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We report electric quadrupole �E2� and magnetic dipole �M1� transition amplitudes of the first few low-lying
states of quadruply ionized vanadium �V4+�, which are important in various experimental applications and
astrophysics. To our knowledge, most of these presented results are determined for the first time in the
literature. A relativistic multireference Fock-space coupled-cluster theory with single �S�, double �D�, and
partial triple �T� excitations is employed to compute the forbidden transition probabilities and lifetimes of the
low-lying states in V4+. Estimations of different correlation effects arising through the above formalism have
been highlighted by investigating core and valence electron excitations. A long lifetime is found for the first
excited 3d 2D5/2 state, which suggests that V4+ may be one of the useful candidates for many important studies.
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I. INTRODUCTION

Electromagnetic forbidden transitions, especially for
lighter neutral systems and their isoelectronic companions,
are of immense importance in atomic experiments due to
precise use of metastable states �1�. Forbidden transitions,
which have relatively longer wavelengths compared to nor-
mal allowed transitions provide information about the ther-
mal Doppler effects in many physical systems �2�. Different
astronomical features have only been possible to observe due
to these transitions in infrared and radio wavelengths. Opti-
cal forbidden transitions of these kinds of V4+ have dominant
signatures in planetary nebulae and the aurora �3�. Similar
transitions have been identified with the so-called coronal
lines emitted by the sun �4�. Under certain circumstances,
which prevail in astrophysics and low density laboratory To-
kamak plasmas, electric quadrupole �E2� and magnetic di-
pole �M1� transition lines gain intensity. This phenomena
can be used to infer information about plasma temperature
and their dynamics �5�. The intensities of these transitions
allow us to measure the concentration of impurity ions in
Tokamak, which originate in the high temperature interior of
the discharge �5�. From a many-body point of view, the im-
portance of these results lies in the estimation of the accuracy
of the electronic wave function throughout the radial extent
of the atomic systems. This accuracy is estimated from the
agreement between computed and experimental values of
different atomic properties �6�. Also, the computed results
are only the mean of estimations for many of these transi-
tions wherever experimental measurements are difficult.

Here, we report calculated wavelengths and transition am-
plitudes of V4+ involving E2 and M1 radiative transitions.
These transitions are also important in plasma research and
can be used in many experiments in atomic and solid state
physics �7–9�. The study of forbidden transitions between the
fine structure states of the low-lying d states needs special
attention. They play an important role in the doping of im-
purity in the Al2O3 crystal, which can be used to study high-
frequency acoustic phonon in crystals �10�. It is also a good

candidate to study electron spin resonance �11� and electron
paramagnetic resonance �12� in quartz material. The detailed
knowledge of the resonant core relaxation process of V4+

�13� needs accurate results of energy levels of this ion and
transition amplitudes among them.

In this work, we employ the multireference �MR� Fock-
space coupled-cluster �FSCC� method with single �S�,
double �D�, and partial triple �T� excitations to compute for-
bidden transitions in V4+ using relativistic orbitals and/or
spinors. The coupled-cluster �CC� theory is nonperturbative
in nature and its relativistic extension has been successfully
employed earlier in many sophisticated problems �14,15� to
estimate various tiny effects precisely. In the present work,
we investigate the core and valence electrons correlation
contributions obtained from the MR-FSCCSD�T� method to
the M1 and E2 transitions among the low-lying states in the
considered system.

II. THEORY

A. Multireference Fock-space coupled-cluster (MR-FSCC)
theory for one electron attachment process

A relativistic extension of multireference Fock-space
coupled-cluster �MR-FSCC� theory is based on the no-
virtual-pair approximation �NVPA� along with appropriate
modification of orbital form and potential terms �16�. Rela-
tivistic CC theory begins with Dirac-Coulomb Hamiltonian
�H� for an N electron atom, which is expressed as

H = �
i=1

N

�c�i
� · p� i + �mc2 + VNuc�ri�� + �

i�j

N
e2

rij
, �2.1�

with all the standard notations often used. The normal or-
dered form of the above Hamiltonian is given by
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H = H − ���H��� = H − EDF

= �
ij

�i�f �j�	ai
†aj
 +

1

4 �
i,j,k,l

�ij��kl�	ai
†aj

†alak
 , �2.2�

where

�ij��kl� = �ij�
1

r12
�kl� − �ij�

1

r12
�lk� . �2.3�

Here EDF is the Dirac-Fock energy, f is the one-electron Fock
operator, ai �ai

†� is the annihilation �creation� operator �with
respect to the Dirac-Fock state as the vacuum� for the ith
electron and 	¯
 denotes the normal ordering of the creation
and annihilation operators.

