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Finite-temperature phase diagram of trapped Fermi gases with population imbalance
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We consider a trapped Fermi gas with population imbalance at finite temperatures and map out the detailed
phase diagram across a wide Feshbach resonance. We take the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state
into consideration and minimize the thermodynamical potential to ensure stability. Under the local density
approximation, we conclude that a stable LOFF state is present only on the BCS side of the Feshbach
resonance, but not on the BEC side or at unitarity. Furthermore, even on the BCS side, a LOFF state is
restricted at low temperatures and in a small region of the trap, which makes a direct observation of a LOFF

state a challenging task.
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I. INTRODUCTION

There has been considerable interest in paired superfluid-
ity of trapped Fermi gases, where the interatomic interaction
can be tuned by varying the external magnetic field [1-3].
Recently, the experimental realization of superfluidity in po-
larized Fermi gases attracts great attention, where the num-
bers Ny and N, of the two atomic species undergoing pairing
are different [4—6]. This population imbalance is obviously
detrimental to superfluidity, since the Cooper pairing requires
an equal number of atoms from both spin components.
Therefore, by increasing the population imbalance from zero,
it is expected that the BCS pairing state becomes less favor-
able and eventually gives way to normal or other exotic
phases [7-12].

One of the most fascinating phenomena in unbalanced
Fermi systems is the Larkin-Ovchinnikov-Fulde-Ferrel
(LOFF) states, which was first discussed as a “compromise”
candidate exhibiting both pairing and nonzero magnetization
in the context of superconductors in the presence of a mag-
netic field [7]. This exotic LOFF state is characterized by an
order parameter with one or more nonzero components at
finite momenta ¢, and hence breaks translational and rota-
tional symmetry and forms a crystal of pairing order (i.e., a
supersolid). In the past several decades, the existence of
LOFF states was studied in various systems [13], including
heavy fermions [14] and dense quark matter [15].

Compared to the systems mentioned above, ultracold
Fermi gases provide a superclean experimental platform with
remarkable controllability, so that they can be studied with
nearly arbitrary interaction strength and population imbal-
ance. Therefore, after the realization of paired superfluidity
in resonantly interacting °Li atoms with population imbal-
ance [4,5], the interest of the LOFF state in these systems has
been greatly intensified. Up to now, no evidence of a LOFF
state has been found yet in experiments on the polarized
Fermi gas. Theoretically, some existing studies give signifi-
cantly different predictions on the stable region of the LOFF
state: some works on the homogeneous system conclude that
at zero temperature the LOFF state is confined to a narrow
parameter region on the BCS side of the resonance, for both
cases of a narrow [16] and a wide [17] Feshbach resonance,
while some other calculations claim a much larger region of
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a stable LOFF state [18-20], well existing at the unitarity
point. What is subtle for these calculations is to implement a
right set of stability conditions, which are usually controver-
sial. Considering that there exist various possible competing
phase configurations for this system, one thus needs to care-
fully distinguish a stable phase from some metastable states
or unstable saddle point solutions.

In this paper, we consider the possibility of a LOFF state
and map out the detailed finite-temperature phase diagram
for fermionic atoms in a trap with population imbalance. To
ensure stability, we directly minimize the thermodynamical
potential instead of using the order parameter equations, as
the latter may give unstable or metastable solutions [21]. The
calculation of the full landscape of thermodynamical poten-
tial sounds to us the only method capable to distinguish a
local metastable configuration from a globally stable phase.
To deal with the trap, we use the local density approximation
(LDA), which is typically valid unless the trap has a strong
anisotropy and/or the total atom number is small [5,22,23].
Our main results are as follows. (i) We conclude that a stable
LOFF state can only be present on the BCS side of the Fes-
hbach resonance. On the BEC side and at the unitarity, the
LOFF state is only a metastable state. (ii) Even on the BCS
side of the resonance, a globally stable LOFF state is only
restricted at low temperatures and in a small region of the
trap. In a wider temperature and spatial region, the LOFF
state is only a metastable state. Considering experimental
limit of temperature and resolution, we expect that a direct
observation of stable LOFF states is challenging for polar-
ized Fermi gases in typical harmonic traps.

