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A recently introduced Bethe-Salpeter formalism is applied to the calculation of recoil corrections to the
energy levels of all n=1, 2, and 3 states of hydrogenic ions. Finite basis set techniques are shown to allow the
accurate evaluation of expressions that sum all orders of Z�, which are rederived in the formalism using
combinatoric techniques. A comparison of the all-order results with one-loop calculations and known terms of
the perturbation expansion in Z� is made. Good agreement of the results of the present work with previous
calculations is shown, and a discussion of issues that will have to be treated for the many-electron case, where
highly accurate experiments have been carried out, is given.
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I. INTRODUCTION

In a recent paper �1� a variant of a three-dimensional
Bethe-Salpeter formalism introduced by Lepage �2� designed
to reduce to the Dirac equation in the limit of infinite nuclear
mass was introduced. Such a formalism is necessary for cal-
culation of recoil corrections in highly charged hydrogenic
ions, as the usual power series expansion in Z� becomes
increasingly unreliable as Z increases. While high Z neces-
sarily goes along with very small mass ratios m /M, where m
is the electron mass and M is the nuclear mass, recent ex-
periments in highly charged lithiumlike �3�, sodiumlike �4�,
and copperlike �5� ions have reached the tenth of an eV level,
smaller than the effect of recoil, so a relativistic calculation
of recoil is necessary. While similar precision has not been
achieved for hydrogenic ions, the present calculation can still
be applied to the many-electron case, as at high Z the wave
function can be approximated as a product of hydrogenic
orbitals. Further discussion of this point is given in the con-
cluding section.

In Ref. �1� we were concerned with setting up the formal-
ism, and carried out only one part of the calculation, the
one-transverse photon exchange contribution to the ground
state energy, for a range of Z’s. We instead concentrated on
the subset of graphs that contributed to the known recoil
corrections to fine structure of order m2�Z��4 /M. In the
present paper we consider a more complete set of diagrams
in a slightly modified formalism. We begin by calculating all
two-photon exchange diagrams, which in Coulomb gauge
requires the treatment of Coulomb-Coulomb, Coulomb-
transverse, and transverse-transverse photon exchanges.
These terms start in order m2�Z��5 /M, the calculation of
which was first carried out by Salpeter �6�. The calculations
presented here include all higher-order corrections of order
m2�Z��n /M, since the formalism is relativistic and the inte-

grals are carried out numerically. As in the previous work,
we neglect all terms with an additional factor of m /M, as
these are entirely negligible for the heavy ions we are con-
cerned with.

Three and higher photon exchange diagrams, in which
one of the photons exchanged is transverse, also enter in
order m2�Z��5 /M. In addition, such diagrams in which all
the photons are Coulomb start in order m2�Z��6 /M. While
the analysis of these infinite sets of diagrams, first carried out
by Braun �7� and by Shabaev �8�, is quite complicated, the
end expression is fairly simple. When two transverse photons
along with any number of Coulomb photons are exchanged,
another infinite set of diagrams must be considered. In all
three cases it is convenient to also include the one-loop re-
sult, in which case the complete result can be expressed in
terms of the Dirac-Coulomb propagator, which satisfies the
equation

�E�0 + i�� · �� +
Z�

r
�0 − m�SF�E;x�,y�� = �3�x� − y�� . �1�

We evaluate the terms involving the Dirac-Coulomb propa-
gator by using its spectral representation,

SF�E;x�,y�� = �
m

�m�x���̄m�y��
E − Em�1 − i��

, �2�

together with finite basis set techniques �9,10�, described in
more detail below.

We consider all n=1, 2, and 3 states in this paper for a
range of nuclear charges. As mentioned above, high preci-
sion experiments on highly charged lithiumlike �3� and sodi-
umlike �4� ions have reached precisions where these small
recoil effects must be treated. The n=4 case, needed for in-
terpretation of copperlike ions �5�, along with recoil correc-
tions associated with mass polarization will be treated else-
where.

The plan of the paper is as follows. We briefly reprise the
formalism introduced in Ref. �1� in the next section. The
modification of that formalism mentioned above turns out to
be necessary to properly treat the all-Coulomb problem, and
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details of that modification will be given. In the next three
sections we evaluate one-photon, two-photon, and three-
photon exchange diagrams in turn. In the last case we show
that certain expressions involving the one-potential part of
the Dirac-Coulomb propagator arise. This one-potential part
in fact turns into the complete Dirac-Coulomb propagator
when four and higher photon exchange diagrams are consid-
ered. The rather complicated combinatoric proof of this is
given in the Appendix. In the next section we describe the
techniques we use to numerically evaluate the terms involv-
ing the Dirac-Coulomb propagator, and tabulate the total re-
coil contribution for the nine states with principal quantum
numbers n=1–3 for the isoelectronic sequence. The break-
down of the total result is illustrated for the case Z=92. In
the Conclusion we compare our results, where possible, with
previous calculations by Artemyev et al. �11,12�, and discuss
issues that will arise for the many-electron case.

II. FORMALISM

There are many ways to set up three-dimensional forms of
the Bethe-Salpeter equation, with the main point being the
freedom to replace the fully relativistic propagator of two

particles, S̄�k�, with a simpler form, S̃�k��NS�k����k0−A�.
S̄�k� itself has some freedom associated with it, as the mo-

mentum entering and leaving a diagram involving S̄�k� in the
center of mass system can be chosen in different ways. We
choose the momentum routing indicated in Fig. 1. Here Pe

= �E ,0�� and PN= �M ,0�� build in the main part of the energies
of the electron and nuclear lines, respectively, and the total
energy of the system is M +E. In the following, for conve-
nience, when we refer to the total energy the contribution M
will be understood to be included, even though it is not ex-
plicitly written. The momentum routing we have chosen
leads to an interior electron-nucleus propagator

S̄�k� =
i

��Pe + k� − m + i�

i

�PN − k�2 − M2 + i�
. �3�

For a heavy nucleus the nuclear propagator is peaked at

small k0. In our original formalism �1�, we chose S̃�k� to
make k0 precisely 0, in addition choosing p0=q0=0. How-
ever, this choice, which keeps the nucleus off mass shell,
turns out to have poor behavior once loops with Coulomb
photons are considered. Here we will instead choose a rout-

ing that puts the nucleus on mass shell to order 1 /M2, which

eliminates this poor behavior. We also used Pe= � �
mE ,0��,

PN= �M +m−� ,0�� in order to build the reduced mass � into
the lowest order problem: our present choice makes the low-
est order problem completely nonrecoil, and all recoil effects
will be treated perturbatively.

In order to keep intermediate nuclear propagators on mass
shell, we choose a reference propagator

S̃�k� =

��	k0 +
k�2

2M



M

i

	E −
k�2

2M

�0 − �� · k� − m + i�

�
i��	k0 +

k�2

2M



M
S�k�� . �4�

At this point we also choose p= �−p�2 /2M , p�� and q
= �−q�2 /2M ,q��, which puts the nuclear lines on shell to order
1 /M2. We use this reference propagator to define a modified
kernel for the truncated form of the Bethe-Salpeter equation,

ḠT�E;q,p� = iK̄�E;q,p� +� d4k

�2��4 K̄�E;q,k�S̄�k�ḠT�E;k,p� ,

�5�

through

ḠT�E;q,p� = iK̃�E;q,p� +� d4k

�2��4 K̃�E;q,k�S̃�k�ḠT�E;k,p� .

�6�

The modified kernel can be expanded as

K̃�E;q,p� = K̄�E;q,p� +� d4k

�2��4 K̄�E;q,k��S̄�k� − S̃�k��

�K̄�E;k,p� +� d4k

�2��4 � d4l

�2��4 K̄�E;q,k�

��S̄�k� − S̃�k��K̄�E;k,l��S̄�l� − S̃�l��K̄�E;l,p�

+ ¯ . �7�

Because of the delta function in S̃�k� and the routing of
momentum we have chosen, Eq. �6� can be written in a
three-dimensional form,

GT�E;q� ,p�� = iK�E;q� ,p��

+
1

2M
� d3k

�2��3 iK�E;q� ,k��S�k��GT�E;k�,p�� ,

�8�

where

GT�E;q� ,p�� = ḠT	E;−
q�2

2M
,q� ,−

p�2

2M
,p�
 �9�

and

PN-q PN-p

Pe+q Pe+p

FIG. 1. Momentum assignments for electron-nucleus two-

particle diagrams. The electron-line momentum is Pe= �E ,0�� and

the nucleus-line momentum is PN= �M ,0��. The initial and final rela-
tive momenta are p and q.
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K�E;q� ,p�� = K̃	E;−
q�2

2M
,q� ,−

p�2

2M
,p�
 . �10�

We next create an untruncated Green’s function

G�E;q� ,p�� =
1

2M
S�q���2��3�3�q� − p��

+
1

4M2S�q��GT�E;q� ,p��S�p�� . �11�

While not equal to the Bethe-Salpeter untruncated Green’s
function, its poles are at the same position. It satisfies the
equation

�	E −
q�2

2M

�0 − �� · q� − m�G�E;q� ,p��

=
1

2M
�2��3�3�q� − p�� +

1

2M
� d3k

�2��3 iK�E;q� ,k��G�E;k�,p�� .

�12�

If we move the q�2

2M �0 term to the right hand side of the
equation we can identify it as an additional kernel we call
iKA, with

iKA�E;q� ,k�� = �2��3�3�q� − k��q�2�0, �13�

after which we can drop that term in Eq. �12�. This effect is
also derived in the Appendix, Eq. �A21�.

We now replace K�E ;q� ,k�� with an approximation to one-
Coulomb photon exchange,

K1C�q� ,k�� =
4�iZ�

�q� − k��2
2M�0. �14�

The approximation made is to use 2M in the numerator: the
complete one-Coulomb kernel has other terms which con-
tribute in a higher order of m /M than we are considering
here. Again noting that the q�2 /2M term in Eq. �12� is now
being treated as a kernel, we find that the equation in this
approximation becomes

�E�0 − �� · q� − m�G0�E;q� ,p�� =
1

2M
�2��3�3�q� − p��

−� d3k

�2��3

4�Z�

�q� − k��2
�0G0�E;k�,p�� ,

�15�

which we recognize as a scaled version of the momentum
space form of Eq. �1�, having poles at the Dirac energies E0.
Therefore our lowest order energy for a state with principal
quantum number n, angular momentum quantum number 	,
and j= �	 �−1/2 is

E0 = mf�n, j� , �16�

where

f�n, j� = �1 + 	 Z�

n − �j + 1/2� + �j + 1/2�2 − �Z��2
2�−1/2

.

�17�

The residue of the Green’s function is a product of Dirac
wave functions scaled with a factor 1

2M . It is convenient to
work with the usual Dirac wave functions, and simply move
the factor into the formulas for energy shifts: in particular,
first-order perturbation theory can be written as

E1 − E0 � 
E1 =
1

2M
� d3kd3l

�2��6 �̄�k���iK̄�E0;k�,l��

− iK1C�k�,l�����l�� . �18�

This is to be combined with the shift from the kernel KA,


EA =� d3k

�2��3�†�k��
k�2

2M
��k�� . �19�

In our previous work �1� terms of order m2�Z��4 /M arose
from one transverse photon exchange �1T� diagrams and
one-loop diagrams involving Coulomb photons. In the
present formalism the one-loop diagrams do not contribute to

this order, as the subtraction from S̄− S̃ in Eq. �7� is finer, and
all such terms come from 
EA and 
E1T. All remaining ef-
fects are of order m2�Z��5 /M and higher. We write the total
energy as

E = mf�n, j� +
m2�Z��2

2Mn2 +
m2�Z��4

M
	−

1

8n4 + � 1

2n3�j + 1/2�

−
3

8n4�
 +
m2�Z��5

M
R�n,	,Z��

= mf�n, j� +
m2�Z��2

2Mn2 +
m2�Z��4

M
	−

1

2n4 +
1

2n3�j + 1/2�

+

m2�Z��5

M
R�n,	,Z�� , �20�

where we have put the fine structure part of the m2�Z��4 /M
term in square brackets in the first line to emphasize that it
could be accounted for by using the reduced mass rather than
the electron mass in the term mf�n , j�. We note that one
frequently encounters this parametrization, in which case the
third term has only the − 1

8n4 factor. This choice requires us to
subtract out contributions of order m2�Z��2 /M and
m2�Z��4 /M from 
EA, and contributions of order
m2�Z��4 /M from 
E1T, after which we absorb the remainder
into R�n ,	 ,Z��. We illustrate this procedure with 
EA. This
energy shift, evaluated in the “valence” state v, is


EA =
1

2M
� d3k

�2��3�v
†�k��k�2�v�k��

=
1

2M
� d3k

�2��3�v
†�k���� · k��� · k��v�k��

=
1

2M
�v�	H − �m +

Z�

r

	H − �m +

Z�

r

�v�
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=
1

2M
	E0v

2 − 2E0vm�v���v� + 2E0vZ��v�1

r
�v� + m2

− 2mZ��v��

r
�v� + �Z��2�v� 1

r2�v�
 . �21�

For the ground state, where f�1, 1
2

�=1− �Z��2��, this
gives


EA�1s� =
�mZ��2

2M
�1 +

2�Z��2

��2� − 1��
=

m2�Z��2

2M
+

m2�Z��4

M
+

m2�Z��5

M

�1 − ���1 + 2��
��2� − 1�Z�

,

�22�

and we include the last term in R�1,−1,Z��. We note in
advance that 
E1T for the ground state has a contribution of

−
m2�Z��4

M , which cancels the term of this order in 
EA, in
accordance with Eq. �20�. In fact, the cancellation works to
all orders for the ground state, as by using virial relations it is
possible to show �8� for the point Dirac case that


EA + 
E1T =
m2 − E0

2

2M
, �23�

and this is exactly
m2�Z��2

2M for the ground state. However, we
arrange the calculation in a slightly different fashion that
allows extension to the non-Coulomb problem. Once one has
the Dirac wave function in momentum space, the evaluation
of the expectation value of k�2 / �2M� is easily carried out
numerically. We subtract from this the known terms of order
m2�Z��2 /M and m2�Z��4 /M, tabulated in the second and
third columns of Table I, and present the contribution of the
remainder to R�n ,	 ,Z�� for Z=92 in the second column of
Table II. We now turn to a discussion of one-photon, two-
photon, and three-photon kernels, with the latter being gen-
eralized to all orders in the Appendix.