Since the MR-FSCC theory has been described elsewhere
�17–20�, we provide a brief review of this method. The MR-
FSCC theory is based on the concept of the common vacuum
for both the N and N±m electron systems, which allows us to
formulate a direct method for energy differences. In this
method the holes and particles are defined with respect to the
common vacuum for both the N and N±m electron systems.
The model space of a �m ,n� Fock space contains determi-
nants with m holes and n particles distributed within a set of
what are termed as active orbitals. For example, in this
present paper, we are dealing with a �0,1� Fock space, which
is a complete model space �CMS� by construction and is
given by

���
�0,1�� = �

i

Ci���i
�0,1�� , �2.4�

where Ci�’s are the coefficients of ��
�0,1� and �i

�0,1�’s are the
model space configurations. The dynamical electron correla-
tion effects are introduced through the valence-universal
wave-operator � �17,18�,

� = 	exp�S̃�
 , �2.5�

where

S̃ = �
k=0

m

�
l=0

n

S�k,l� = S�0,0� + S�0,1� + S�1,0� + ¯ . �2.6�

At this juncture, it is convenient to single out the core-cluster
amplitudes S�0,0� and call them T. The rest of the cluster

amplitudes will henceforth be called S. Since � is in normal
order, we can rewrite Eq. �2.5� as

� = exp�T�	exp�S�
 � �c�v. �2.7�

The “valence-universal” wave-operator � in Eq. �2.7� is pa-
rametrized in such a way that the states generated by its
action on the reference space satisfy the Fock-space Bloch
equation

H�P�k,l� = �P�k,l�HeffP
�k,l�, �2.8�

where

Heff = P�k,l�H�P�k,l�. �2.9�

Equation �2.8� is valid for all �k , l� starting from k= l=0, the
core problem to some desired parent model space, with k
=m, l=n, say. In this present calculation, we truncate Eq.
�2.6� at m=0 and n=1. The operator P�k,l� in Eqs. �2.8� and
�2.9� is the model space projector for k-hole and l-particle
model spaces, which satisfy

P�k,l��P�k,l� = P�k,l�. �2.10�

To formulate the theory for direct energy differences, we
premultiply Eq. �2.8� by exp�−T� �i.e., �c

−1� and get

H̄�vP�k,l� = �vP�k,l�HeffP
�k,l� ∀ �k,l� � �0,0� ,

�2.11�

where H̄=e−THeT. Since H̄ can be partitioned into a con-

nected operator H̃ and Eref/gr �N-electron closed-shell refer-

ence or ground state energy�, we likewise define H̃eff as

Heff = H̃eff + Eref/gr. �2.12�

Substituting Eq. �2.12� in Eq. �2.11� we obtain the Fock-
space Bloch equation for energy differences as follows:

H̃�vP�k,l� = �vP�k,l�H̃effP
�k,l�. �2.13�

Equations �2.8� and �2.13� are solved by Bloch projection
method, involving the left projection of the equation with
P�k,l� and its orthogonal complement Q�k,l� to obtain the ef-
fective Hamiltonian and the cluster amplitudes, respectively.
At this juncture, we recall that the cluster amplitudes in MR-
FSCC are generated hierarchically through the subsystem
embedding condition �SEC� �19,21�, which is equivalent to
the valence universality condition used by Lindgren �17� in
his formulation. For example, in the present application, we
first solve the Fock-space CC for k= l=0 to obtain the core-

cluster amplitudes T. The operator H̃ and H̃eff are then con-
structed from this core-cluster amplitudes T to solve Eq.

TABLE I. Lifetimes of the low-lying states in V4+.