The remainder of this paper is organized as follows. In
Sec. II, we discuss our formalism for unbalanced Fermi
gases in an isotropic harmonic trap. We first derive a
Ginzburg-Landau theory for the second-order normal-LOFF
and normal-BCS phase transitions, and then derive the mean-
field thermodynamical potential to study the first-order
normal-LOFF and LOFF-BCS phase transitions. In the
mean-field calculation, for simplicity, we focus on the single-
plane-wave LOFF state (i.e., the FF state). Our main results
are presented in Sec. III, where the phase diagrams showing
various stable or metastable states are illustrated for systems
at unitarity, and on the BCS and BEC sides of the Feshbach
resonance.

©2007 The American Physical Society
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FIG. 1. Temperature versus chemical potential phase diagram is
illustrated by solving Eq. (8) at unitarity, showing three different
regions: (1) normal state is stable or metastable, (2) normal state
loses its stability at q # 0, and (3) normal state loses its stability at
q=0. In this figure, the chemical potential difference #=0.4 with
arbitrary energy unit. Inset: The 7-r diagram can be obtained by
incorporating the LDA. Here, we choose the energy unit as the
chemical potential at the trap center py=1, and 7=0.4 in this scale.
The radius 7 is in a unit of ry= 2/ (mw?).

II. FORMALISM FOR POLARIZED FERMI GASES
IN A HARMONIC TRAP

Since the population of closed channel molecules is neg-
ligible close to a wide Feshbach resonance [24,25], we study
a trapped Fermi gas by considering the following single-
channel Hamiltonian (we use the natural unit such that 7
=kg=1 throughout this paper):
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FIG. 2. Contour plots of mean-field thermodynamic potential ()
as a function of A and wave vector |Q|, using an arbitrary energy
unit U, and the corresponding momentum unit ky=\2mU,. Two
local minima (lighter region) are shown to characterize the normal
(A=0) and the BCS (A #0, |Q|=0) states. In this plot, parameters
are chosen as h=0.4, u=0.5, T=0.1, and 1/(kpa;)=0 (at unitarity),
with energy unit Uj,.

H = 2 gk,oali,oak,(r
k.o

+ > V(k’k,)a3/2+k,Ta;/2—k,laq/2—k’,Laq/2+k’,Ts (1)
kk',q

where afw and ay , are creation and annihilation operators
for fermions labeled by the spin (hyperfine state) indices o
=1,], respectively, and & ,=e€x— u,, is the fermion disper-
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FIG. 3. (Color online) (a) Finite-temperature phase diagram of a polarized Fermi gas in a trap with 27=0.4 and 1/(kga,)=0, where the
chemical potential at the trap center u is used as energy unit, and ry=+2u,/ (mw?) is used as length unit. The complete phase diagram is
shown in the inset, while the selected area (rectangle) is zoomed in to show detailed structures. In this plot, a superfluid BCS, a normal mixed
(NM), and a normal polarized (NP) state can be sequentially identified from trap center to trap edge. While the BCS and normal regions are
separated by a phase transition line (dark solid), the trap boundary and the phase boundary between NM and NP (dot-dashed) are blurred at
finite temperatures. Furthermore, within the BCS phase, four regions can be identified due to the existence of metastable normal and LOFF
states (gray solid). The contours of thermodynamic potential at representative points of each region are plotted in (b—e), showing corre-
sponding characteristic behaviors. Here, the order parameter A is in a unit of w, and the wave vector |Q| is in a unit of ky=\2mu,.
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FIG. 4. Finite-temperature phase diagrams of polarized Fermi gases in a harmonic trap at unitarity 1/(kpa,)=0, where the same energy
and length units are used as in Fig. 3(a). Parameters used in these plots are (a) 2=0.1, (b) 2=0.3, and (c) h=0.5.

sion €,=k>/(2m) shifted by the corresponding chemical po-
tential. The attractive fermion-fermion interaction V(k,K’)
can be written in a BCS form as V(k,k’)=—g, provided that
only s-wave contact interaction is considered. The interac-
tion strength g can be connected with scattering parameters
through the standard renormalization relation

1 Ny 1
- -3 2)
g kpa; "¢ 2¢

where Ny=mL3ky/(47) with Fermi momentum kj and quan-
tization volume L?, and a; is the s-wave scattering length. In
the following discussion, we take the local density approxi-
mation such that u,=pu(r)+h, w =wpr)=h, and wu(r)=pu,
—U(r), where U(r)=mw’r*/2 represents an external har-
monic trap [26]. The chemical potential at the trap center w
and the chemical potential imbalance % can be related to the
total particle number N=N;+N, and the population imbal-
ance P=(N,=N|)/(N;+N)).