III. ONE-PHOTON EXCHANGE

The next simplest perturbation is that of one-transverse
photon exchange, which, as mentioned above, contributes in
order m2�Z��4 /M. Because we are now interested in more
than the ground state, a new angular momentum issue must
be addressed. If we represent a general wave function in
momentum space by

��p�� = �mZ��−3/2	 g�p��	��p̂�
f�p��−	��p̂�


 , �24�

TABLE I. Lower-order contributions to 
EA and 
E1T by state.

State
m2�Z��2

M 
EA coefficient
m2�Z��4

M 
EA coefficient
m2�Z��4

M 
E1T coefficient

1s 1
2 1 −1

2s 1
8

7
32 − 3

16

2p1/2
1
8

13
96 − 5

48

2p3/2
1
8

1
24 − 1

24

3s 1
18

2
27 − 5

81

3p1/2
1

18
4

81 − 1
27

3p3/2
1

18
7

324 − 1
54

3d3/2
1

18
1

60 − 11
810

3d5/2
1

18
1

135 − 1
135

TABLE II. Breakdown of contributions to R�n ,	 ,Z�� for Z=92 for all n=1, 2, and 3 states of hydrogenic ions.

Z 
EA 
E1T 
ECC 
ECT 
ETT 
ECC� 
ECT� 
ETT� Sum

1s 2.6778 −2.6778 −1.7341 2.9652 −0.3179 1.1446 −0.8922 0.3518 1.5174

2s 0.6418 −0.6268 −0.3068 0.5125 −0.0356 0.2027 −0.1210 0.0693 0.3361

2p1/2 0.2492 −0.2343 −0.0438 0.0052 0.0116 0.0258 0.0198 0.0468 0.0803

2p3/2 0.0093 −0.0093 −0.0004 −0.0102 −0.0038 0.0001 0.0207 0.0015 0.0079

3s 0.1967 −0.1911 −0.0907 0.1521 −0.0096 0.0598 −0.0344 0.0209 0.1037

3p1/2 0.0841 −0.0784 −0.0150 0.0049 0.0043 0.0085 0.0048 0.0156 0.0288

3p3/2 0.0056 −0.0053 −0.0001 −0.0028 −0.0009 0.0000 0.0066 0.0010 0.0041

3d3/2 0.0037 −0.0034 0.0000 −0.0011 −0.0002 0.0000 0.0010 0.0007 0.0007

3d5/2 0.0007 −0.0007 0.0000 −0.0006 −0.0003 0.0000 0.0011 0.0002 0.0004
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we encounter structures of the form �	�
† �l̂��	��k̂�. When 	

= ±1 these are easily analyzed using � · k̂�	��k̂�=−�−	��k̂�,
but for other values of 	 we use an averaging procedure
over the magnetic quantum numbers. It is straightforward

to show that �	�
† �l̂��	��k̂� can be replaced with P��z3� /4�,

with � being 	 for positive 	 and −	−1 for negative 	, and

z3= k̂ · l̂. The energy shift for one transverse photon exchange
is


E1T =
m2�Z��3

32�5M
� d3k� d3l	TA�kg�l�f�k� + lf�l�g�k�� + TB�lg�l�f�k� + kf�l�g�k��

�l� − k��2
+ �k�2 − l�2�

�
TA�− kg�l�f�k� + lf�l�g�k�� + TB�lg�l�f�k� − kf�l�g�k��

�l� − k��4

 , �25�

where TA is the appropriate Legendre polynomial for 	 and
TB for −	. This expression was exact in our previous formal-
ism, which forced the time component of the photon propa-
gator to vanish. However, while in the present formalism it is
nonzero, its magnitude is order 1 /M, and because one trans-
verse photon exchange starts in order 1 /M, we can still use
this equation. This becomes a three-dimensional integral

over z3 and the magnitudes of k� and l�, which can be evalu-
ated using the adaptive multidimensional integration pro-
gram VEGAS �13�. For the point Coulomb case the integral
can also be done analytically �8�, and the results agree within
numerical errors. The m2�Z��4 /M part of the 1T perturba-
tion, tabulated in the fourth column of Table I, is removed,
and the contribution of the remaining terms to the function
R�n , j ,Z�� are tabulated in the third column of Table II. We

note the exact cancellation between 
EA and 
E1T for the 1s,
2p3/2, and 3d5/2 states.

IV. TWO-PHOTON EXCHANGE KERNELS

We next consider diagrams with two Coulomb photons,
shown in Figs. 2�a�–2�c�, referred to in the following as the
Coulomb ladder, crossed Coulomb ladder, and seagull
graphs. Our convention is that Coulomb photons are repre-
sented by dashed lines and transverse photons by wiggly
lines. We illustrate the technique we use to evaluate them
with the crossed Coulomb graph. As discussed in our previ-
ous paper, when the fourth component of the internal loop
momentum is carried out with Cauchy’s theorem, the only
pole that needs to be considered is that from the electron
propagator, which gives


ECCX =
�Z��2

128�7M
� d3kd3qd3l

�q� − k��2�q� − l��2
	2M + q0

a +
k�2 + 2l�2

2M

	2M + q0

a +
2k�2 + l�2

2M



�
�†�l����E0 + q0

a��0 − �� · q� + m��0��k��

q�2 + m2�	q0
a +

k�2 + l�2

2M
+ M
2

− M2 − �q� − k� − l��2� , �26�

where q0
a=−E0−q�2+m2. This term is of order m2 /M, so the 1/M terms in the numerator can be dropped, giving


ECCX =
�Z��2

128�7M
� d3kd3qd3l

�q� − k��2�q� − l��2
�2M + q0

a��2M + q0
a��†�l����E0 + q0

a��0 − �� · q� + m��0��k��

q�2 + m2�	q0
a +

k�2 + l�2

2M
+ M
2

− M2 − �q� − k� − l��2� . �27�

This nominally nine-dimensional integral becomes a six-
dimensional integral after orienting q� along the z axis
and choosing k� to lie in the x−z plane. We set kz

=k cos �1, kx=k sin �1, lz= l cos �2, lx= l sin �2 cos �, and
ly = l sin �2 sin �. At this point we must deal with a new kind

of angular momentum structure. While �	
†�l̂��	�k̂� can still be

replaced by P��l̂ · k̂� /4�, as with the one-transverse photon
calculation, we now encounter terms in which � ·q� is sand-
wiched between spherical spinors of equal and opposite 	
values. To evaluate these terms we average over magnetic
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quantum numbers �suppressed in the following�, to find

�−3
† �l̂�� · q��3�k̂� =

q�z1 + 2z2z3 − 5z1z3
2�

8�
,

�−2
† �l̂�� · q��2�k̂� =

q�z2 − 3z1z3�
8�

,

�−1
† �l̂�� · q��1�k̂� = −

qz1

4�
,

�1
†�l̂�� · q��−1�k̂� = −

qz2

4�
,

�2
†�l̂�� · q��−2�k̂� =

q�z1 − 3z2z3�
8�

,

�3
†�l̂�� · q��−3�k̂� =

q�z2 + 2z1z3 − 5z2z3
2�

8�
, �28�

where z1=cos �1, z2=cos �2, and z3=z1z2
+sin �1 sin �2 cos �. The Coulomb ladder schematically
comes from the term KC�S−S0�KC, where S0 cancels with a
term in the S term involving taking the nuclear pole. In our
previous formalism �1� this term contributed to order
m2�Z��4 /M, but in the present formalism the cancellation is
more complete, leading to negligible terms of higher order in
m /M. However, the electron pole contributes to R, and we
combine it with the electron poles from the other two graphs,
and present the sum in the fourth column of Table II.

The next diagrams we treat are one-Coulomb one-
transverse diagrams in either a ladder or crossed ladder con-
figuration, shown in Figs. 2�d� and 2�e�, respectively. The
transverse photon propagator in momentum space is propor-
tional to the frequently encountered object

Dij�k� = 	�ij −
kikj

k�2 
 1

k0
2 − k�2 + i�

. �29�

The ladder diagram by itself is of the order of the 1T
diagram, but the formalism subtracts out that contribution,

leaving a correction of order m2�Z��5 /M; the crossed dia-
gram is not subtracted, and is of the same order. Combining
the two graphs leads to greater numerical stability than when
they are evaluated separately. The results are given in the
fifth column of Table II.

A simplification present in our formalism is the fact that
two-transverse photon diagrams of the ladder and crossed
ladder category contribute in order m3 /M2, and can therefore
be ignored. Were the nucleus treated as a Dirac particle these
diagrams would play a central role, but here the seagull dia-
gram, shown in Fig. 2�f�, is all that need be considered, and
its contribution is


ETT =
�4�Z��2i

M
� d3kd3qd3l

�2��9

�� dq0

2�
Dik�q1�Djk�q2��̄�l���iS0�E0 + q0,q��� j��k�� ,

�30�

where q�1=q� − l�, q�2=q� −k�, and q10=q20=q0, where the ap-
proximation of working to first order in recoil has been used
in the last equation. Carrying out the q0 integral with
Cauchy’s theorem results in three poles, and the remaining
six-dimensional integral is carried out with VEGAS. The re-
sults are tabulated in the sixth column of Table II. At this
point all m2�Z��5 /M ln Z� terms, specifically − 2

3�n3 �l0 ln Z�
in terms of R�n , j ,Z��, are accounted for. However, the con-
stant is not complete, as it has contributions from multiloop
graphs, to which we now turn.

V. THREE-PHOTON EXCHANGE KERNELS

Our strategy in this section is to analyze three-photon ex-
change kernels in a manner that generalizes the approach in
our previous paper �1�, where we treated one-transverse–
two-Coulomb photon exchange diagrams, which contribute a
constant term to order m2�Z��5 /M that can be identified with
part of the Bethe logarithm. We showed that the one-
potential part of the Dirac-Coulomb propagator,

S1C�E;k�,l�� = S0�E;k��
− 4�Z�

�k� − l��2
�0S0�E;l�� , �31�

arose when the transverse photon pole was taken, and then
found that the standard form first found by Salpeter �6� came
from replacing S1C with the full Dirac-Coulomb propagator
SF. We repeat and generalize this analysis in this section in
order to motivate the all-orders expressions associated with
firstly, all-Coulomb terms, then two-transverse photon ex-
change terms with an arbitrary number of Coulomb ex-
changes, and finally, one transverse photon with any number
of Coulomb photon terms. We give a more rigorous deriva-
tion, using a somewhat different formalism, in the Appendix.
We note that a similar analysis has been given by Doncheski,
Grotch, and Erickson in Ref. �14�.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The one-loop graphs. These are the �a� Coulomb ladder,
�b� Coulomb crossed ladder, �c� Coulomb seagull, �d� Coulomb-
transverse ladder, �e� Coulomb-transverse crossed ladder, and �f�
transverse seagull graphs.
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A. Coulomb photon exchange terms

The most complicated all-orders work encountered here
has to do with summing the infinite set of Coulomb ex-
changes. While the �Z��2 m2

M , �Z��4 m2

M , and �Z��5 m2

M terms are
accounted for by the one-loop calculation, terms of higher
order, which of course are not necessarily small at high Z,
come from all two- and higher-loop diagrams. In this section
we treat three-Coulomb photon exchange, and show that it
can be written in terms of a rather simple formula involving
S1C.

We first consider the six three-photon diagrams when no
seagull is present, shown in Fig. 3. We follow the notation of
Ref. �15�, where diagram 3�a� was called X, diagrams 3�b�
and 3�c� were called Z, and diagrams 3�d� and 3�e� were
called Y. We use L for diagram 3�f� instead of the previously

used 0 for notational clarity. We route the momentum so that
the electron line always has the same form. The contribution
to the energy of the X diagram is


EX =
�4�Z��3

2M�2��12 � d3kd3qd3rd3l

�k� − q� �2�q� − r��2�r� − l��2
dq0

2�

dr0

2�
�̄�l���0S0�E0 + r0;r���0S0�E0 + q0;q���0��k��

�

	2M +
2l�2 + k�2

2M
+ q0
	2M +

k�2 + l�2

M
+ r0 + q0
	2M +

2k�2 + l�2

2M
+ r0


�	M +
l�2 + k�2

2M
+ q0
2

− M2 − �q� − l� − k��2 + i���	M +
k�2 + l�2

2M
+ r0
2

− M2 − �r� − l� − k��2 + i�� . �32�

This expression is exact. Because we are dropping terms of order m3 /M2, we can make the approximation


EX =
�4�Z��3

�2��12 � d3kd3qd3rd3l

�k� − q� �2�q� − r��2�r� − l��2
dq0

2�

dr0

2�
�̄�l���0S0�E0 + r0;r���0S0�E0 + q0;q���0��k��

�

	1 +
q0

2M

	1 +

r0 + q0

2M

	1 +

r0

2M



�	q0 +
l�2 + k�2 + q0

2

2M

 −

�q� − l� − k��2

2M
+ i���	r0 +

k�2 + l�2 + r0
2

2M

 −

�r� − l� − k��2

2M
+ i��

�

	1 +
q0

2M

	1 +

r0 + q0

2M

	1 +

r0

2M



�	q0 +
l�2 + k�2 + q0

2

2M

 −

�q� − l� − k��2

2M
+ i���	r0 +

k�2 + l�2 + r0
2

2M

 −

�r� − l� − k��2

2M
+ i�� , �33�

where we use the � symbol to indicate that the first line of the above equation, which is the same for all diagrams, is
understood. If we now use