States Lifetimes �in seconds�

3d5/2 3.84�102

4s1/2 4.55�10−5

4p1/2 1.99�10−10

4p3/2 1.97�10−10

4d3/2 3.77�10−10

4d5/2 3.01�10−10

4f5/2 1.20�10−10

4f7/2 6.97�10−11

TABLE II. Comparison between the DF �29� and our CC calcu-
lations of the 3d→4s transition probabilities.

Transitions AM1 �DF� AM1 �CC� AE2 �DF� AE2 �CC�

3d 2D3/2→4s 2S1/2 4.21�−06� 2.19�−02� 8.56�+03� 44.42�+03�
3d 2D5/2→4s 2S1/2 1.27�+04� 6.60�+03�
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�2.13� for k=0, l=1 to determine S�0,1� amplitudes. The ef-
fective Hamiltonian constructed from H, T, and S�0,1� is then
diagonalized within the model space to obtain the desired
eigenvalues and eigenvectors

H̃effC
�0,1� = C�0,1�E , �2.14�

where

H̃eff = P�0,1��H̃ + H̃S�0,1��P�0,1�.

�2.15�
The expression AB in Eq. �2.15� indicates that operators A
and B are connected by common orbital�s�.

B. Higher order excitations

It is now widely recognized that the effects of higher body
clusters must be included in CC calculations to improve the
accuracy of the predicted and computed quantities. Here by
the term “higher body effects,” we mean effects from triple,
quadruple excitations, etc. In this study, we shall restrict our-
selves only to triple excitations for the time being and will
comment on other higher excitations later. The most straight-

forward approach is to include the full three-body excitation
operators T3 and S3

�0,1� in the CC ansatz via T=T1+T2+T3

and S�0,1�=S1
�0,1�+S2

�0,1�+S3
�0,1�. This direct approach, known

as CCSDT, is computationally very expensive.
In this paper, triple excitations are included in the open

shell CC amplitude, which correspond to the correlation to
the valence orbitals, by an approximation that is similar in
spirit to CCSD�T� �22�. The approximate valence triple ex-
citation amplitude is given by

Sabk
�0,1�pqr =

	VT2
abk
pqr + 	VS2

�0,1�
abk
pqr

	a + 	b + 	k − 	p − 	q − 	r
,

�2.16�
where Sabk

�0,1�pqr are the amplitudes corresponding to the simul-
taneous excitation of orbitals a ,b ,k to p ,q ,r, respectively;

VT2 and VS2
�0,1� are the connected composites involving V

and T, and V and S�0,1�, respectively, where V is the two
electron Coulomb integral and 	’s are the orbital energies.

III. COMPUTATIONAL PROCEDURE

The transition matrix element due to any operator D is
evaluated in the MR-FSCC method by expressing it as

Dfi =
�� f�D��i�

���� f�� f����i��i�
=

�� f�	1 + Sf
�0,1�†


eT†DeT	1 + Si
�0,1�
��i�

��� f�	1 + Sf
�0,1�†


eT†eT	1 + Sf
�0,1�
�� f���i�	1 + Si

�0,1�†

eT†eT	1 + Si

�0,1�
��i�
. �3.1�

For computational simplicity, we express eT†
DeT as effec-

tive terms using the generalized Wick’s theorem �17� as

D̄ � eT†
DeT = D̄0 + D̄1 + D̄2 + ¯ , �3.2�

where D̄0 , D̄1 , D̄2 are effective zero-body, one-body, and two-

body terms, respectively. In this expansion of D̄, the effective

one-body and two-body terms are computed keeping terms
of the form of

D̄ = D + T†D + DT + T†DT .

�3.3�
Other effective terms correspond to higher orders in the re-
sidual Coulomb interaction and hence they are neglected in
the present calculation. Interesting correlation features of the

transition operator D are found in the contraction of D̄ withTABLE III. Effects of unbound orbitals in V4+ on electric quad-
rupole transition amplitudes.

Terms Transition amplitudes

�with bound orbitals� �with all orbitals�

4s1/2→4d3/2 −5.8530 −5.7383

→4d5/2 7.1673 7.0272

4d3/2→4d5/2 −6.1508 −5.9673

6s1/2→4d3/2 0.7921 0.7101

→4d5/2 −0.9823 −0.8820

4p1/2→4p3/2 −6.2963 −6.1510

→6p3/2 −0.1036 −0.2787

4p3/2→6p3/2 −0.0327 −0.1949

→6p1/2 −0.0747 −0.2562

6p1/2→6p3/2 −0.5787 −4.6953

TABLE IV. Effects of unbound orbitals in V4+ on magnetic
dipole transition amplitudes.