Using the functional integral technique, we introduce the
standard Hubbard-Stratonovich field A, which couples to
a’a’ in order to integrate out the fermions, leading to the
partition function

2= Tr(e ) = f DIA" Alexpl= S{ATAL. ()

The effective action
B 2
Seff[N,A]=f d—TE {%—Tr ln(ﬁG‘l[A])}, (4)
0o Bk 8

where A=A(q,7) depends on momentum q and imaginary
time 7,B8=1/T is the inverse temperature, and G! is the
inverse fermion propagator,

-d,+& Alq,7) ) 5)

Af(q’T) - (97— gl

Up to now we have not incorporated any approximation
and the effective action Eq. (4) is accurate. Next, we will
discuss in the rest of this section two approximation
schemes, which can be applied to various situations. In Sec.
IT A, a Ginzburg-Landau (GL) theory is presented to study
the second-order normal-LOFF and normal-BCS phase tran-
sitions. In Sec. II B, a mean-field approach is applied to de-
rive thermodynamical potential, such that the possibilities of
first-order normal-BCS and LOFF-BCS phase transitions can
be analyzed.

G '[A(q.D]= (
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FIG. 5. (Color online) (a) Finite-temperature phase diagram for a polarized Fermi gas in a harmonic trap, showing the small region where
a stable LOFF state is present. The complete phase diagram is shown in the inset, while the selected area (rectallgle_)is zoomed in to show
the detailed structure. The parameters used in this plot are £=0.1 and 1/(kga,)=-0.5 (BCS regime), where ko=\2mpug with uq is set as the
energy unit. The radius 7 is in a unit of o= \2uy/ (mw?). Within the BCS phase, four regions can be identified due to the stability of normal
and LOFF states and how they are broken (gray solid). The thermodynamic potential at representative points of each region are plotted in
(b)—(f), while (g) shows the detailed structure of the selected area (rectangle) in plot (f). Here, the order parameter A is in a unit of w, and

the wave vector |Q| is in a unit of k.

A. Ginzburg-Landau theory and second-order phase
transitions

In this section, we consider only the possibility of second-
order phase transitions from normal to superfluid phase, in-
cluding both ordinary BCS and exotic LOFF states. Close to
the phase transition line, the order parameter A(q,7) has
small magnitude, hence the effective action S, can be ex-
panded in powers of A. In the spirit of Ginzburg-Landau
(GL) theory, we are interested in static A(q). Therefore, the
effective action takes the form

Seir = 2 a(q)|A(q)]> + O(AY), (6)
q

where a(q)=g""-x(q,0) with y(q,0) is the pair susceptibil-
ity. Notice that as a(q) depends only on the magnitude of
wave vector q, the fourth-order terms are crucial to deter-
mine the crystalline structures of the LOFF state [13]. How-
ever, when we get very close to the phase transition line
where the effective action is dominated by the leading qua-
dratic term, it is sufficient to consider the coefficient a(q),
leading to

1= npfig) ~npldg) | No
ngq kras ,

where np(x)=(ef"+1)"" is the Fermi distribution, & .

= gkqi (5€kq_ h), gqu 2(J'(§k+q,a'+ gk,o’) /4’ and 5Ekq= (6k+q
—¢)/2. As concluded in the GL theory, the normal state with

a(@=3 |5~ (7)
k €k

A(q)=0 loses its stability as long as a(q) becomes negative
for one or more q components. Therefore, we introduce the
order parameter equation, which corresponds to the condi-
tion that a(q) crosses zero,

Ny 1

_ _ 1- nF(gkq,+) - nF(gkq,—)
kra, T L 26 2§kq '

(8)

This order parameter equation can be solved for a given u(r)
and & to obtain the normal-BCS transition temperature
T.(q=0), while the normal-LOFF transition temperature is
determined by the maximal T,(q) for all finite q # 0. In Fig.
1, a typical T-u phase diagram is depicted showing three
different regions, where (1) normal state is stable or meta-
stable [a(q) >0 for all q], (2) normal state is unstable due to
LOFF instabilities [a(0)>0, but a(q) <0 for some finite
q’s], and (3) normal state is unstable due to BCS instability
[a(0) <0]. Notice that at unitarity, the scattering parameter
a,— % and does not set up a length or energy scale. There-
fore, phase diagrams for different values of & (as long as &
#0) are identical when an appropriate energy unit is applied.
Furthermore, by incorporating the local density approxima-
tion (LDA) wu(r)=pue—U(r), this T-u phase diagram can be
easily transformed into the 7-r plane (r is the radius of the
trap; see the inset of Fig. 1), which can be related to experi-
ments.