1

q0 +
A

M
+ i�

=
1

q0 + i�
−

A

M

1

�q0 + i��2 , �34�

valid because we are working only to order m2 /M, we have


EX �
1

�q0 + i���r0 + i��
	1 +

q0 + r0

M

 −

1

2M

1

�q0 + i��2

1

r0 + i�
�l�2 + k�2 + q0

2 − �q� − l� − k��2� −
1

2M

1

q0 + i�

1

�r0 + i��2 �l�2 + k�2 + r0
2

− �r� − l� − k��2� . �35�

We now turn to the Z graphs, which are mirror images of one another. We find for Figs. 3�b� and 3�c� the results

(a) (b) (c)

(d) (e) (f)

FIG. 3. Nonseagull two-loop graphs.
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EZ1 �

	1 +
q0

2M

	1 +

2q0 − r0

2M

	1 +

q0 − r0

2M



�	q0 +
l�2 + k�2 + q0

2

2M

 −

�q� − l� − k��2

2M
+ i���	q0 − r0 +

k�2 + �q0 − r0�2

2M

 −

�q� − r� − k��2

2M
+ i�� , �36�

and


EZ2 �

	1 +
r0 − q0

2M

	1 +

2r0 − q0

2M

	1 +

r0

2M



�	r0 − q0 +
l�2 + �r0 − q0�2

2M

 −

�r� − l� − q� �2

2M
+ i���	r0 +

k�2 + l�2 + r0
2

2M

 −

�r� − l� − k��2

2M
+ i�� . �37�

To order m2 /M these reduce to


EZ1 �
1

�q0 + i���q0 − r0 + i��
	1 +

2q0 − r0

M

 −

1

2M

1

�q0 + i��2

1

q0 − r0 + i�
�l�2 + k�2 + q0

2 − �q� − l� − k��2�

−
1

2M

1

q0 + i�

1

�q0 − r0 + i��2 �k�2 + �q0 − r0�2 − �q� − r� − k��2� , �38�

and


EZ2 �
1

�r0 − q0 + i���r0 + i��
	1 +

2r0 − q0

M

 −

1

2M

1

�r0 − q0 + i��2

1

r0 + i�
�l�2 + �r0 − q0�2 − �r� − l� − q� �2�

−
1

2M

1

r0 − q0 + i�

1

�r0 + i��2 �l�2 + k�2 + r0
2 − �r� − l� − k��2� . �39�

We next turn to Y graphs. While reducible, they arise
from the correction to the kernel from our formalism, sche-
matically �K=K�S−S0�K, where one kernel is the crossed
Coulomb ladder and the other a Coulomb exchange. The S0
term involves a delta function of either q0 or r0. This can be
canceled by changing the sign of i� in the nuclear propagator
in the graph involving S; that is, we would write

1

− q0 −
q�2

2M
+ i�

= −
1

q0 +
q�2

2M
+ i�

− 2�i�	q0 +
q�2

2M

 ,

�40�

with the second term canceling with the S0 term. After doing
this, the Y graphs become


EY1 �
1

�r0 − q0 + i���− q0 − i��
	1 +

r0 − 2q0

M

 −

1

2M

�
1

�r0 − q0 + i��2

1

− q0 − i�
�l�2 + �r0 − q0�2 − �r� − l�

− q� �2� −
1

2M

1

r0 − q0 + i�

1

�− q0 − i��2 �q0
2 − �q� �2� ,

�41�

and


EY2 �
1

�q0 − r0 + i���− r0 − i��
	1 +

q0 − 2r0

M



−
1

2M

1

�− r0 − i��2

1

q0 − r0 + i�
�r0

2 − r�2�

−
1

2M

1

− r0 − i�

1

�q0 − r0 + i��2 �k�2 + �q0 − r0�2

− �q� − r� − k��2� . �42�

Finally we need to include the second-order correction to
the kernel, with all three kernels being one-Coulomb ex-
change,


K2 = K�S − S0�K�S − S0�K . �43�

This gives rise to the energy shift from the L diagram,


EL �
1

�− r0 − i���− q0 − i��
	1 +

− q0 − r0

M



−
1

2M

1

�− r0 − i��2

1

− q0 − i�
�r0

2 − r�2�

−
1

2M

1

− r0 − i�

1

�− q0 − i��2 �q0
2 − q�2� . �44�

The analysis of the seagull diagrams in Fig. 4 is simpler,
as these start in order m2 /M. We note that the transverse
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photons in this figure are to be replaced with Coulomb pho-
tons. A short analysis gives for the irreducible diagrams
4�b�–4�e� the result


Eseagull−irr � −
1

M
	 1

q0 − r0 + i�
+

1

r0 − q0 + i�
+

1

q0 + i�

+
1

r0 + i�

 , �45�

and for the reducible diagrams 4�a� and 4�f�,


Eseagull−red �
1

M
	 1

q0 + i�
+

1

r0 + i�

 . �46�

This completes our treatment of the three-Coulomb ex-
change diagrams. All of the nonseagull diagrams have a non-
recoil part, but a short analysis shows that these nonrecoil
parts cancel exactly. Also simple to analyze are the seagull
diagrams, which sum to


Eseagull � −
1

M
	 1

q0 − r0 + i�
+

1

r0 − q0 + i�

 . �47�

If one sums the recoil part of the first line of the expressions
for the nonseagull diagrams, one finds the same expression
with −1/M replaced with 2/M. However, the terms in the
numerator of the next lines involving q0

2, r0
2, and �q0−r0�2

sum to the same result as the seagull diagrams, so there is a
complete cancellation of such terms. The net result is that
one can ignore seagull diagrams so long as the nucleus ver-
tex is taken to be simply 2M and the nuclear propagator is
proportional to Eq. �A2�, for which simplification is crucial
for the manipulations given in the Appendix.

The analysis of the remaining recoil terms is complicated
because of the presence of eight combinations of k�, q� , r�, and

l� �there could have been ten, but all terms involving k�2 and l�2

cancel�. Repeated use of the identity

1

A + B
	 1

A
+

1

B

 =

1

AB
�48�

leads to the exact cancellation of terms proportional to q�2, r�2,

q� ·k�, and l�·r�. The remaining terms are all proportional to
��q0−r0�, being specifically


E3C �
2�i

M

��q0 − r0�
�q0 + i��2 �k� − q�� · �r� − l�� . �49�

At this point we restore the complete expression to find


E3C =
i�4�Z��2

M�2��12 � d3kd3qd3rd3l

�k� − q� �2�r� − l��2
� dq0

2�

1

�q0 + i��2

��k� − q�� · �r� − l���̄�l���0S0�E0 + q0;r��
4�Z��0

�r� − q� �2

�S0�E0 + q0;q���0��k�� . �50�

As done in our previous paper �1�, we recognize the one-
Coulomb part of the Dirac-Coulomb propagator. Restoring
the entire propagator, the rigorous justification of which will
be given in the Appendix, we find


Eall-C = −
i�4�Z��2

M�2��12 � d3kd3qd3rd3l

�k� − q� �2�r� − l��2
� dq0

2�

�
�k� − q�� · �r� − l��

�q0 + i��2 �̄�l���0SF�E0 + q0;r�,q���0��k�� .

�51�

The numerical evaluation of this term will be described be-
low. A check on the calculation is provided by replacing
SF�E0+q0 ;r� ,q�� with the free propagator, which gives results
in good agreement with the one-loop calculations described
in the previous section.

B. Two-transverse–one-Coulomb terms

There are six diagrams that contribute in this order, shown
in Fig. 4. We route the momentum in the same way, but of
course the structure is now more complicated. The calcula-
tion breaks into three parts, each of which has a different
kind of non-nuclear structure. Because the contributions are
of the order of interest, one can immediately make approxi-
mations on the nuclear denominators, keeping only the first
term in Eq. �34�. A short analysis shows that graphs 4�a� and
4�d� combine to give 
ETT of Eq. �30�, a contribution that is
removed by the formalism. Similarly the combination of
graphs 4�c� and 4�f� is subtracted away by the formalism.
However, graphs 4�b� and 4�e�, which have the same non-
nuclear structure, have nuclear denominators that give a
��q0−r0�, and lead to


ETTC = −
�4�Z��2i

M
� d3kd3rd3qd3l

�2��12 � dq0

2�
Dik�q1�Djk�q2�

� �̄�l���iS0�E0 + q0;r��
4�Z��0

�r� − q� �2
S0�E0 + q0;q��� j��k�� ,

�52�

with q�1=r�− l� and q�2=q� −k� and q10=q20=q0. We again recog-
nize SF

�1� appearing, and replacing it with SF gives the com-
plete contribution of two-transverse photon terms,

(a) (b) (c)

(d) (e) (f)

FIG. 4. Seagull two-loop graphs.
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ETT all-C =
�4�Z��2i

M
� dq0

2�
� d3kd3rd3qd3l

�2��12

�Dik�q1�Djk�q2��̄�l���iSF�E0 + q0,r�,q��� j��k�� .

�53�

We note that this is the explicit form of the one-Coulomb
part of the complete transverse seagull contribution pre-
sented in Eq. �A101�. A check on the calculation is provided
by coding the exact expression, but then replacing SF with
S0, which must give the TT graph calculated in the previous
section.

C. One-transverse–two-Coulomb terms

We treated corrections where one transverse photon is ac-
companied by one or more Coulomb photons in Ref. �1� by
first considering one-transverse–two-Coulomb photon ex-
change diagrams. We showed that they involved the one-
potential part of the Dirac-Coulomb propagator, Eq. �31�,
then replaced S1C with SF, and, after using a spectral repre-
sentation found


E1T all-C = −
�4�Z��2

M
� d3k

�2��3

1

k2 � d3l

�2��3 � d3pd3p�

�2��6

��p − l� j	�ij −
kikj

k�2 
 1

�l� − p� �2

��
m

�̄�p����i�m�p�� + k���̄m�l���0��p��
E0 − E0m − k

. �54�

�We note that a factor of two has been inserted in Eq. �68� of
Ref. �1�, where only one of a pair of graphs was analyzed.�
However, while this formula is correct when m is a positive
energy state, more care is needed when it is a negative en-
ergy state. To properly include these states we carry out an
analysis of the six graphs of Fig. 3, with the understanding
that each graph has three contributions, depending on which
of the three photons changes from Coulomb to transverse.
�The seagull diagrams of Fig. 4, which in this case have the
transverse and Coulomb photons switched, are of higher or-
der in m /M.� A short analysis shows that when that trans-
verse photon connects in the middle of the electron line a set
of cancellations between the six diagrams gives a vanishing
result. When the photon that first encounters the incoming
electron line is transverse, the cancellations between the six
diagrams are incomplete, leaving the structure


E1TA =
�4�Z��3

2M
� d3kd3l

�2��6 � d4q

�2��4 � d4r

�2��4

Dij�q − k�

�r� − l��2�r� − q� �2

� �̄�l���0S0�E0 + r0;r���0S0�E0 + q0;q���i

���k��2�i��q0 − r0�
2�l − r� j

q0 + i�
. �55�

When the photon that connects with the outgoing electron
line is transverse the above contribution is effectively
doubled, giving a total effect of


E1TAC = −
�4�Z��2i

M
� d3kd3l

�2��3 � d3q

�2��3 � dq0

2�
� d3r

�2��3

�
Dij�q − k�

�r� − l��2
�̄�l���0S1C�E0 + q0,r�,q���i��k��

2�l − r� j

q0 + i�
.

�56�

Now restoring the complete Dirac-Coulomb propagator in
the above and using its spectral representation, we find the
all-orders expression


E1T all-C = −
�4�Z��2i

M
�
m
� d3kd3l

�2��6 � d3q

�2��3

�� dq0

2�
� d3r

�2��3

Dij�q − k�

�r� − l��2

�
�†�l���m�r���m

† �q���i��k��
E0 + q0 − E0m�1 − i��

2�l − r� j

q0 + i�
. �57�

If the sum over m is restricted to positive energy states, car-
rying out the q0 integration by closing above encloses only
the pole from the transverse photon propagator, and repro-
duces our previous result after variable changes. However, if
one sums over negative energy states, an extra pole will be
encircled. This can be accounted for by simply making a
simple denominator substitution described in the next sec-
tion.

VI. NUMERICAL EVALUATION OF ALL-ORDERS TERMS

We begin the evaluation of higher-order terms with the
all-Coulomb result. Using the spectral representation of SF,
Eq. �2� allows us to write Eq. �51� as


Eall-C = −
i�4�Z��2

M
�
m
� dq0

2�

�
1

�q0 + i��2�E0v + q0 − E0m�1 − i���
A� m · B� m,

�58�

where

A� m =� d3ld3r

�2��6�l� − r��2
�r� − l���v

†�l���m�r�� , �59�

and

B� m =� d3qd3k

�2��6�q� − k��2
�k� − q���m

† �q���v�k�� . �60�

The integration over q0 vanishes for positive energy states,
giving


Eall-C =
�4�Z��2

M
�
m

�
A� m · B� m

�E0v − E0m�2 , �61�

where the prime indicates only negative energy states are
summed over. The energy denominator is canceled once we
use
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A� m =
1

4�Z�
�E0m − E0v��v�p� �m� , �62�

and

B� m =
1

4�Z�
�E0v − E0m��m�p� �v� , �63�

which follow from the use of

�p� ,H� = −
iZ�r̂

r2 . �64�

The final form of the all-Coulomb result is then quite simple,


Eall-C = −
1

M
�
m

��v�p� �m� · �m�p� �v� . �65�

If we denote �
m

� �m��m� as �−, this is the same as the more

rigorously derived Eq. �A105�.
The matrix elements of p� between Dirac wave functions

require some care, but the end result always involves inte-
grals over the upper and lower components of the form

I �� dr�gm�r�	dgv�r�
dr

+
A

r
gv�r�
 + fm�r�	dfv�r�

dr

+
B

r
fv�r�
� . �66�

A Clebsch-Gordon factor C gives an overall contribution of
−CI2 /M. When 	v=−1 the values of �A ,B ,C� are
�−1,1 ,1 /3� for 	m=1, and �−1,−2,2 /3� for 	m=−2. When
	v=1 the values are �1,−1,1 /3� for 	m=−1, and �−2,
−1,2 /3� for 	m=2. For 	v=−2 there are three possibilities,
with �A ,B ,C� being �1,2 ,1 /3� for 	m=−1, �−2,2 ,1 /15� for
	m=2, and �−2,−3,3 /5� for 	m=−3. When 	v=2 they are
�2,1 ,1 /3� for 	m=1, �2,−2,1 /15� for 	m=−2, and �−3,
−2,3 /5� for 	m=3. Finally, when 	v=−3 the values are
�2,3 ,2 /5� for 	m=−2, �−3,3 ,1 /35� for 	m=3, and �−3,
−4,4 /7� for 	m=−4. The constants can be obtained by either
directly integrating over solid angles together with averaging
over magnetic quantum numbers or else by Racah algebra
methods. The radial functions g�r� and f�r� come from the
coordinate space representation of the wave function

��r�� =
�mZ��3/2

r
	ig�r��	��r̂�

f�r��−	��r̂�

 , �67�

where r is understood to be in atomic units. We use finite
basis set techniques �9,10� to evaluate this term. When one
creates a finite basis set for a given 	 value, one typically
makes n�100 positive energy states and 100 negative states
in a cavity of radius R, where R is chosen to be much larger
than the ion. The first few positive energy states are very
close to the first bound states of the ion, but we sum only
over the 100 negative energy states in order to evaluate the
all-Coulomb term. We vary the number of states n and the
radius R to test the accuracy of the basis set.