Terms Transition amplitude

�with bound orbitals� �with all orbitals�

4s1/2→6s1/2 −0.0126 −0.0227

4d3/2→4d5/2 −1.5485 −1.5455

4p1/2→4p3/2 −1.1544 −1.1535

→6p1/2 −0.0102 −0.0116

→6p3/2 0.0071 0.0072

4p3/2→6p1/2 −0.0082 −0.0055

→6p3/2 −0.0746 −0.0820

6p1/2→6p3/2 −1.5398 −1.5398

Ab INITIO CALCULATIONS OF FORBIDDEN… PHYSICAL REVIEW A 76, 042505 �2007�

042505-3



S1
�0,1� and S2

�0,1�, which represent single excitation operators
from valence orbital and double excitations from core-
valence orbitals, respectively. Since the considered system is
a single valence system, only one power of the S�0,1� operator
will contribute in this MR-FSCCSD�T� calculation.

The reduced matrix element corresponding to E1, E2, and
M1 transitions are given in our earlier papers �23,24�. The
emission transition rate �in s�−1�� for the E2 and M1 channels
from states f to i are given by �25,26�

Af→i
E2 =

1.119 95 � 1018


5�j f�
SE2, �3.4�

Af→i
M1 =

2.697 35 � 1013


3�j f�
SM1, �3.5�

where �j f�=2j f +1 is the degeneracy of a f state, S is the
square of the transition matrix elements of any of the corre-
sponding transition operator D, and 
 �in Å� are the corre-
sponding transition wavelength.

The DF orbitals of V5+ are generated from the universal
Gaussian-type orbital �GTO� basis functions �27� using �0
=0.008 25 and �=2.91. The number of DF orbitals for dif-
ferent symmetries used in the MR-FSCCSD�T� calculations
are based on the convergent criteria of core correlation en-
ergy. There are 12, 10, 10, 9, and 8 active orbitals, which
also include all core electrons, considered in the MR-
FSCCSD�T� calculations for l=0,1 ,2 ,3 ,4 symmetries, re-
spectively. Other higher energy orbitals that were present in
the DF wave functions are considered as inactive.

IV. RESULTS AND DISCUSSIONS

The lifetime �in seconds� of a particular state is the recip-
rocal of total transition probabilities arising from all possible
electromagnetic spontaneous transitions to the lower energy
levels. In our previous work �hereafter referred to as paper I�
on allowed transitions of the same system important for as-
trophysical applications �28�, we have found excellent agree-
ment with the experimental and MR-FSCCSD�T� computed
ionization energies. The calculated lifetimes of many excited
states are reported in Table I in this paper. These results are
evaluated using both the allowed transition probabilities that
are given in our earlier paper �28� and the forbidden transi-
tion probabilities in this paper. The forbidden transition prob-
abilities are calculated from the transition amplitudes and
wavelengths given in Table V. These results are determined
for the first time to our knowledge, in the literature. These
values show that the lifetime of the 3d 2D5/2 state is large,
which seems to be useful in many atomic applications.

Ali and Kim �29� had calculated the M1 and E2 transition
probabilities between the 3d and 4s states using the Dirac-
Fock �DF� approximation. We have made a comparison with
their results to ours in Table II. The difference between these
results is due to the inclusion of electron correlation effects
through the MR-FSCCSD�T� method. As shown in the table,
the correlation effect is larger on M1 transitions than on E2
transitions. Also, another noticeable fact is to observe the
opposite sign of the effect among M1 and E2 transitions. The

TABLE V. Transition wavelengths and transition amplitudes of
V4+ for electric quadrupole and magnetic dipole transitions.