It should be emphasized that the phase diagrams obtained
by solving the GL equation (8) is not a result within mean-
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FIG. 6. (Color online) Finite-temperature phase diagrams of polarized Fermi gases in a harmonic trap in the BCS regime, with the same
energy and length units as used in Fig. 5(a). In (a) and (b), the complete phase diagrams are shown in the insets, while the selected areas
(rectangle) are zoomed in to show detailed structures. Notice in these two plots that for a fixed chemical potential difference h=0.1, the
region with a stable LOFF state becomes negligible and the region with a metastable LOFF state [M-LOFF, also characterized by point ¢ in
Fig. 5(a)] shrinks as it moves towards unitarity. Furthermore, if fixing the value of 1/(kgag)=-0.5 as in Fig. 5, the stable LOFF state also
almost disappears by increasing & to #=0.3, as shown in (c). Other parameters used in these plots are (a) 1/(koa,)=-0.3, and (b)

1 /(koas) =-0.1 . where k0= \Zm,u,o

field [16] or NSR schemes [27,28], since the according ap-
proximated number equations are not included for self-
consistent solving. Therefore, under the assumption that the
order parameter is small, the GL theory discussed above is
well controlled and the results are reliable. However, the
small-order parameter restriction sets a limit of this approach
only for analyzing second-order phase transitions. The com-
plete phase diagram, where the possibilities of first-order
phase transitions have to be taken into consideration, is be-
yond the scope of GL theory since |A| is not necessarily
small. Thus, we discuss in the next subsection a mean-field
approach to derive the thermodynamical potential, which of-
fers an approximation technique to study the complete phase
diagram by direct minimization.

B. Mean-field theory and first-order phase transitions

Unlike the GL expansion of effective action Eq. (4) dis-
cussed above, a mean-field theory is considered here by in-
troducing a uniform static saddle point A(q,7)=Aqd(q-Q),
which corresponds to the BCS state for Q=0, and to the
single-plane-wave LOFF state for finite Q. With this assump-
tion, the saddle point action is

A 2
So= ,3| ;| + E {,3(ng - EkQ) +In[ng(- EkQ,+)]
Kk

+In[ng(- EkQ,_)]}, )

where EkQ= VfﬁQ"'A%)’ and EkQ,i=Ein(5€kQ_h) is the
quasiparticle energy (+) or the negative of the quasihole

energy (—).
The saddle point conditions &S,/ 5AI)=0 and 65,/ 6|Q|
=0 lead to the order parameter equations

No { 1 _l—nF(EkQ,+)—nF(EkQ,_>}
26k 2EkQ ’

kFas - k
0= 2 (|Q| - kz){[l + ”F(EkQ,+) - ”F(EkQ,_)]
Kk

+ g_lQ[— 1+ nF(EkQ,+) + nF(EkQ,—)]} > (10)
EkQ

which can be solved together to determine A and |Q|. Here,
k.=|k|cos 6 with 6 is the polar angle. However, solving these
two order parameter equations is not sufficient to determine
the phase diagram, since the solutions may be metastable
states or only unstable saddle points. Therefore, to ensure
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FIG. 7. Finite-temperature phase diagrams of polarized Fermi gases in a harmonic trap in the BEC regime. The same energy and length
units are used as in Fig. 6. Three regions may be present in these plots, where the thermodynamical potential (1) has only one BCS minimum
and the normal state is unstable for BCS and LOFF instabilities; (2) has only one BCS minimum and the normal state is unstable only for
LOFF instability; and (3) has two minima corresponding to a stable BCS and a metastable normal state. Parameters used in these plots are
(a) 1/(kgag)=0.1, h=0.3; (b) 1/(kya;)=0.3, h=0.3; and (c) 1/(kya,)=0.5, h=0.3, where ky=\2mpu.

stability, we evaluate and directly minimize the thermody-
namic potential =S,/ B, instead of imposing various subtle
stability criteria [16,20].

We show in Fig. 2 a typical contour plot of the thermo-
dynamic potential (), as functions of A and |Q|, where
lighter regions denote lower (). Notice that the normal
phase occurs at A=0 for all values of |Q|. In this plot, two
local minima are present, corresponding to the normal (A
=0) and the BCS (A #0, |Q|=0) states, respectively. Com-
bining the results together with those obtained from the GL
theory, we can get more information about the finite-
temperature phase diagrams of trapped Fermi gases, which
are discussed next.