Because we have already calculated the one-loop Cou-
lomb exchange result, we subtract this term from the calcu-

lation described above, and present the difference in the sev-
enth column of Table II. This is done “by hand” rather than
working with free propagators represented with spline basis
sets, as we will do for the one- and two-transverse photon
terms. The reason for this is that the manipulation used to
derive the simple form above mixes orders of perturbation
theory.

We next turn to the one-transverse photon correction. The
coordinate space form of Eq. �54� is


E1T all-C =
4�i�Z��2

M
� d3k

�2��3

1

k2	�ij −
kikj

k2 

��

m

Ai�vm�Bj�mv�
E0v − E0m − k

, �68�

where

Ai�vm� =� d3yeik�·y��v
†�y���i�m�y�� , �69�

and

Bj�mv� =� d3x
xj

x3�m
† �x���v�x�� . �70�

As discussed above, this comes from taking the transverse
photon pole in Eq. �57�, valid only if the intermediate state m
is positive energy. If it is negative energy, an extra term is
present that can be accounted for by making the substitution

1

E0v − E0m − k
→

�E0v − E0m + 2k�
�E0v − E0m��E0v − E0m + k�

. �71�

An angular momentum analysis leads to the expression


E1T all-C =
4�Z��2

�M3
�
m

1

Dvm

C1
2�vm�

2jv + 1

��
0

� dx

x2 Rmv�x��
0

�

dy�
0

�

dk

�� j0�ky�Qvm
1 �y� −

1
2

j2�ky�Pvm
1 �y�� , �72�

where

Cl�ab� � �− 1� ja+1/2�2ja + 1��2jb + 1�� l ja jb

0 −
1

2

1

2
� ,

�73�

Rvm�x� � gv�x�gm�x� + fv�x�fm�x� , �74�

Qvm
J �x� � J

2J + 1
� fv�x�gm�x� − gv�x�fm�x�

+
	v − 	m

J
�gv�x�fm�x� + fv�x�gm�x��� , �75�

and
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Pvm
J �x� � J + 1

2J + 1
�− fv�x�gm�x� + gv�x�fm�x�

+
	v − 	m

J + 1
�gv�x�fm�x� + fv�x�gm�x��� . �76�

Here Cl�ab� is understood to vanish if l+ la+ lb is odd, and
Dvm is the denominator defined in Eq. �71�.

There are two ways to evaluate the integral of k. As it
stands, the integral is undefined for excited states, because
the denominator can vanish. However, since in this paper we
are interested only in the real part of the integral, we can
evaluate the principal part of the integral. This can easily be
done when using Gaussian integration by integrating sym-
metrically about the zeros of the denominator. However, us-
ing this method requires a very large number of Gaussian
points for large values of k, as the spherical Bessel functions
oscillate rapidly. A more numerically stable procedure comes
from not using Cauchy’s theorem, but instead carrying out
the Wick rotation q0→ i�. This procedure, in general, en-
circles poles, so that two expressions must be evaluated: a
pole term, which has both real and imaginary parts, and an
integration along the imaginary axis, which is purely real. In
this case the high energy behavior involves damped expo-
nentials, and is easier to control. Good agreement between
the two methods was found. We will treat the imaginary
parts, which give recoil corrections to decay rates, in a sepa-
rate paper. A check on the calculation is afforded by replac-
ing the propagator with a free propagator and making sure
the fifth column of Table II is reproduced, after which the
difference is tabulated in the eighth column.

Finally, we consider the two-transverse photon seagull
term, Eq. �53�. While the transverse photon propagator is
simple in momentum space, its coordinate space form is
more complicated, specifically

Dij�k� = −
1

4�
� d3xe−ik�·x��A�k0,x��ij + B�k0,x�

xixj

x2 � , �77�

with x= �x��,

A�k0,x� =
1

k0
2x3 +

eik0x

x
	1 +

ik0x − 1

k0
2x2 
 , �78�

and

B�k0,x� = −
3

k0
2x3 +

eik0x

k0
2x3 �3 − 3ik0x − k0

2x2� . �79�

In terms of these functions we can write


ETT all-C =
i�Z��2

M
�
m
� d3xd3y

�2��3 � dq0

2�

�
�v

†�x���i�m�x���m
† �y��� j��y��

E0v + q0 − E0m�1 − i��

�	A�q0,x��ik + B�q0,x�
xixk

x2 

�	A�q0,y�� jk + B�q0,y�

yjyk

y2 
 . �80�

We break this expression up into a term with two factors of
B,


ETT1 = −
i�Z��2

8�3M
�
m

C1
2�vm�

2jv + 1
� dq0

2�
�

0

�

dx

��
0

�

dy
B�q0,x�B�q0,y�
E0v + q0 − E0m

Svm�x�Smv�y� , �81�

a term with two factors of A,


ETT2 = −
3i�Z��2

8�3M
�
m

C1
2�vm�

2jv + 1
� dq0

2�
�

0

�

dx

��
0

�

dy
A�q0,x�A�q0,y�
E0v + q0 − E0m

Qvm
1 �x�Qmv

1 �y� , �82�

and terms with one A and one B factor,


ETT34 =
3i�Z��2

8�3M
�
m

C1
2�vm�

2jv + 1
� dq0

2�
�

0

�

dx

��
0

�

dy
A�q0,x�B�q0,y�
E0v + q0 − E0m

Qvm
1 �x�Smv�y� +

3i�Z��2

8�3M

��
m

C1
2�vm�

2jv + 1
� dq0

2�
�

0

�

dx�
0

�

dy
B�q0,x�A�q0,y�
E0v + q0 − E0m

�Svm�x�Qmv
1 �y� , �83�

where

Smv�x� � gm�x�fv�y� − fm�x�gv�y� . �84�

We perform a Wick rotation q0→ i� to evaluate these ex-
pressions, which again leads to both an � integral performed
with Gaussian integration and a set of terms associated with
encircling poles. The difference of the full expression with
the one-loop result, again used as a check on the coding by
making sure the replacement SF→S0 reproduces column six,
is presented in the ninth column of Table II, and the sum is
given in the last column. Table III gives the sum for the
isolectronic sequence.

VII. DISCUSSION AND CONCLUSIONS

There are several features of the calculation presented
above that we wish to highlight. They are error estimates,
comparison with low-Z analytic results, comparison with
other calculations, and finally, the role of the calculation for
lithiumlike and sodiumlike ions.

With regard to error, while the small overall size of recoil
means that high accuracy in the calculations is not vital,
interesting issues involving basis sets arose that we wish to
discuss. Most of the numbers in the tables came from using
100 basis sets �which means 100 positive energy and 100
negative energy states for each value of 	�. In most applica-
tions of finite basis sets this gives results of high accuracy. In
addition, the cavity radius in which the basis sets were
formed was chosen to be R=100/Z, again usually a choice
that gives very precise results. In fact, for the middle range
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of Z, between 10 and 80, the basis set worked very well. The
problems came from low Z, between 1 and 10, and high Z,
between 80 and 100. The primary source of error in these
two cases came from the fact that the results changed as the
cavity radius was increased. A secondary source of error was
the use of 100 basis sets, as going up to 500 in steps of 100
led to changes, but these were smaller than the error associ-
ated with the cavity radius. The problem was less severe at
high Z, where, for example, the largest change in going from
a basis set of size 100 to 400 was in Z=92 3p3/2, which
shifted by 0.000 35 atomic units, or 0.0097 eV. However, at
lower Z, particularly Z=1 and 5, we were unable to fully
control the dependence of the result on cavity radius, finding
independence of the radius only at unphysically large values.
The results were stable only at the 0.01 level, which made
the fits to analytic forms, discussed below, difficult.

Turning now to the comparison with the known Z� ex-
pansion, we must first deal with the convention that terms of
order m2 /M�Z��6 are presented in the form

ER =
m2�Z��6

Mn3 D60�n,l,Z�� , �85�

where the current state of knowledge of the function D60 will
be described below. However, these calculations include
lower order recoil effects through the equation

E = m + mr�f�n, j� − 1� −
mr

2

2M
�f�n, j� − 1�2

= m + m�f�n, j� − 1� +
m2 − E2

2M
, �86�

where the second equality follows from using E=mf�n , j�
and dropping terms of order m3 /M2. While our definition,
Eq. �20�, differs from this, the difference comes from the
sum of 
EA and 
E1T, so in the following we do not include
those terms, though we note that at low Z they have the form

�Eformalism = −
m2�Z��6

8Mn6�j + 1/2�3 �4�j + 1/2�3 − 8n�j + 1/2�2

+ 3n2�j + 1/2� + n3� . �87�

For s states D60 is known to be

D60�n,0,Z�� = 4 ln 2 −
7

2
−

11

15�
�Z��ln2�Z�� , �88�

and for non-s states

D60�n,l � 0,0� = �3 −
l�l + 1�

n2 � 2

�4l2 − 1��2l + 3�
. �89�

We note that the logarithmic term, calculated by two groups
�18,19�, was given incorrectly in the Appendix of our previ-
ous paper �1�.

At this point we can now compare our low-Z results with
previous calculations and the perturbative expansion. We re-
produce in the fifth column of Table IV values of R for Z
=5, 10, and 20 for the nine states considered in this paper
with the exclusion of 
EA and 
E1T, denoting that modifi-

cation by R̃. In the second column we present the Salpeter
correction,

ES =
m2�Z��5

�Mn3 �−
2

3
�l0 ln Z� −

8

3
ln k0�n,l� −

1

9
�l0 −

7

3
an� ,

�90�

where the values of an for the nine states considered in this
paper are −2 ln 2−3, −9/2, 1 /6, 1 /6, 2 ln�3/2�−16/3, 1 /6,
1 /6, 1 /30, and 1/30. The Bethe logarithms needed are
2.984 13, 2.811 77, −0.030 02, −0.030 02, 2.767 66,
−0.038 19, −0.038 19, −0.005 23, and −0.005 23 �16�. Clear
deviations from our results are seen. Inclusion of D60, done
in the following column, improves the agreement signifi-
cantly for non-s states, but higher-order terms beyond the
squared logarithmic term included in D60 are clearly present
for s states. For that case we have done a simple fit, adding a

TABLE III. R�n ,	 ,Z�� for all n=1,2, and 3 states of hydrogenic ions.

Z 1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2

1 1.7248 0.2441 −0.0119 −0.0120 0.0743 −0.0030 −0.0033 −0.0008 −0.0007

5 1.3693 0.2007 −0.0102 −0.0108 0.0615 −0.0026 −0.0028 −0.0006 −0.0007

10 1.2077 0.1818 −0.0080 −0.0095 0.0559 −0.0019 −0.0025 −0.0005 −0.0007

20 1.0484 0.1647 −0.0032 −0.0069 0.0511 −0.0002 −0.0016 −0.0004 −0.0005

30 0.9687 0.1589 0.0020 −0.0044 0.0495 0.0015 −0.0007 −0.0003 −0.0004

40 0.9316 0.1595 0.0076 −0.0021 0.0498 0.0035 0.0001 −0.0002 −0.0002

50 0.9273 0.1664 0.0142 0.0002 0.0520 0.0058 0.0007 0.0000 −0.0002

60 0.9568 0.1798 0.0223 0.0024 0.0563 0.0087 0.0015 0.0000 −0.0001

70 1.0290 0.2032 0.0330 0.0045 0.0633 0.0124 0.0023 0.0004 0.0000

80 1.1683 0.2616 0.0484 0.0056 0.0754 0.0178 0.0032 0.0005 0.0001

83 1.2305 0.2598 0.0545 0.0071 0.0806 0.0199 0.0034 0.0006 0.0001

90 1.4363 0.3146 0.0733 0.0075 0.0973 0.0264 0.0040 0.0007 0.0003

92 1.5174 0.3361 0.0803 0.0079 0.1037 0.0288 0.0041 0.0007 0.0003

100 2.0217 0.4684 0.1221 0.0073 0.1432 0.0254 0.0048 0.0009 0.0004
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form m2 /M�Z��7�A+B ln Z��, referred to in the table as
“H.O.” for higher order, which is seen to give good agree-
ment. In the final column we present the results of Shabaev’s
group for n=1 and n=2 states, and note we have excellent
agreement except for the Z=5 1s case, where the numerical
difficulties mentioned above most likely account for the
small discrepancy.

The values of A for n=1, 2, and 3 are 0.6076, 0.1281, and
0.0646, and the values of B are −1.519, −0.224, and −0.054,
respectively. The logarithmic terms behave roughly as 1/n3,
as expected, but the constant terms deviate from this pattern,
probably because of the roughness of our fit, but possibly
because of state dependence of these constants, which have
not as yet been treated analytically. While not shown in the
table, we note that our fit for Z=30 continues to give close
agreement.