Transitions 
NIST �Å� 
CC �Å� E2 M1

3d3/2→3d5/2 −0.7475 −1.5398

→4d3/2 340.24 340.22 1.0870 0.0684

→4d5/2 340.08 341.71 0.7290 0.0022

→5d3/2 257.74 258.63 −0.3948 −0.0362

→5d5/2 257.70 258.53 −0.2659 −0.0006

→6d3/2 230.25 230.95 −0.1950 −0.0219

→6d5/2 230.23 230.93 −0.1321 −0.0001

→4s1/2 675.02 684.25 −1.4876

→5s1/2 304.67 306.30 0.0683

→6s1/2 247.61 248.25 0.0269

→5g7/2 240.17 240.98 −0.8463

→6g7/2 222.21 222.19 −0.6366

3d5/2→4d3/2 340.97 341.04 −0.7357 −0.0062

→4d5/2 340.80 340.86 1.4290 0.1860

→5d3/2 258.16 258.05 0.2682 0.0027

→5d5/2 258.11 258.00 −0.5192 −0.0984

→6d3/2 230.58 230.45 0.1337 0.0013

→6d5/2 230.56 230.44 −0.2574 −0.0598

→4s1/2 677.88 680.17 −1.8310

→5s1/2 305.25 305.44 0.0829

→6s1/2 247.99 247.68 0.0329

→5g7/2 240.53 241.39 0.2839

→5g9/2 240.53 241.39 −1.0037

→6g7/2 222.51 222.54 0.2133

→6g9/2 222.51 222.55 −0.7539

4d3/2→4d5/2 −5.9673 −1.5455

→5d3/2 1062.99 1060.41 −5.5444 −0.1248

→5d5/2 1062.23 1059.60 −3.8912 −0.0015

→6d3/2 712.24 710.74 −1.8378 −0.0540

→6d5/2 712.05 710.59 −1.3032 0.0008

→4s1/2 686.06 684.00 5.7383

→5s1/2 2914.22 2925.88 9.4581

→6s1/2 909.48 904.77 −0.7101

→5g7/2 816.61 826.14 16.3355

→6g7/2 640.52 640.52 6.1353

4d5/2→5d3/2 1064.62 1062.18 3.9140 0.0050

→5d5/2 1063.86 1061.36 −7.2728 −0.3485

→6d3/2 712.97 711.53 1.3062 0.0006

→6d5/2 712.79 711.38 −2.4142 −0.1508

→4s1/2 685.38 683.27 7.0272

→5s1/2 2926.53 2939.35 11.6086

→6s1/2 910.68 906.06 −0.8820

→5g7/2 817.57 827.21 −5.4566

→5g9/2 817.56 827.25 19.2923

→6g7/2 641.11 641.16 −2.0469

→6g9/2 641.12 641.18 7.2372

5d3/2→5d5/2 −19.0483 −1.5436

→6d3/2 2158.58 2155.39 15.9663 0.1210
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detailed correlation effects on these transitions are explained
in the last part of this section.

The effect of the unbound orbitals in the correlation cal-
culation of the E2 and M1 transition amplitudes in the
framework of the MR-FSCCSD�T� approach is studied quan-
titatively in Tables III and IV, respectively. Here, we have
considered transitions involving few close and far away ex-
cited states from the ground state. As expected, these effects
are large on the higher excited states compared to the low-
lying excited states. It has to be noticed that the E2 transition
amplitudes are generally large in all these transitions. This
can be explained by considering the dependence of these
transition amplitudes in the diffused region of wave
functions.

Table V presents the magnetic dipole and electric quadru-
pole transition wavelengths and amplitudes, respectively, for
most of the low-lying states. They are all relevant to astro-
physical studies. The calculated wavelengths have good
agreement for most of the cases with the result obtained from
the website of National Institute of Standard and Technology
�NIST� �30�. From a physics point of view, the important
transitions among these are the forbidden transitions among
the fine structures of the 3d and 4p states. The former one
falls in the infrared region, which has many applications in
the plasma research and infrared laser spectroscopy �31�. The
latter one falls in the optical region and has an immense
prospect in different atomic physics experiments. We have
not reported wavelengths for most of the other fine structure