III. FINITE-TEMPERATURE PHASE DIAGRAM
OF TRAPPED FERMI GASES WITH POPULATION
IMBALANCE

Up to now, we discuss a GL theory which is valid for the
small order parameter regime but not constrained by any
approximation schemes, as well as a mean-field approach
which is approximate but works for wider regions. Using
these methods and the LDA, we are able to analyze the
finite-temperature phase diagrams of polarized Fermi gases
in harmonic traps. Next, we first consider in Sec. III A the

case of unitarity, where the scattering length a,; does not set a
length or energy scale, leading to the presence of universal-
ity. In Sec. III B, we discuss the weakly interacting BCS
regime, where emphasis is put on the possibility of a stable
LOFF state. Lastly, the strongly interacting BEC regime is
studied in Sec. III C.

A. Unitarity

Following the formalism outlined in the previous section,
we first map out the phase diagram for trapped fermions at
unitarity. The different phases in the trap can be identified
from the global minimum of the mean-field thermodynamic
potential at order parameter A and wave vector Q. At zero
temperature, there are three phases which could be possibly
present: (i) a BCS superfluid state with A # 0 at |Q|=0; (ii) a
normal mixed state (NM) with A=0 and two Fermi surfaces
(w1, >0); and (iii) a normal polarized state (NP) with A
=0 and one Fermi surface (x>0, <0). The trap bound-
ary is set when A=0 and both Fermi surfaces vanish
(/_LT,/_L i<0)' However, at finite temperatures, both the trap
boundary and the phase boundary between NM and NP are
blurred.

We show in Fig. 3(a) the finite-temperature phase diagram
for a trapped Fermi gas with population imbalance. From the
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trap center to the edge, the BCS, normal mixed (NM), and
normal polarized (NP) phases are identified sequentially.
Furthermore, within the BCS phase, four regions can be
identified due to the existence of normal and LOFF meta-
stable states, which can be explicitly shown from the ther-
modynamic potential. At low temperatures, the thermody-
namic potential acquires a double well structure near the trap
edge. Starting from the trap edge, the normal minimum at
A=0 is lower than the BCS minimum at (A#0, |Q|=0),
while the relative order reverses after crossing the normal-
BCS phase boundary [see Fig. 3(b)]. Continuing towards the
trap center, the normal minimum becomes unstable due to
LOFF instability, but remains stable for BCS instability. The
LOFF instability can lead to a metastable LOFF state at low
temperatures, as shown in Fig. 3(c). In this case, the global
minimum in the landscape still corresponds to a BCS state.
However, from the normal state to the BCS state, one needs
to pass a potential barrier through a first-order phase transi-
tion. Further to the trap center or at higher temperatures, the
LOFF state loses its metastability such that the double well
structure disappears and the BCS state becomes the only
minimum in the landscape of thermodynamic potential, as
shown in Fig. 3(d). What is special in this case is that to go
from a normal state to a BCS state (with |Q|=0), one needs
to follow a path of LOFF instability with pair momentum
|Q| # 0 (there is no BCS instability at |Q|=0 when the order
parameter A is small). As one moves even further towards
the trap center, the normal state becomes unstable due to
both LOFF and BCS instabilities, as illustrated in Fig. 3(e)
and the system goes to the BCS phase directly through the
BCS instability at |Q|=0, corresponding to a second-order
phase transition.

Considering the universality present at unitarity, the quali-
tative features of phase diagrams are identical for arbitrary
values of 2>0, as shown in Fig. 4 (the temperature and
phase boundaries get somewhat rescaled). Therefore, we can
conclude that for a polarized Fermi gas in a harmonic trap
where the interaction is tuned at resonance, a globally stable
LOFF state cannot be present on the finite-temperature phase
diagram, although there exists a small region of a metastable
LOFF state and also a region where the normal state be-
comes unstable due to the LOFF instability (but still ends to
a BCS state). This conclusion is consistent with the findings
in Ref. [16] for the zero-temperature case, but does not agree
with the outcomes in [18-20].

B. BCS regime

Compared to the unitarity case, the phase diagrams on the
BCS side of Feshbach resonances are more complicated. In
Fig. 5(a), we show a typical case on the BCS regime. The
most significant feature is the presence of a stable LOFF
state at low temperatures, which is characterized by a global
minimum of the thermodynamic potential at A(Q) # 0 with
|Q| # 0, as shown in the contour plots Figs. 5(f) and 5(g).