We finally discuss the role of this calculation for highly
charged ions with Z=83 and Z=92. While these are many-
electron ions, a rapidly convergent perturbation expansion
can be formed starting with a Slater determinant of a heli-
umlike core and a valence electron for lithiumlike ions, and a
neonlike core with a valence electron for sodiumlike ions.
Particularly for lithiumlike ions the interelectron interaction

can be ignored in lowest order, so that each electron is in one
of the hydrogenic orbitals treated in this paper. In this case
the recoil corrections calculated here sum linearly. Because
the experiments measure differences between states with the
same core but different valence states, the contribution from
the core cancels out. Using the values of R�Z ,	 ,Z�� from
the tables along with the definition Eq. �20�, we find the
contributions to the states of interest for Z=83 and Z=92
shown in Table V. For the 2p3/2-2s transition in lithiumlike
bismuth this contributes −0.033 eV, and for the 2p1/2-2s

TABLE IV. Comparison of perturbative expansions in Z� with low-Z values of R̃ and Refs. �11,12�.

State, Z S S+D60 S+D60+H.O. R̃ Artemyev et al.

1s ,Z=5 1.3920 1.3621 1.3696 1.3693 1.3698

1s ,Z=10 1.2449 1.1833 1.2077 1.2077 1.2080

1s ,Z=20 1.0978 0.9732 1.0484 1.0484 1.0485

2s ,Z=5 0.2028 0.1991 0.2003 0.2001 0.2003

2s ,Z=10 0.1845 0.1768 0.1806 0.1806 0.1806

2s ,Z=20 0.1661 0.1505 0.1624 0.1624 0.1624

2p1/2 ,Z=5 −0.0123 −0.0108 −0.0107 −0.0107

2p1/2 ,Z=10 −0.0123 −0.0093 −0.0091 −0.0091

2p1/2 ,Z=20 −0.0123 −0.0062 −0.0055 −0.0055

2p3/2 ,Z=5 −0.0123 −0.0108 −0.0108 −0.0108

2p3/2 ,Z=10 −0.0123 −0.0093 −0.0095 −0.0095

2p3/2 ,Z=20 −0.0123 −0.0062 −0.0069 −0.0069

3s ,Z=5 0.0621 0.0610 0.0613 0.0613

3s ,Z=10 0.0567 0.0544 0.0555 0.0555

3s ,Z=20 0.0512 0.0466 0.0502 0.0502

3p1/2 ,Z=5 −0.0034 −0.0029 −0.0028

3p1/2 ,Z=10 −0.0034 −0.0024 −0.0023

3p1/2 ,Z=20 −0.0034 −0.0014 −0.0011

3p3/2 ,Z=5 −0.0034 −0.0029 −0.0029

3p3/2 ,Z=10 −0.0034 −0.0024 −0.0025

3p3/2 ,Z=20 −0.0034 −0.0014 −0.0016

3d3/2 ,Z=5 −0.0008 −0.0007 −0.0006

3d3/2 ,Z=10 −0.0008 −0.0006 −0.0006

3d3/2 ,Z=20 −0.0008 −0.0005 −0.0005

3d5/2 ,Z=5 −0.0008 −0.0007 −0.0007

3d5/2 ,Z=10 −0.0008 −0.0006 −0.0007

3d5/2 ,Z=20 −0.0008 −0.0005 −0.0005

TABLE V. Total one-electron recoil contributions to Z=83 and
Z=92 states in eV.

State Z=83 Z=92

2s 0.095 0.127

2p1/2 0.073 0.086

2p3/2 0.062 0.067

3s 0.038 0.049

3p1/2 0.031 0.036

3p3/2 0.028 0.031
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transition in lithiumlike uranium −0.041 eV. These numbers
are in good agreement with Artemyev et al. For the sodium-
like uranium transition 3p3/2-3s1/2, the one electron recoil
result is −0.018 eV.

These contributions are much smaller than the nonrecoil
part of the calculation, but are of the order of the recently
calculated two-loop Lamb shift �17�. However, another recoil
correction must also be considered, that of mass polarization.
Our formalism is based on the two-body problem, and does
not immediately apply to multielectron atoms and ions.
While the Artemyev et al. �11,12� calculations include both
one-electron and many-electron recoil contributions, one of
the purposes of this research has been to provide an indepen-
dent derivation of their results. We have done so in this paper
for the one-electron case, and are at present attempting to
generalize the Bethe-Salpeter approach so as to rederive their
formulas for the many-electron case. Independently of this
research effort, numerical evaluation of these formulas using
different numerical techniques can be done, and we are at
present, in collaboration with K. T. Cheng, carrying out these
calculations.
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APPENDIX: DERIVATION OF THE FORMULA FOR THE
RECOIL CORRECTION TO ALL ORDERS

1. Introduction

The purpose of this Appendix is to derive an expression
for the first-order recoil correction to the energy of a two-
body bound state to all orders in Z�, giving the details of the
derivation. We consider two-body bound states in which one
body of mass m �the “electron”� is relatively light, and the
other of mass M with M �m �the “nucleus”� is heavy. The
two are charged, with charges −e and Ze, and interact elec-
trodynamically. We intend to study energy levels for this
system. In the lowest order of approximation in m /M, the
heavy particle is stationary and can be considered to be a
fixed center of force. The relevant equation in this case is the
Dirac equation for the mass m particle moving in the Cou-
lombic potential of the mass M particle. In this work we are
interested in the first-order recoil corrections to the energy,
which will depend on the masses as m2 /M.

In the usual approach to the calculation of energies of
QED bound states, a perturbative scheme is set up in the
small parameter �, or here Z�. This kind of approach will
not work for us since we intend to work at high Z where Z�
is not small. Following Braun �7� and Shabaev �8�, we reor-
ganize the perturbative scheme so that m /M is the small
parameter, and show how to sum the resulting series at O�1�
and O�m /M� to all orders in Z�. The complete result at
O�m /M� was first obtained by Shabaev �8�. It was also ob-

tained using a different approach by Pachucki and Grotch
�20�. Our discussion follows that of Shabaev �8� since we
want to maintain close contact with a graphical approach.
Shabaev’s derivation is quite abbreviated, and we fill in
many of the missing steps. Finally, we derive Yelkhovsky’s
simplified form for the O�m /M� correction �21�.

Since we are only interested in corrections of order 1 /M,
we can use nonrelativistic QED �NRQED� to describe the
field theory of the nucleus �22�. This simplifies the calcula-
tion tremendously, since the NRQED propagator has but one
pole �the “particle” pole�, and to order 1 /M for a spinless
nucleus there are only three interactions: the instantaneous
Coulomb vertex, the “dipole” vertex involving a single trans-
verse photon, and the transverse seagull involving two trans-
verse photons.

The nucleus has a large mass relative to the electron and
moves nonrelativistically. In order to calculate the first recoil
corrections �proportional to m /M� we must take this motion
into account, but only to first order. It is natural then to
describe the nucleus using NRQED, even while the electron
motion is considered using the full QED. The NRQED La-
grangian is �23�

LN = �†�iDt +
D� 2

2M
+ ¯ �� , �A1�

where Dt=�t− iZeA0 and D� =�� + iZeA� . In our case the nucleus
field is described by the spin-0 field �. The propagator and
interactions are shown in Fig. 5. The corresponding Feynman
rules are

i

�p0 − M� −
p�2

2M
+ i�

, �A2�

for the NRQED nuclear propagator of Fig. 5�a�, and

iZe, iZe
�q + p�i

2M
, − i�Ze�2 �ij

2M
�A3�

for the Coulomb, transverse dipole, and transverse seagull
interactions of Figs. 5�b�–5�d�. Note that the NRQED propa-
gator depends on the nonrelativistic energy p0−M running
through the nucleus line, not the total energy p0. The electron
and photon propagation factors have their standard �Cou-
lomb gauge� QED forms as follows:

i

�p − m + i�
�A4�

for the electron, and

(a)

p

(b)

q p

(c)

q p

i

(d)

q p

i j

FIG. 5. Diagram parts for the NRQED description of the
nucleus. The free propagator is represented in �a�. The basic Cou-
lomb interaction appears in �b�. The transverse dipole and trans-
verse seagull interactions are shown in �c� and �d�.
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iD00�k� =
i

k�2 + i�
, iDij�k� =

i

k2 + i�	�ij −
kikj

k�2 
 �A5�

for the Coulomb and transverse photons. The electron-
photon vertex Feynman rule is the usual −ie��.

The bound-state energies of our theory will be found as
the poles of the electron-nucleus to electron-nucleus two-
particle Green’s function. These poles are most conveniently
obtained by working with a three-dimensional “quasipoten-
tial” formulation, to which we now turn.

The truncated Green’s function of our theory, with mo-
mentum assignments shown in Fig. 1, satisfies the Bethe-
Salpeter equation

ḠT�E;q,p� = K̄�E;q,p� +� d4k

�2��4 K̄�E;q,k�

�S̄�E;k�ḠT�E;k,p� . �A6�

In general, K̄ represents all two-particle irreducible kernels.

We consider here only those contributions to K̄ that connect
the electron and nucleus directly, ignoring contributions from
photons that begin and end on the same charged particle. In
this same approximation we ignore self-energy corrections in
the electron-nucleus two-particle propagator, and have sim-
ply

S̄�E;p� =
i

��Pe + p� − m + i�

i

− p0 −
p�2

2M
+ i�

. �A7�

Our three-dimensional formalism is obtained by con-
structing a “reference” two-particle propagator

S̃�E;p� =
i

��Pe + p� − m + i�
2��	p0 +

p�2

2M

 , �A8�

which effectively forces the nucleus onto its mass shell �at
least in the nonrelativisitic limit�. We write a new equation
for the truncated Green’s function

ḠT�E;q,p� = K̃�E;q,p�

+� d4k

�2��4 K̃�E;q,k�S̃�E;k�ḠT�E;k,p� ,

�A9�

with a new kernel K̃ that is related to but not identical to K̄.

The delta function in S̃ puts the nucleus on shell inside of the
momentum integration in Eq. �A9�, and we do the same for
external momenta by defining

GT�E;q� ,p�� = i�0ḠT�E; q̄, p̄� ,

V�E;q� ,p�� = i�0K̃�E; q̄, p̄� ,

S�E;p�� = ���Pe + p̄� − m + i��−1�0, �A10�

where q̄= �−q�2 /2M ,q�� and p̄= �−p�2 /2M , p��. The idea is to

start with the original ḠT, a function of the four momenta,

and put the nucleus on shell to arrive at the new GT, a func-
tion of the three momenta. The factors of i and �0 move us
from relativistic field theory conventions to conventions con-
venient for a nonrelativistic interpretation. The resulting
three-dimensional equation is

GT�E;q� ,p�� = V�E;q� ,p�� +� d3k

�2��3V�E;q� ,k��S�E;k��GT�E;k�,p�� .

�A11�

In the following we will often suppress three-dimensional
integration and write this as

GT = V + VSGT. �A12�

The three-dimensional kernel V is often called the “quasipo-
tential.”

A homogeneous bound-state equation can be obtained
from Eq. �A12� by first forming the nontruncated Green’s
function

G = S + SGTS , �A13�

which satisfies

G = S + SVG , �A14�

and examining its pole structure. The energy poles of G are
the same as those of GT—that is, they are at the energies of
the bound states for the problem. We define wave functions
according to

G�E;p� ,q�� →
��p���†�q��

E − E
, �A15�

as E→E for bound-state energy E. Then � satisfies a Dirac-
type equation

� = SV� , �A16�

or explicitly

�E − p�2/2M − �� · p� − �m���p�� =� d3q

�2��3V�E;p� ,q����q�� .

�A17�

In the usual Bethe-Salpeter formalism, we would attempt
to choose a reference propagator and kernel so that a refer-
ence Bethe-Salpeter equation could be exactly solved, and
build a perturbation scheme about that exact solution that
relies on the smallness of Z�. As mentioned above, our ap-
proach here will be different. We will use m /M as our small
parameter, with the expectation that the Dirac-Coulomb
problem will provide the lowest-order point of reference.
Coulomb photons must be dealt with to all orders in Z�: it is
clear from the NRQED interactions of Eq. �A3� that only
transverse photons are suppressed by powers of 1 /M. Due to
the need to account for all orders of Coulomb interactions, it

is useful to eschew dealing with the Bethe-Salpeter kernel K̄
and its complicated two-particle irreducible nature, and in-
stead work with the full truncated Green’s function GT. In-
deed, from Eq. �A12� we find that the quasipotential V is
related to GT according to
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V = GT�1 + SGT�−1 = �1 + GTS�−1GT. �A18�

The lowest-order quasipotential is

V0 = GT0�1 + S0GT0�−1, �A19�

where S0 and GT0 are just S and GT in the large-M limit. This
lowest-order potential will be obtained in the following sub-
section by working out GT0 explicitly. Moreover, the first-
order correction to V due to 1/M dependence of GT and S is
given by


V = 
GT�1 + S0GT0�−1 − GT0�1 + S0GT0�−1�
SGT0 + S0
GT�

��1 + S0GT0�−1

= �1 − V0S0�
GT�1 − S0V0� − V0
SV0, �A20�

where we have used �1+GTS�−1=1−VS and �1+SGT�−1=1
−SV.

Application of first-order perturbation theory to the qua-
sipotential equation �A17� yields


E = �
V +
p�2

2M
� �A21�

as the first-order energy correction. Here �X�=�0
†X�0, where

�0 satisfies the lowest-order quasipotential equation �0
=S0V0�0 with energy E0. The second term in 
V of Eq.
�A20� involves


S = S0	 p�2

2M

S0, �A22�

which cancels the p�2 /2M term in Eq. �A21� leaving


E = ��1 − V0S0�
GT�1 − S0V0�� �A23�

as the recoil correction to the energy at order 1 /M. The role
of the �1−V0S0�=G0

−1S0 and �1−S0V0�=S0G0
−1 factors sur-

rounding 
GT will soon become apparent: they serve to re-
move factors of the lowest-order Green’s function that sur-
round much of the actual perturbation present in 
GT. We
make note now of one subtlety: the �1−V0S0� and �1
−S0V0� factors in fact vanish when acting on lowest-order
wave functions. We imagine evaluating �1−V0S0�
GT�1
−S0V0� at an energy slightly different from the bound state
energy E0, affecting the cancellation discussed above, and
only then setting the energy to E0.