TABLE V. �Continued.�

Transitions 
NIST �Å� 
CC �Å� E2 M1

→6d5/2 2156.85 2153.97 11.2383 0.0012

→4s1/2 416.95 415.80 0.1076

→5s1/2 1673.36 1663.21 18.2095

→6s1/2 6298.00 6164.49 -29.2917

→5g7/2 3523.20 3739.47 44.8003

→6g7/2 1611.66 1617.59 −27.9356

5d5/2→6d3/2 2161.69 2158.76 −11.3019 −0.0044

→6d5/2 2159.95 2157.34 20.9536 −0.0039

→4s1/2 416.83 415.67 0.1240

→5s1/2 1671.50 1661.21 22.2903

→6s1/2 6324.53 6192.12 −35.9371

→5g7/2 3531.49 3749.62 −14.9385

→5g9/2 3531.31 3770.43 52.8170

→6g7/2 1613.40 1619.49 9.3478

→6g9/2 1613.38 1619.60 −33.0483

6d3/2→6d5/2 −49.7139 −1.5453

→4s1/2 349.45 348.55 0.1295

→5s1/2 942.62 938.79 0.5210

→6s1/2 3284.21 3314.19 47.8467

→5g7/2 5573.05 5088.16 −29.2475

→6g7/2 6361.01 6483.01 128.4251

6d5/2→4s1/2 349.40 348.52 0.1553

→5s1/2 942.29 938.52 0.6557

→6s1/2 3280.21 3310.84 58.5607

→5g7/2 5561.54 5080.26 9.7363

→5g9/2 5562.00 5078.78 −34.4251

→6g7/2 6376.81 6495.88 −42.8137

→6g9/2 6375.81 6497.70 151.3704

5g7/2→5g9/2 −14.0132

→6g7/2 2970.51 2850.75 25.5408

→6g9/2 2970.45 2851.10 7.7503

5g9/2→6g7/2 2970.64 2850.29 −7.7543

→6g9/2 2970.58 2850.64 28.8149

6g7/2→6g9/2 −44.2007

4p1/2→4p3/2 78971.47 77464.73 −6.1510 −1.1535

→5p1/2 689.14 688.02 −0.0207

→5p3/2 686.69 685.73 −3.5604 0.0053

→6p1/2 478.40 478.18 −0.0116

→6p3/2 477.82 478.23 −0.2787 0.0072

→4f5/2 697.92 709.04 8.4251

5p1/2→4p3/2 695.21 694.18 −3.6670

→5p3/2 −21.5598 −1.1530

→6p1/2 1564.46 1567.89 0.0179

→6p3/2 1558.23 1568.41 2.9529 −0.0077

→4f5/2 54796.32 23207.88 13.7048

6p1/2→4p3/2 481.32 481.15 −0.2562

→5p3/2 1577.24 1579.91 3.0066

→6p3/2 −4.6953 −1.4409

TABLE V. �Continued.�

Transitions 
NIST �Å� 
CC �Å� E2 M1

→4f5/2 1521.03 1468.67 −0.7073

4p3/2→5p1/2 695.21 694.18 0.0072

→5p3/2 692.72 691.85 −3.4660 −0.1305

→6p1/2 481.32 481.15 −0.0055

→6p3/2 480.73 481.20 −0.1949 −0.0820

→4f5/2 704.14 715.59 −4.5351

→4f7/2 706.25 715.71 −11.0889

5p3/2→6p1/2 1577.24 1579.91 0.0061

→6p3/2 1570.91 1580.45 2.6031 0.1222

→4f5/2 37839.08 20858.40 −7.3110

→4f7/2 32616.42 20755.93 −17.8582

6p3/2→4f5/2 1515.14 1469.13 0.3491

→4f7/2 1505.49 1468.62 0.8998

4f5/2→4f7/2 5.5868 1.8435

5g7/2→5g9/2 −2.1081

→6g7/2 2970.51 2850.75 0.0379

→6g9/2 2970.45 2851.10 −0.0001

5g9/2→6g7/2 2970.64 2850.29 0.0000

→6g9/2 2970.58 2850.64 0.0663

6g7/2→6g9/2 −2.1080

4s1/2→5s1/2 555.32 554.40 −0.5404

→6s1/2 391.06 389.52 −0.0227

5s1/2→6s1/2 1322.08 1309.81 0.0496
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transitions that fall far beyond the infrared region. The rela-
tively large differences in the wavelengths between some of
the transitions from 4f�2F� states call for further experimen-
tal and theoretical investigations on these states.

