGC 2023, HD 37903, with the
Hubble Space Telescope, Meyer et al. �25� detected uv ab-
sorption lines of vibrationally excited H2 including from v
=14, j=0–3 and v=13, j=1–5. Figures 9 and 10 demon-
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FIG. 8. Nonresonant dissociation cross sections for He colli-
sions with ortho-H2. Each curve represents a sum of all possible
nonresonant cross sections for the indicated initial state.
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FIG. 9. Ratio of the total dissociation cross section to the total
cross section for transitions to a bound state for He collisions with
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FIG. 10. Ratio of the total dissociation cross section to the total
cross section for transitions to a bound state for He collisions with
ortho-H2.
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strate that CID competes with bound-bound transitions as a
depopulation mechanism for these highly excited states. Fu-
ture H2 PDR models, such as those of Draine and Bertoldi
�1� and Shaw et al. �3�, should include accurate CID rate
coefficients to allow for reliable predictions of rovibrational
column densities.

V. CONCLUSIONS

The present work reports the results of quantum-
mechanical coupled-states calculations for He+H2�v0 , j0�
where v0 is the highest bound vibrational level for j0�20.
The results include numerically converged cross sections for
transitions to the most probable bound states as well as tran-
sitions to the resonant and nonresonant states of the H2 con-
tinuum. The total dissociation cross sections become larger
than the total bound-state cross sections at high energies for
all initial states included in the study. At low energies, only a
few initial states yield a significant amount of dissociation.
The cross sections for dissociation from excited levels of H2
are generally much larger than those computed by Sakimoto
�10� for the ground state. Therefore, we expect that the domi-
nant pathway for dissociation in many nonequilibrium envi-

ronments is through a series of upward steps to the highly
excited levels followed by small jumps into the continuum or
through fluorescence following electronic excitation. The
present results demonstrate that it is possible to compute
quantum-mechanical cross sections for these dissociative
transitions using basis sets of modest size. Such basis sets
may be used to compute CID cross sections for weakly
bound levels of H2 not considered here �e.g., the second-
most weakly bound vibrational level for a given j0�. It should
also be possible to use a similar methodology for H2+H2
collisions when the dissociating molecule is initially in a
highly excited state with the other molecule in either the
ground or a low-lying state. Such calculations would be im-
portant for various astrophysical applications including those
described here and will be undertaken in due course as an
extension of the present calculations.
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