2. Lowest-order kernel

In this section we show that the lowest-order kernel is just
the usual Coulomb interaction, and the lowest-order quasipo-
tential equation is the standard Dirac-Coulomb equation. The
discussion here reprises the well-known result that the sum
of all ladders and crossed ladders in the large mass limit
gives the Dirac-Coulomb equation. Our purpose for repro-
ducing this argument in some detail is to introduce notation
that will be used in following sections to obtain the 1/M
corrections.

We begin with an example. Figure 6 shows one of the six
contributions to GT0 involving three photons. �The full set is
shown in Fig. 3: this is graph 3�c�.� The nucleus momenta for
this graph are v1=−pi+a3 and v2=−pi+a3+a1. Application
of the Feynman rules �in the large-M limit� yields for this
graph

GT0
�3c��E;p� f,p� i� = i�0� d4q1

�2��4

d4q2

�2��4 �− ie�0��iS0�E + q2
0;q�2��0��− ie�0��iS0�E + q1

0;q�1��0��− ie�0�

�
i

a�1
2

i

a�2
2

i

a�3
2 �iZe�

i

a3
0 + a1

0 + i�
�iZe�

i

a3
0 + i�

�iZe�

=� d3q1

�2��3

d3q2

�2��3dq1
0dq2

0VC�p� f − q�2�S0�E + q2
0;q�2�VC�q�2 − q�1�S0�E + q1

0;q�1�VC�q�1 − p� i��+�a1
0 + a3

0��+�a3
0� ,

�A24�

where

VC�k�� =
− 4�Z�

k�2
, �A25�

S0�E;p�� =
1

E − H
, �A26�

H = �� · p� + �m�1 − i�� , �A27�

�+�x� =
i

2�

1

x + i�
. �A28�

Now there are a total of six three-photon diagrams, and the
only difference between one and another is in the nucleus
propagator factors �that is, the �+s�. One can show that

�
S3

�+�ai
0 + aj

0��+�aj
0� = ��a1

0���a2
0� , �A29�

where the sum is over the permutations S3 of the three index
values. �This is an instance of an identity that holds for any
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n, as we will soon see.� We use the delta functions to do the
qi

0 integrals, and find for the full three-photon contribution

GT0
�3��E;p� f,p� i� =� d3q1

�2��3

d3q2

�2��3VC�p� f − q�2�S0�E;q�2�

�VC�q�2 − q�1�S0�E;q�1�VC�q�1 − p� i� , �A30�

or, with understood integrations,

GT0
�3� = VCS0VCS0VC. �A31�

An n-photon pure-Coulomb diagram is represented in Fig.
7. By analogy with Eq. �A24� above, the Feynman rules for
this diagram lead to the expression

GT0
�na��E;p� f,p� i� =� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0

�VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1�

�VC�q�n−1 − q�n−2� ¯

�VC�q�2 − q�1�S0�E + q1
0;q�1�

�VC�q�1 − p� i��+�an
0 + ¯ + a1

0 + a4
0

+ a2
0� ¯ �+�a4

0 + a2
0��+�a2

0� . �A32�

We have arranged our choice of momenta so that the electron
line and photon propagators are the same for all n! diagrams
of this order. One can see that a1= pi−q1 , . . . ,ai=qi−1
−qi , . . . ,an=qn−1− pf. Individual diagrams at this order are
specified by a particular permutation  of the indices
1 ,2 , . . . ,n. We choose to label the photons 1 to n from right
�initial� to left �final� along the electron line. The permutation
 is defined so that photon �i� connects to position i on the
nucleus line with positions labeled 1 to n from right to left
along the nucleus line. �In the diagram shown: �1�
=2,�2�=4, . . . ,�n�=n−1.� Then one has v1=a�1�− pi, v2

=a�2�+a�1�− pi , . . . ,vn−1=a�n−1�+ ¯ +a�1�− pi. The full
n-photon contribution to GT0 is thus

GT0
�n��E;p� f,p� i� =� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0 VC�p� f

− q�n−1�S0�E + qn−1
0 ;q�n−1�VC�q�n−1

− q�n−2� ¯ VC�q�2 − q�1�S0�E + q1
0;q�1�VC�q�1

− p� i� �
�Sn

�+�a�n−1�
0 + ¯ + a�1�

0 � ¯ �+�a�2�
0

+ a�1�
0 ��+�a�1�

0 � . �A33�

It is useful at this point to examine carefully the properties of
the �+ functions.

We define functions �+ and �− according to

�±�x� �
i

2�

1

±x + i�
, �A34�

where � is a positive infinitesimal. Then �± can be expanded
in terms of the principal part as

�±�x� =
±i

2�
P	1

x

 +

1

2
��x� . �A35�

Immediate consequences are

�+�− x� = �−�x� , �A36�

�+�x� + �−�x� = ��x� . �A37�

An addition rule states that

�±�x� + �±�y� =
�±�x��±�y�
�±�x + y�

, �A38�

or in general

1

�±�x�
+

1

�±�y�
+ ¯ =

1

�±�x + y + ¯ �
. �A39�

We will now deal with the nucleus denominators. The
nucleus factor from a diagram like that shown in Fig. 7 has
the form

N�a�n�
0 , ¯ ,a�1�

0 � � �+�a�n−1�
0 + ¯ a�1�

0 � ¯ �+�a�2�
0

+ a�1�
0 ��+�a�1�

0 � . �A40�

We find it useful to define

�xn, . . . ,x1�± � �
�Sn

�±�x�n� + ¯ x�1�� ¯ �±�x�2�

+ x�1���±�x�1�� , �A41�

so that the sum of all n! nth order graphs has the nucleus
factor

Nn � �
�Sn

N�a�n�
0 , . . . ,a�1�

0 � =
�an

0, . . . ,a1
0�+

�+�an
0 + ¯ + a1

0�
.

�A42�

A crucial fact about �xn , . . . ,x1�± is that

a1=pi-q1

a2=q1-q2 a3=q2-pf

PN-pf PN+v2 PN+v1 PN-pi

Pe+pf Pe+q2 Pe+q1 Pe+pi

FIG. 6. One of the six contributions to the truncated Green’s
function GT0 involving three photons.

a1

an-1 an

a4

a3 a2

PN-pf PN+vn-1 PN+v2 PN+v1 PN-pi

Pe+pf Pe+qn-1 Pe+q2 Pe+q1 Pe+pi

FIG. 7. An n-photon contribution to the truncated Green’s
function.
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�xn, . . . ,x1�± = �±�xn� ¯ �±�x1� . �A43�

We demonstrate this by induction. For n=1 we immediately
have �x1�±=�±�x1�. The assertion for n=2 also follows sim-
ply from Eq. �A38�. Now we assume that Eq. �A43� is true
for n−1 elements. It follows that

�xn, . . . ,x1�± = �±�xn + ¯ + x1� �
�Sn

�±�x�n−1� + ¯

+ x�1�� ¯ �±�x�1��

= �±�xn + ¯ + x1��
j=1

n

�xn, . . . ,xj, . . . ,x1�±

= �±�xn + ¯ + x1��
j=1

n

�±�xn� ¯ �±�xj� ¯ �±�x1�

= �±�xn + ¯ + x1�	�
j=1

n
1

�±�xj�



��±�xn� ¯ �±�x1� = �±�xn� ¯ �±�x1� , �A44�

where the underlines denote terms that are missing. This
completes the proof of Eq. �A43�. So the nucleus factor of
Eq. �A42� is

Nn =
�+�an

0� ¯ �+�a1
0�

�+�an
0 + ¯ + a1

0�
. �A45�

The further evaluation of Nn requires some care when any
of the ai

0 vanish. Perhaps the most direct way to simplify Nn
was given by Brodsky �24� using a method that he attributed
to unpublished notes of Don Yennie. One needs to use the
fact that a1

0+ ¯ +an
0=0 �which holds in the large M limit�.

Then, by using the addition rule �A38� n−1 times, one finds

Nn = ��+�an
0� + �+�an−1

0 + ¯ + a1
0��

�+�an−1
0 � ¯ �+�a1

0�
�+�an−1

0 + ¯ + a1
0�

= ��an−1
0 + ¯ + a1

0�
�+�an−1

0 � ¯ �+�a1
0�

�+�an−1
0 + ¯ + a1

0�

= ¯

= ��an−1
0 + ¯ + a1

0� ¯ ��a2
0 + a1

0���a1
0�

= ��an−1
0 � ¯ ��a2

0���a1
0� . �A46�

This is the result, the generalization of Eq. �A29�, that we
need in order to complete the evaluation of GT0. However,
before we return to GT0, we pause to consider an alternate
approach to the evaluation of Nn that will help us in dealing
with the kinds of nucleus expressions that occur in the
O�1/M� corrections. We consider first a particular nucleus
factor of the form �A40�. We can always write this factor
with no explicit an

0 through use of an
0+ ¯ +a1

0=0. For ex-
ample, with n=4 we can write

N�a1
0,a2

0,a4
0,a3

0� = �+�a2
0 + a4

0 + a3
0��+�a4

0 + a3
0��+�a3

0�

= �−�a1
0��−�a1

0 + a2
0��+�a3

0� . �A47�

Propagator factors to the left of the vertex with the photon

carrying momentum a4 are written in terms of �− instead of
�+, and reference to a4

0 is eliminated. The general construc-
tion is

Nn = �
partitions X,Y

�X�−�Y�+, �A48�

where X and Y are partitions of �an−1
0 , . . . ,a1

0�. �That is, X and
Y are disjoint, possibly empty, subsets of �an−1

0 , . . . ,a1
0� such

that every element of �an−1
0 , . . . ,a1

0� is in one or the other of
them.� This can be reexpressed by use of the identity �A43�
as

Nn = �
partitions X,Y

�
j,aj

0�X

�−�aj
0� �

k,ak
0�Y

�+�ak
0� . �A49�

Every term in this sum is a product of �− or �+ factors, one
for each ai

0 �1� i�n−1�. The sum over partitions brings in
all possible combinations of �− and �+ factors. In other
words, we again have

Nn = �
i=1

n−1

��+�ai
0� + �−�ai

0�� = ��an−1
0 � ¯ ��a1

0� . �A50�

Returning to our evaluation of GT0
�n�, we can use Eq. �A50�

to do the qi
0 integrals in Eq. �A33�. We find that

GT0
�n��E;p� f,p� i� =� d3q1

�2��3 ¯
d3qn−1

�2��3 VC�p� f − q�n−1�S0�E;q�n−1�

� VC�q�n−1 − q�n−2� ¯ VC�q�2 − q�1�

�S0�E;q�1�VC�q�1 − p� i� , �A51�

or

GT0
�n� = VC�S0VC�n−1. �A52�

The full truncated Green’s function is thus

GT0 = �
n=1

�

VC�S0VC�n−1 = VC�1 − S0VC�−1, �A53�

which is exactly the truncated Dirac-Coulomb Green’s func-
tion. It is no surprise then that use of Eq. �A19� leads to

V0 = GT0�1 + S0GT0�−1

= VC�1 − S0VC�−1�1 + S0VC�1 − S0VC�−1�−1 = VC.

�A54�

In the large-M limit, our quasipotential is the usual Coulomb
potential, and our lowest-order wave functions �0 are the
standard Dirac-Coulomb wave functions.

3. Pure-Coulomb contribution

Our goal in this section is to work out the recoil correc-
tion at O�1/M� due to graphs containing only Coulomb pho-
tons. The Coulomb-nucleus vertex factor is simply iZe, so
graphs with an arbitrarily large number of Coulomb photons
must all be considered. The propagator for a nucleus carrying
momentum PN+vk is 2��+�vk

0−v�k
2 /2M�. There are O�1/M�
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corrections in this propagator coming from both the explicit
1 /M in the v�k

2 /2M term and also p� i
2 /2M or p� f

2 /2M parts
from vk

0 for some of the propagators. Now if vk
0= ṽk

0

+ v̄k
0 /2M is the sum of an M-independent part and a 1/M

correction, then the kth nucleus propagation factor has a 1/M
correction equal to


�+�vk
0 − v�k

2/2M� = �+�ṽk
0��− i�

M
�v�k

2 − v̄k
0���+�ṽk

0� .

�A55�

With our momentum routing the only M dependence in the
pure-Coulomb truncated Green’s function is in the nucleus

line, and GT
C�n� has just the form of Eq. �A33� except that the

nucleus line factor is instead

�
�Sn

�+	v�n−1�
0 −

v��n−1�
2

2M

¯ �+	v�1�

0 −
v��1�

2

2M

 .