Quantitative contributions from different correlation terms
for a few E2 transitions among low-lying states are presented
in Tables VI and VII. These tables show comparative estima-
tions of core-polarization, core-correlation, and pair-

TABLE VI. Explicit contributions from the MR-FSCCSD�T� calculations to the absolute magnitude of reduced E2 transitions matrix
elements in a.u.

CC terms 3d3/2→3d5/2 3d3/2→4d3/2 3d3/2→4s1/2 3d3/2→5s1/2 3d3/2→5g7/2 3d5/2→4d3/2 3d5/2→4s1/2 3d5/2→5s1/2 3d5/2→5g7/2

Dirac-Fock D −0.8554 1.1077 −1.5552 0.0624 −0.9137 −0.7289 −1.9121 0.0748 0.3061

D̄ −0.8466 1.1079 −1.5505 0.0604 −0.9125 −0.7287 −1.9060 0.0722 0.3057

D̄S1i
�0,1� 0.0180 −0.0896 0.0882 0.0284 0.0774 0.0585 0.1078 0.0348 −0.0257

S1f
�0,1�†

D̄ 0.0178 0.0252 −0.0019 −0.0351 −0.0096 −0.0355 −0.0023 −0.0432 0.0032

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D 0.0625 0.0501 −0.0244 0.0092 −0.0036 −0.0337 −0.0318 0.0124 0.0014

S1f
�0,1�†

D̄S1i
�0,1� 0.0000 −0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S1f
�0,1�†

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D̄S1i
�0,1� 0.0001 0.0010 −0.0013 0.0006 −0.0004 −0.0006 −0.0016 0.0007 0.0001

S2f
�0,1�†

D̄S2i
�0,1� −0.0078 0.0039 −0.0104 0.0048 −0.0021 −0.0026 −0.0127 0.0053 0.0006

Important effective two-body terms of D̄

S2f
�0,1�†

DT1
0.0003 0.0002 0.0002 −0.0001 0.0000 −0.0002 0.0002 −0.0001 0.0000

T1
†DS2i

�0,1� 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 −0.0001 0.0000

T2
†DS2i

�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

DT2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0026 0.0015 0.0000

Normal 0.0075 −0.0107 0.0143 −0.0004 0.0044 0.0072 0.0175 −0.0005 −0.0014

Total −0.7475 1.0870 −1.4876 0.0683 −0.8463 −0.7357 −1.8310 0.0829 0.2839

TABLE VII. Explicit contributions from the MR-FSCCSD�T� calculations to the absolute magnitude of reduced E2 transitions matrix
elements in a.u.

CC terms 3d5/2→5g9/2 4d3/2→4s1/2 4d3/2→5s1/2 4d3/2→5g7/2 4p1/2→4p3/2 4p1/2→4f5/2 4p3/2→4f5/2 4p3/2→4f7/2 4f5/2→5f7/2

Dirac-Fock D −1.0825 5.9612 10.0120 17.4676 −6.4365 9.1096 −4.9059 −12.0170 6.5586

D̄ −1.0810 5.9612 10.0120 17.4678 −6.4367 9.1094 −4.9061 −12.0174 6.5585

D̄S1i
�0,1� 0.0912 0.0177 −0.6124 −1.0685 0.1011 −0.2782 0.1485 0.3639 −0.2998

S�0,1�1f
†

D̄ −0.0110 −0.1701 0.1189 0.0334 0.0982 −0.0815 0.0463 0.1145 −0.3017

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D −0.0047 −0.0430 0.0060 −0.0264 0.0654 −0.0557 0.0302 0.0733 −0.0195

S1f
�0,1�†

D̄S1i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S1f
�0,1�†

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D̄S1i
�0,1� -0.0005 -0.0010 0.0010 0.0001 0.0007 −0.0002 0.0001 0.0003 −0.0011