In addition to the presence of a stable LOFF state, the
BCS phase also contains four regions which can be identified
due to the existence of metastable normal and LOFF states.
By evaluating the thermodynamic potential €}, the four re-
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gions can be characterized as {)y: (i) has two minima corre-
sponding to a stable BCS and a metastable normal state [see
Fig. 5(b)]; (ii) has two minima corresponding to a stable
BCS and a metastable LOFF state [see Fig. 5(c)]; (iii) has
only one BCS minimum while the normal state is stable for
BCS instability, but unstable for LOFF instability [see Fig.
5(d)]; and (iv) has only one BCS minimum and the normal
state is unstable for BCS instability [see Fig. 5(e)].

It should be emphasized that unlike the unitarity case,
universality is not present in the BCS regime, since the finite
scattering parameter a, sets an additional length or energy
scale. Therefore, the characteristics of phase diagrams for
various 1/(kya,) <0 and k>0 are not identical. However, as
shown in a series of phase diagrams in Fig. 6, we can sum-
marize some common features within a qualitative level.
First, the region where a LOFF state is stable is only present
in the BCS regime, and disappears as one moves towards the
unitarity [see Fig. 6(b)]. Second, a stable LOFF state is only
present in a small region of the trap at low temperatures, and
restricted for smaller chemical potential difference 4. By in-
creasing & (or equivalently polarization P), the region for a
stable LOFF state shrinks as shown in Fig. 6(c).

Although our results cannot be directly compared with
experiments, where the total particle number and polariza-
tion are observables instead of u, and A, the plots in Fig. 6
outline the general features of a finite-temperature phase dia-
gram in the BCS regime. Therefore, we can conclude that a
stable LOFF state may be present in harmonically trapped
Fermi gases with population imbalance, but only at low tem-
peratures and in a small region of the trap.

C. BEC regime

As concluded in the previous discussion, the LOFF state
becomes less favorable as one moves from the BCS regime
to the unitarity. As one further increases the interaction
strength, the same trend is kept in the BEC regime, as shown
in Fig. 7. Although the finite scattering length a, sets an
additional energy scale such that the phase diagrams are
qualitatively different for various 1/(kya,)>0 and h>0,
there are still some general features which can be concluded.
First, similar to the unitarity case, a stable LOFF state is not
present on the finite-temperature phase diagrams in the BEC
regime. Second, the structure of the BCS phase becomes
simpler and contains less subregions. By moving from the
unitarity towards the BEC limit, the region with a metastable
LOFF state disappears first such that at the value of
1/(kga,)=0.1 [see Fig. 7(a)], only three regions are present in
the BCS phase. By increasing the value of 1/(kya,), the re-
gion where the normal state becomes unstable only due to
LOFF instability [region (2) in Fig. 7(a)] disappears, such
that the BCS phase becomes even simpler as shown in Fig.
7(b). Further towards the BEC side, only a simple BCS su-
perfluid state [region (1)] is present at the trap center, leading
to a phase diagram similar to the unpolarized case [see Fig.
7(c)]. Notice that for the parameters used in these plots, the
breached pair state (BP1) [10,21] characterized by gapless
fermionic excitations with a Fermi surface is not present at
zero temperature. At finite temperatures, the boundary be-
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tween BCS and BPI is blurred and the crossover cannot be
clearly distinguished.

IV. SUMMARY

We discuss in this paper the finite-temperature phase dia-
grams of a trapped Fermi gas with population imbalance,
focusing on the existence and stability of the LOFF state. We
first derive a Ginzburg-Landau (GL) theory to study the
second-order normal-BCS and normal-LOFF phase transi-
tions, where the order parameter is assumed to be small to
ensure validity. Furthermore, in order to determine the com-
plete phase diagram, we adopt the mean-field approximation
and directly minimize the resulting thermodynamic potential.
This method allows us to distinguish the stable, the meta-
stable, and the unstable saddle point phases from solutions of
the order parameter equations.

PHYSICAL REVIEW A 76, 042710 (2007)

Using these methods, we are able to map out the finite-
temperature phase diagrams over the BCS to the BEC re-
gion. We show that a stable LOFF state exists only on the
BCS side of the Feshbach resonance, but not at unitarity or
in the BEC regime. Furthermore, we find that the LOFF state
only exists at low temperatures within an appropriate region
of population imbalance. With a global harmonic trap, even
in the most optimal situation of all the parameters, the LOFF
state is only present in a small region of the trap. With the
experimental limits on temperature and spatial resolution, we
expect that it is very challenging to make a direct observa-
tion of a stable LOFF state in typical harmonic traps.
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