�A56�

It follows that the first-order perturbation has the form


GT
C�n��E;p� f,p� i� =

− i�

M
� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0 VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1� � VC�q�n−1 − q�n−2� ¯ VC�q�2 − q�1�S0�E

+ q1
0;q�1�VC�q�1 − p� i� � �

�Sn

��
k=1

n−1

�v�k
2 − v̄k

0��+�ṽk
0���+�ṽn−1

0 � ¯ �+�ṽ1
0� , �A57�

where

vk = �
r=1

k

a�r� − pi = − �
s=k+1

n

a�s� − pf . �A58�

The nucleus factor in 
GT
C�n� is a quadratic function of the

momenta p� i, p� f, a�k �1�k�n�. As can be seen from Eq.
�A58�, the nucleus line momentum vector can be written in
two equivalent forms, and consequently, we have some free-
dom to choose how we represent the nucleus factor in

GT

C�n�. We choose to write it as a linear combination of p� i
2,

p� f
2, a�k · p� i, and a�k · p� f�1�k�n−1�, and a� j ·a�k �1� j ,k�n, j

�k�. This form of the nucleus factor proves convenient for

further simplification. In order to avoid factors a�n · p� i and
a�n · p� f in our expression for the nucleus factor it is important
to know the position of each nucleus propagator relative to
photon n so that the appropriate form of �A58� may be em-
ployed. Also, whether or not there are p� f

2 or p� i
2 factors in

v̄0depends on the location of the nucleus propagator relative
to both photons n and 1: there is a p� f

2 when the propagator is
to the left of photon n, and a p� i

2 when the propagator is to the
right of photon 1. We will examine the various situations in
more detail. Figure 8 shows the nucleus line with various
attached photons for the situations where �a� photon n lies to
the left of photon 1, and �b� otherwise. In case �a�, the v�2

− v̄0 factors for a nucleus propagator to the left of photon n,

n a+1 a τ(n) b+1 b τ(1) c+1 c 1

σ(n) σ(a+1) σ(a) n σ(b+1) σ(b) 1 σ(c+1) σ(c) σ(1)

n-1 a b c 1

(a)

n a+1 a τ(1) b+1 b τ(n) c+1 c 1

σ(n) σ(a+1) σ(a) 1 σ(b+1) σ(b) n σ(c+1) σ(c) σ(1)

n-1 a b c 1

(b)

FIG. 8. Representation of the nucleus line in 
GT
C�n�. The numbers below the line label position on that line, from 1 on the right to n on

the left. Several incoming Coulomb photons are shown. The numbers above the photons label the photons, and correspond to position on the
electron line �which isn’t shown here�. The photon entering at position j is labeled �j�, and photon k attaches to position ��k�, where �
=−1. Part �a� represents the situation where the nth photon enters the nucleus line to the left of the first one, and �b� shows the opposite
ordering of these two. Photons �a�, �b�, and �c� represent photons entering to the left of photons 1 and n, between them, or to the right
of them. The numbers just above the nucleus line label the line segments, numbered right to left from 1 to n−1.
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between photons n and 1, and to the right of photon 1, take
the forms

v�a
2 − v̄a

0 = p� f
2 + �

s=a+1

n

a��s� · �p� i + p� f� − �
r=1

a

a��r� · �
s=a+1

n

a��s� − p� f
2,

v�b
2 − v̄b

0 = p� i
2 − �

r=1

b

a��r� · �p� i + p� f� − �
r=1

b

a��r� · �
s=b+1

n

a��s�,

v�c
2 − v̄c

0 = p� i
2 − �

r=1

c

a��r� · �p� i + p� f� − �
r=1

c

a��r� · �
s=c+1

n

a��s� − p� i
2.

�A59�

The forms for case �b� are similar.

v�a
2 − v̄a

0 = p� f
2 + �

s=a+1

n

a��s� · �p� i + p� f� − �
r=1

a

a��r� · �
s=a+1

n

a��s� − p� f
2,

v�b
2 − v̄b

0 = p� f
2 + �

s=b+1

n

a��s� · �p� i + p� f� − �
r=1

b

a��r� · �
s=b+1

n

a��s� − p� f
2

− p� i
2,

v�c
2 − v̄c

0 = p� i
2 − �

r=1

c

a��r� · �p� i + p� f� − �
r=1

c

a��r� · �
s=c+1

n

a��s� − p� i
2.

�A60�

In each situation the term a�n · �p� i+ p� f� has been avoided by an
appropriate choice in Eq. �A58�. It is clear that the p� f

2 always
cancels, and will not contribute to the final result. Also, p� i

2

only appears in propagators lying between photons n and 1,
with a plus sign when photon n is to the left of photon 1, and
a minus sign when photon n is to the right of photon 1. The
term −a�1 · �p� i+ p� f� appears under precisely the same condi-
tions. The common coefficient of p� i

2 and −a�1 · �p� i+ p� f� in the
nucleus line factor is thus

�
�Sn

��
b=1

n−1

��,b���,b��+�ṽb
0���+�ṽn−1

0 � ¯ �+�ṽ1
0� ,

�A61�

where �� ,b� is a sign: plus for photon n to the left of
photon 1, minus otherwise, and �� ,b� is a � function: one
for propagator b between photon n and photon 1, zero oth-
erwise. Considering the term with photon n to the left of
photon 1, the contribution can be expressed as

�
partitions X,Y

�X�−�Y�+ = �
partitions X,Y

�
j,ãj

0�X

�−�ãj
0� �

k,ãk
0�Y

�+�ãk
0� ,

�A62�

where X and Y are partitions of �ãn
0 , . . . , ã1

0� having ãn
0�X

and ã1
0�Y. �Note that all ã0s equal the corresponding a0s

except that ãn
0=qn−1

0 while an
0=qn−1

0 + p� f
2 /2M and ã1

0=−q1
0

while a1
0=−p� i

2 /2M −q1
0.� The sum over partitions brings in all

possible combinations of �− and �+ factors except that ãn
0

only occurs inside of �−, and ã1
0 only occurs inside of �+. The

partition sum then can be written as

�
partitions X,Y

�X�−�Y�+ = �−�ãn
0� ¯ �+�ã1

0� , �A63�

where the dots indicate � functions of the remaining ã0s. The
term with photon n to the right of photon 1 is the same
except that ãn

0 occurs inside of �+, ã1
0 occurs inside of �−, and

there is a sign difference. The coefficient of −a� i · �p� i+ p� f� for
any i is found in the same way: the only propagators that
contribute lie between photons n and i, with signs as before.
This coefficient is

�−�ãn
0� ¯ �+�ãi

0� ¯ ��ã1
0� − �+�ãn

0� ¯ �−�ãi
0� ¯ ��ã1

0� ,

�A64�

where the dots have the same meaning as in Eq. �A63�. Fi-
nally, it is evident from Eqs. �A59� and �A60� that the con-
tributions to the coefficient of −a� i ·a� j come only from propa-
gators lying between photons i and j, all with the same sign.
The coefficient is thus

��ãn
0� ¯ �−�ãi

0� ¯ �+�ãj
0� ¯ ��ã1

0�

+ ��ãn
0� ¯ �+�ãi

0� ¯ �−�ãj
0� ¯ ��ã1

0� . �A65�

In all, the perturbation 
GT
C�n� takes the form


GT
C�n��E;p� f,p� i� =

− i�

M
� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0 VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1�VC�q�n−1 − q�n−2� ¯ VC�q�2 − q�1�S0�E

+ q1
0;q�1�VC�q�1 − p� i��p� i

2��−�ãn
0� ¯ �+�ã1

0� − �+�ãn
0� ¯ �−�ã1

0�� − �
i=1

n−1

a� i · �p� i + p� f���−�ãn
0� ¯ �+�ãi

0� ¯ ��ã1
0�

− �+�ãn
0� ¯ �−�ãi

0� ¯ ��ã1
0�� − �

i,j�i�j�=1

n

a� i · a� j��ãn
0� ¯ �−�ãi

0� ¯ �+�ãj
0� ¯ ��ã1

0�� . �A66�

Our next task is to perform or simplify the q0 integrals using the delta functions, and at the same time to do the sum over
n. The p� i

2 term is easiest, so we begin there. We recall that ãn
0=qn−1

0 , ãn−1
0 =qn−2

0 −qn−1
0 , . . ., ã2

0=q1
0−q2

0, ã1
0=−q1

0, so most of the
delta functions just set one q0 equal to the next. This first contribution to 
GT

C�n� is

RECOIL CORRECTIONS IN HIGHLY CHARGED IONS PHYSICAL REVIEW A 76, 042508 �2007�

042508-21




GT
C�n�1�E;p� f,p� i� =

− i�

M
� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0 VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1�VC�q�n−1 − q�n−2� ¯ VC�q�2 − q�1�S0�E

+ q1
0;q�1�VC�q�1 − p� i�p� i

2���−
2�q1

0� − �+
2�q1

0����qn−1
0 − qn−2

0 � ¯ ��q2
0 − q1

0��

=
− i�

M
� d���−

2��� − �+
2���� � d3q1

�2��3 ¯
d3qn−1

�2��3 VC�p� f − q�n−1�S0�E + �;q�n−1� ¯ VC�q�1 − p� i�p� i
2, �A67�

where we write � for q1
0. We pass to a notation in which the

three-dimensional momentum integrals are implicit, and
write


GT
C�n�1�E� =

− i�

M
� d���−

2��� − �+
2����VCS0�E + ��

��VCS0�E + ���n−2VCp�2. �A68�

The sum over all values of n �2�n� � � gives


GT
C1�E� =

− i�

M
� d���−

2��� − �+
2����VCGC�E + ��VCp�2,

�A69�

where GC�E� is the Dirac-Coulomb Green’s function

GC�E� = S0�E��1 − VCS0�E��−1. �A70�

In order to perform the final energy integral, over �, we use
the spectral representation of the Dirac-Coulomb Green’s
function �which differs from the SF of Eq. �1� by a factor of
�0: GC=SF�0�

GC�E� = �
m

�0m�0m
†

E − E0m�1 − i��
, �A71�

and do the � integral by the residue theorem as follows:

� d���−
2��� − �+

2����GC�E + �� =
− i

2�
� d�

2�i
	 1

�� − i��2 −
1

�� + i��2
� �
m,E0m�0

�0m�0m
†

E + � − E0m + i�
+ �

m,E0m�0

�0m�0m
†

E + � − E0m − i��
=

i

2�� �
m,E0m�0

�0m�0m
†

�E − E0m + i��2 + �
m,E0m�0

�0m�0m
†

�E − E0m − i��2�
=

i

2�
GC

2 �E� , �A72�

where we have used the orthonormality of Dirac-Coulomb wave functions �0n
† �0m=�nm in the reduction of GC

2 . We find that


GT
C1�E� =

1

2M
VCGC

2 �E�VCp�2. �A73�

The second contribution to 
GT
C�n�, coming from terms in Eq. �A66� involving a� i · p� i, is


GT
C�n�2�E;p� f,p� i� =

− i�

M
� d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0 VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1�VC�q�n−1 − q�n−2� ¯ VC�q�2 − q�1�S0�E

+ q1
0;q�1�VC�q�1 − p� i��

i=1

n−1

�− a� i · p� i���−�ãn
0� ¯ �+�ãi

0� ¯ ��ã1
0� − �+�ãn

0� ¯ �−�ãi
0� ¯ ��ã1

0�� . �A74�

Again, most of the energy integrals can be done immediately. Only one is left, that involving qi
0��, and we find


GT
C�n�2�E;p� f,p� i� =

− i�

M
� d���−

2��� − �+
2�����

i=1

n−1 � d3q1

�2��3 ¯
d3qn−1

�2��3 VC�p� f − q�n−1�S0�E + �;q�n−1� ¯ S0�E + �;q� i� � �q� iVC�q� i

− q� i−1� − VC�q� i − q� i−1�q� i−1� � S0�E;q� i−1� ¯ S0�E;q�1�VC�q�1 − p� i� · p� i. �A75�
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With implicit three-dimensional integrations, this reads


GT
C�n�2�E� =

− i�

M
� d���−

2��� − �+
2����

��
i=1

n−1

�VCS0�E + ���n−i�p� ,VC��S0�E�VC�i−1 · p� .

�A76�

A commutator structure arises because a� i is the difference
between one momentum and the next. Now in the sum there
are from 1 to n−1 factors of VCS0�E+�� on the left of the
commutator, and from 0 to n−2 factors of S0�E�VC to the
right. When we perform both the sum over i and the sum
over n, the infinite sum builds up Green’s-function-like fac-
tors in both positions. After performing the sums, this second
correction term becomes


GT
C2�E� =

− i�

M
� d���−

2��� − �+
2����VCGC�E + ���p� ,VC��1

− S0�E�VC�−1 · p� . �A77�

The final � integral can be done as before, yielding


GT
C2�E� =

1

2M
VCGC

2 �E��p� ,VC��1 − S0�E�VC�−1 · p� . �A78�

The calculation for the third contribution to 
GT
C�n�, due to

a� i · p� f, is similar to the above, and gives


GT
C3�E� =

1

2M
p�VCGC

2 �E� · �p� ,VC��1 − S0�E�VC�−1. �A79�

The fourth and final contribution to 
GT
C�n�, the a� i ·a� j part,

is a bit different because here the �−
2��� and �+

2��� terms
have the same sign. We set �−

2���+�+
2���= ��−

2���−�+
2����

+2�+
2��� and leave the � integral undone in the 2�+

2��� term.
The result for this contribution is


GT
C4�E� =

− 1

2M
�1 − VCS0�E��−1�p� ,VC�GC

2 �E� · �p� ,VC��1

− S0�E�VC�−1 +
2�i

M
� d��+

2����1 − VCS0�E��−1

� �p� ,VC�GC�E + �� · �p� ,VC��1 − S0�E�VC�−1.

�A80�

Our final task for the pure-Coulomb correction will be to
combine and simplify the various contributions. The total
pure-Coulomb correction, from Eqs. �A73� and �A78�–
�A80�, is


GT
C =

1

2M
�VCGC

2 VCp�2 + VCGC
2 �p� ,VC��1 − S0VC�−1 · p�

+ p�VCGC
2 · �p� ,VC��1 − S0VC�−1 − �1 − VCS0�−1

��p� ,VC�GC
2 · �p� ,VC��1 − S0VC�−1� +

2�i

M
� d��+

2���

��1 − VCS0�−1�p� ,VC�GC�E + �� · �p� ,VC��1 − S0VC�−1.

�A81�

Each of the integrated terms is quadratic in GC�E�. The
double pole at each lowest-order bound-state energy is re-
moved by surrounding 
GT

C with �1−VCS0�¯ �1−S0VC� fac-
tors as in Eq. �A23�. In fact, the integrated part reduces to a
surprisingly simple form. After an algebraic reduction, one
finds that

�1 − VCS0�
GT
C�1 − S0VC� = VCS0

p�2

2M
S0VC +

2�i

M
� d��+

2���

��p� ,VC�GC�E + �� · �p� ,VC� .

�A82�

Finally, we arrive at the pure-Coulomb recoil correction


EC = � p�2

2M
� +

2�i

M
� d��+

2�����p� ,VC�

�GC�E0 + �� · �p� ,VC�� . �A83�

In this final step we set the energy E running through �1
−VCS0�
GT

C�1−S0VC� equal to the lowest-order bound-state
energy E0, and made use of the Dirac-Coulomb equation
S0VC�0=�0.