S2f
�0,1�†

D̄S2i
�0,11� −0.0026 0.0277 −0.0013 0.0113 −0.0316 0.0479 −0.0245 −0.0614 0.0389

Important effective two-body terms of D̄

S2f
�0,1�†

DT1
0.0000 −0.0002 0.0001 0.0000 0.0003 −0.0001 0.0000 0.0001 0.0000

T1
†DS2i

�0,1� 0.0000 −0.0001 0.0001 0.0000 0.0000 −0.0003 0.0001 0.0003 0.0000

T2
†DS2i

�0,1� 0.0000 0.0000 0.0000 0.0000 0.0055 0.0029 −0.0017 −0.0040 0.0000

S2f
�0,1�†

DT2
0.0000 0.0003 −0.0002 0.0000 −0.0025 0.0000 0.0000 0.0000 0.0000

Normal 0.0051 −0.0543 −0.0657 −0.0822 0.0557 −0.3186 0.1714 0.4418 −0.3881

Total −1.0037 5.7383 9.4581 16.3355 −6.1510 8.4251 −4.5351 −11.0889 5.5868
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correlation effects in these transitions. The diagrams involv-
ing these contributions are discussed in our earlier papers
�32�. We found from these tables that all the order core-

polarization effects �D̄S2i
�0,1�� coming from the initial state for

all the transitions are small. But we cannot neglect these
S2

�0,1� operators totally due to significant contributions of

�S2f
�0,1�†

D̄�, especially in the E2 transition amplitudes. The
correlation contributions to these transitions coming from
S2

�0,1� cluster operators vary to a large extent. Among D states
the effect is large: 4–8 %. Moderate contributions come in
the D to S states: around 1–3 %, whereas, for D to G states
they are significantly small.

Though almost similar correlation trends have been ob-
served in Table VIII for the M1 transitions case, here core-
polarization contributions are almost zero. The noticeable
features are the transitions between the same symmetries, but
different principle quantum numbers. In these cases, the DF
contributions are very small �almost 1%� compared to the all
order pair-correlation effects arising from the initial state.
They are the prime correlation contributors. Other strong

contributions come from S2f
�0,1�D̄S2i

�0,1� in all the transitions
presented in the same table apart from transitions among G
states.

V. CONCLUSION

Lifetimes of the low-lying bound states of V4+ have been
calculated using the MR-FSCC approach with the Dirac-
Coulomb Hamiltonian. Long lifetime has been observed for
the first excited D state and it can be used as a potential
metastable state for experiments in physics. Magnetic dipole
and electric quadrupole transition amplitudes among the
bound states of the system are important for astronomical
observations and plasma researches. Here, we have reported
these results for the first time. Especially, forbidden transi-
tions between the fine structure 4p states may be considered
for different atomic experiments of fundamental physics due
to its optical transition line. We have also highlighted differ-
ent correlation effects arising through the MR-FSCCSD�T�
method.
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TABLE VIII. Explicit contributions from the MR-FSCCSD�T� calculations to the absolute magnitude of
reduced M1 transition matrix elements in a.u.

CC terms 3d3/2→3d5/2 3d3/2→4d3/2 4s1/2→5s1/2 4p1/2→4p3/2 4f5/2→4f7/2 5g7/2→5g9/2

Dirac-Fock D −1.5489 −0.0004 0.0004 −1.1545 1.8515 −2.1081

D̄ −1.5291 −0.0020 0.0015 −1.1538 1.8515 −2.1081

D̄S1i
�0,1� 0.0001 0.0511 −0.0440 0.0002 0.0000 0.0000

S1f
�0,1�†

D̄ 0.0000 0.0000 0.0000 −0.0002 0.0000 0.0000

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D̄ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S1f
�0,1�†

D̄S1i
�0,1� 0.0000 0.0017 −0.0006 0.0000 0.0000 0.0000

S1f
�0,1�†

D̄S2i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D̄S1i
�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

D̄S2i
�0,1� −0.0187 0.0199 −0.0118 −0.0106 0.1203 −0.0008

Important effective two-body terms of D̄

S2f
�0,1�†

DT1
0.0011 −0.0009 0.0002 0.0001 0.0000 0.0000

T1
†DS2i

�0,1� 0.0011 −0.0006 0.0001 0.0001 0.0000 0.0000

T2
†DS2i

�0,1� 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S2f
�0,1�†

DT2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Normal 0.0154 −0.0006 0.0003 0.0104 −0.1280 0.0008

Total −1.5398 0.0684 −0.5404 −1.1535 1.8435 −2.1081
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