4. One-transverse-photon contribution

We turn now to the evaluation of the one-transverse-
photon contribution. A single transverse photon brings with it
an explicit 1 /M due to the Feynman rule of Eq. �A3�, and so
all other 1 /M complications in the nucleus propagator and
external momentum can be ignored. However, an arbitrary
number of Coulomb photons can accompany the transverse
photon. For a given total photon number n there are now n
�n! possible graphs: the factor of n describes the multiplic-
ity of locations for the transverse photon to attach to the
electron line, and n! is the number of possible ways for the n
photons, ordered by their position on the electron line, to
attach to the nucleus line. A typical one-transverse-photon
graph is represented in Fig. 9. By analogy with the pure-
Coulomb contribution to GT given in Eq. �A33�, the one-
transverse-photon correction is


GT
T�n��E;p� f,p� i� = �

i=1

n � d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0

�VC�p� f − q�n−1�S0�E + qn−1
0 ;q�n−1�

�VC�q�n−1 − q�n−2� ¯

n τ(i) 1

σ(n) i σ(1)

n-1 τ(i) τ(i)-1 1

FIG. 9. A typical one-transverse-photon graph with n photons
showing the nucleus line only. The numbers above the various pho-
tons label the photons according to their order on the electron line.
The numbers below the nucleus line indicate the ordering of pho-
tons on that line, from 1 on the right to n on the left. The numbers
just above the nucleus line label the nucleus propagators: the propa-
gator labeled k carries momentum PN+vk.
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�S0�E + qi
0;q� i�Db�qi − qi−1�

�S0�E + qi−1
0 ;q� i−1� ¯ S0�E + q1

0;q�1�VC�q�1

− p� i� �
�Sn

� Qi
b

2M
��+�vn−1

0 � ¯ �+�v1
0� ,

�A84�

where Qi
b= �v��i�+v��i�−1�b, and

i�0�− ie�0�
i

q�2 �iZe� =
− 4�Z�

q�2 � VC�q�� ,

i�0�− ie�a�iDab�q��iZe� = �− 4�Z���aDab�q� � Db�q� .

�A85�

Now the two contributions to Q� i have clear graphical mean-
ings: v���i�−1 is −p� i plus the sum of all a�s that enter the elec-
tron line to the right of the transverse photon at position i,
and v���i� is −p� f minus the sum of all a�s that enter the electron
line to the left of the transverse photon at position i. When
we choose to write v���i�−1 and v���i� in this way, no term pro-

portional to a� iis present in Q� i. In fact, we can write the
nucleus line factor as

�
�Sn

Q� iN�a�n�
0 , . . . ,a�1�

0 � = − A�p� i + p� f� + �
k=1�k�i�

n

Bka�k

�A86�

for some coefficients A ,Bk. Since the part of Q� i involving p� i
and p� f is exactly −�p� i+ p� f� for all , the coefficient A is just

A = �
�Sn

N�a�n�
0 , . . . ,a�1�

0 � = Nn = ��an−1
0 � ¯ ��a1

0� .

�A87�

Now the momentum a�k occurs in Q� i with a plus sign when
photon k enters the nucleus line to the right of photon i, and
with a minus sign when photon k enters to the left of photon
i, so that

Bk = �
partitions X,Y

�X�−�Y�+ − �
partitions X�,Y�

�X��−�Y��+,

�A88�

where X, Y and X�, Y� are partitions of �an
0 , . . . ,ai

0 , . . .a1
0�

with ak
0�Y and ak

0�X�. It follows that

Bk = ��an
0� ¯ ��ak

0� ¯ ��ai
0� ¯ ��a1

0���+�ak
0� − �−�ak

0�� ,

�A89�

where again the underlines signify omitted terms. Now we
are prepared to do the q0 integrals in Eq. �A84�. The first
part, proportional to p� i+ p� f, is


GT
T�n�1�E;p� f,p� i� =

− 1

2M
�
i=1

n � d3q1

�2��3 ¯
d3qn−1

�2��3 VC�p� f − q�n−1�

� S0�E;q�n−1� ¯ S0�E;q� i�Db�0;q� i − q� i−1�

� S0�E;q� i−1� ¯ S0�E;q�1�VC�q�1 − p� i�

��pi + pf�b, �A90�

or briefly,


GT
T�n�1�E� =

− 1

2M
�
i=1

n

�„VCS0�E�…n−iDb�0�„S0�E�VC…
i−1pb

+ pb
„VCS0�E�…n−iDb�0�„S0�E�VC…

i−1� . �A91�

After performing the sum over n this becomes


GT
T1�E� =

− 1

2M
��1 − VCS0�E��−1Db�0��1 − S0�E�VC�−1pb

+ pb�1 − VCS0�E��−1Db�0��1 − S0�E�VC�−1� .

�A92�

The second one-transverse-photon contribution is a bit more
complicated to evaluate. It is


GT
T�n�2�E;p� f,p� i� =

1

2M
�
i=1

n � d3q1

�2��3 ¯
d3qn−1

�2��3 dq1
0
¯ dqn−1

0

� VC�a�n�S0�E + qn−1
0 ;q�n−1� ¯

�S0�E + qi
0;q� i�Db�ai�S0�E + qi−1

0 ;q� i−1� ¯

�S0�E + q1
0;q�1�VC�a�1�

���
k=1

i−1

ak
b��an

0� ¯ ��ai
0� ¯ ��+�ak

0�

− �−�ak
0�� ¯ ��a1

0�

+ �
k=i+1

n

ak
b��an

0� ¯ ��+�ak
0�

− �−�ak
0�� ¯ ��ai

0� ¯ ��a1
0�� . �A93�

The n−2 delta functions in the first k-sum set qn−1
0 = ¯ =qi

0

=0, qi−1
0 = ¯ =qk

0, and qk−1
0 = ¯ =q1

0=0; while in the second k
sum they require qn−1

0 = ¯ =qk
0=0, qk−1

0 = ¯ =qi
0, and qi−1

0

= ¯ =q1
0=0. In either case we will use � to represent the

common value of the nonvanishing q0s. We express the
three-dimensional integrals in the usual implicit way, and
obtain


GT
T�n�2�E� =

1

2M
�
i=1

n � d���+��� − �−����

� ��
k=1

i−1

„VCS0�E�…n−iD� ���S0�E + ��„VCS0�E

+ ��…i−k−1 · �p� ,VC�„S0�E�VC…
k−1
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− �
k=i+1

n

„VCS0�E�…n−k�p� ,VC�S0�E + ��„VCS0�E

+ ��…k−i−1 · D� ���„S0�E�VC…
i−1� . �A94�

We now perform the sum over n, finding


GT
T2 =

1

2M
� d���+��� − �−�����1 − VCS0�E��−1

� �D� ���GC�E + �� · �p� ,VC� − �p� ,VC�GC�E

+ �� · D� ���� � �1 − S0�E�VC�−1. �A95�

As before, an energy shift is obtained from a correction to GT
through Eq. �A23�. We write the difference of the �± func-
tions above as 2�+���−����, and combine the two parts of

GT

T to obtain the total one-transverse-photon energy correc-
tion


ET =
− 1

2M
�D� �0� · p� + p� · D� �0�� +

1

M
� d��+����D� ���GC�E0

+ �� · �p� ,VC� − �p� ,VC�GC�E0 + �� · D� ���� . �A96�

5. Transverse-seagull contribution

The graphs containing two transverse photons in a seagull
configuration, along with an arbitrary number of Coulomb
photons, comprise the final part of the 1/M recoil correction.
A typical such graph is shown in Fig. 10. The contribution of
all nth-order seagull graphs is


GT
S�n��E;p� f,p� i� = 2i�0� d4q1

�2��4 ¯
d4qn−1

�2��4 �
i,k=1�k�i�

n

�− ie�0��iS0�E + qn−1
0 ;q�n−1��0��− ie�0� ¯ �iS0�E + qk

0;q�k��0��− ie�a��iS0�E

+ qk−1
0 ;q�k−1��0��− ie�0� ¯ �iS0�E + qi

0;q� i��0��− ie�b��iS0�E + qi−1
0 ;q� i−1��0��− ie�0� ¯ �iS0�E + q1

0;q�1��0�

��− ie�0�
i

a�n
2 ¯ k ¯ i ¯

i

a�1
2 iDaa��ak�iDbb��ai��2��n−2 �

partitions X,Y
�X�−�Y�+�iZe�n−2	i�iZe�2

�a�b�

2M

 , �A97�

where the initial two accounts for the two possible orderings of i and k on the electron line, and X and Y are partitions of
�an

0 , . . . ,ak
0 , . . . ,ai

0 , . . . ,a1
0�. The partition sum gives a factor of ��an

0�¯��ak
0�¯��ai

0�¯��a1
0�, which sets qn−1

0 = ¯ =qk
0=0,

qk−1
0 = ¯ =qi

0��, and qi−1
0 = ¯ =q1

0=0. We make use of these delta functions to perform the energy integrals, and obtain


GT
S�n��E;p� f,p� i� =

i

2�M
�

i,k=1�k�i�

n � d3q1

�2��3 ¯
d3qn−1

�2��3 � d�VC�a�n�S0�E;q�n−1� ¯ S0�E,q�k�D� �ak�S0�E + �;q�k−1� ¯ S0�E

+ �;q� i�D� �ai�S0�E;q� i−1� ¯ S0�E;q�1�V� C�a�1� . �A98�

With implicit three-momentum integrals this becomes


GT
S�n��E� =

i

2�M
�

i,k=1�k�i�

n � d�„VCS0�E�…n−kD� ���

�S0�E + ��„VCS0�E + ��…k−i−1 · D� ���

Ã„S0�E�VC…
i−1. �A99�

After summing over n this contribution takes the form


GT
S�E� =

i

2�M
� d��1 − VCS0�E��−1D� ���GC�E + �� · D� ���

��1 − S0�E�VC�−1, �A100�

and the corresponding energy shift is


ES =
i

2�M
� d��D� ���GC�E0 + �� · D� ���� .

�A101�

n-1 j 1

n-2 j j-1 1

n k i 1

σ(n-1) σ(1)

τ(n) τ(1)

FIG. 10. A typical transverse-seagull graph with n−2 Coulomb
photons. The numbers above the upper �electron� line label the pho-
tons connected to that line. The numbers below the lower �nucleus�
line order the vertices on that line. As before, photon k �labeled by
its position on the electron line� connects to position ��k� on the
nucleus line, and photon �m� connects to position m on the
nucleus line. The numbers just above the nucleus line label the n
−2 individual nucleus propagators.
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6. Complete all-orders formula

In this section we will combine our pure-Coulomb, one-
transverse-photon, and transverse-seagull contributions to
obtain the full recoil corrections in an elegant form first writ-
ten down by Yelkhovsky �21�.

The pure-Coulomb contribution, from Eq. �A83�, is


EC = � p�2

2M
� +

2�i

M
� d��+

2�����p� ,VC�GC�E0

+ �� · �p� ,VC�� . �A102�

The first term here is the leading recoil correction, contrib-
uting at O(�Z��2m2 /M) and containing only even powers of
Z�. The integral is of O(�Z��5m2 /M) as explicitly evaluated
in Sec. IV in the leading one-loop approximation. For the full
integral, which we denote IC, we have

IC =
2�i

M
� d�

�i/2��2

�� + i��2��p� ,VC�� �
m�E0m�0�

�0m�0m
†

E0 + � − E0m + i�

+ �
m�E0m�0�

�0m�0m
†

E0 + � − E0m − i�� · �p� ,VC�� . �A103�

The positive energy term vanishes since we can close the �
contour in the upper half-plane. The negative energy contri-
bution is

IC =
1

M��p� ,VC� �
m�E0m�0�

�0m�0m
†

�E0 − E0m�2 · �p� ,VC�� .

�A104�

Now the commutators can be reduced using H=�� · p� +�m
+VC and �p� ,VC�= �p� , �H−E0��, so that

IC =
− 1

M �p��H − E0� �
m�E0m�0�

�0m�0m
†

�E0 − E0m�2 �H − E0� · p��
= −

1

M
�p��− · p�� , �A105�

where

�+ = �
m�E0m�0�

�0m�0m
† ,

�− = �
m�E0m�0�

�0m�0m
† , �A106�

are the positive and negative energy projection operators. So
the pure-Coulomb contribution can be written as


EC = � p�2

2M
� −

1

M
�p��− · p�� =

1

2M
�p���+ − �−� · p�� .

�A107�

Another form for the pure-Coulomb contribution is


EC =
i

2�M
� d��p�GC�E0 + �� · p�� . �A108�

When the � integral is done �taking care to include the con-
tributions of infinite semicircles in the upper or lower half-
planes�, one finds immediately that Eq. �A108� agrees with
Eq. �A107�.

The one-transverse-photon contribution is


ET =
− 1

2M
�D� �0� · p� + p� · D� �0�� +

1

M
� d��+����D� ���GC�E0

+ �� · �p� ,VC� − �p� ,VC�GC�E0 + �� · D� ���� . �A109�

The first commutator here can be written as �p� ,VC�→−�H
−E0�p� =−�H− �E0+���p� −�p� =GC

−1�E0+��p� −�p� , with a
similar form for the second commutator, so the integral in

ET takes the form

IT =
− 1

M
� d�

2�i

1

� + i�
�D� ��� · p� − �D� ���GC�E0 + �� · p�

+ p� · D� ��� − �p�GC�E0 + �� · D� ���� . �A110�

Now an application of the residue theorem yields

� d�

2�i

1

� + i�
D� ��;k�� = −

1

2
D� �0;k�� , �A111�

so the first term in Eq. �A109� cancels against part of IT to
yield


ET =
− i

2�M
� d��D� ���GC�E0 + �� · p� + p�GC�E0

+ �� · D� ���� . �A112�

The three contributions to 
E, expressed in Eqs. �A108�,
�A112�, and �A101�, combine to give the elegant final result


E =
i

2�M
� d���p� − D� ����GC�E0 + �� · �p� − D� ����� .

�A113�
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