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The entanglement of superpositions �Linden et al., Phys. Rev. Lett. 97, 100502 �2006��is generalized to the
multipartite scenario: an upper bound to the multipartite entanglement of a superposition is given in terms of
the entanglement of the superposed states and the superposition coefficients. This bound is proven to be tight
for a class of states composed of an arbitrary number of qubits. We also extend the result to a large family of
quantifiers, which includes the negativity, the robustness of entanglement, and the best separable approxima-
tion measure.
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I. INTRODUCTION

The study of quantum correlations is certainly one of the
most challenging issues that physicists have been faced with.
Both from an experimental and a theoretical point of view,
the characterization of entanglement has proven to be very
hard �1�. Even in the simplest scenario, namely, the study of
bipartite pure-state entanglement, we still find open ques-
tions. Needless to say, the cases of mixed states and multi-
partite systems are much richer and further from being com-
pletely understood.

In recent work �2�, Linden, Popescu, and Smolin have
raised the following question: Given pure states ��� and ���
on a bipartite system, how is the entanglement of the super-
position state

��� = a��� + b��� �1�

related to the entanglement of the constituents ��� and ���
and to the coefficients a and b? This apparently simple ques-
tion was shown to exhibit a rich answer in terms of nontrivial
inequalities relating these quantities. In order to quantify the
entanglement, the authors of �2� used the von Neuman en-
tropy of the reduced state �often called the entanglement en-
tropy �3��. This is a natural choice, since this quantifier has a
clear operational meaning: it gives the number of Bell pairs
that can be produced from a large number of copies of an
arbitrary entangled state by local operations and classical
communication �3�. However, other entanglement quantifiers
can also be used and, in fact, distinct bounds for the en-
tanglement of a superposition can be found depending on
this choice �5–7�.

The main goal of this work is to generalize the ideas
raised in �2� to the multipartite scenario. However, instead of
working with a specific entanglement quantifier, we have
chosen a family of quantifiers called witnessed entanglement
�8�. This family represents those measures that can be written
as

EW��� = max�0,− min
W�W

Tr�W��� , �2�

where W is a restricted set of entanglement witnesses �9�.
The term “entanglement witness” refers to a Hermitian non-
positive operator that has positive mean value for all sepa-
rable states; hence a negative mean value indicates the pres-
ence of entanglement �9,10�. For an entangled pure state �
= ���	��, the witnessed entanglement can be expressed by
�11�

EW��� = − 	��Wopt
� ��� , �3�

Wopt
� being an optimal witness for the state ��� �i.e., a witness

satisfying the minimization problem in �2� �12��. This sim-
plified way of writing EW will be particularly useful to our
constructions.

One important fact concerning EW is that several interest-
ing entanglement quantifiers belong to this class. These
quantifiers include concurrence �4�, negativity �13,14�, ro-
bustness of entanglement �15–17�, and the best separable ap-
proximation �18�. Each one of these examples can be written
in the form of Eq. �2� by changing the choice of the set W
�8�. Another advantage of EW is that it can be directly linked
to measurable quantities, since W is a Hermitian operator.
Because of that, EW can be experimentally estimated even
for an unknown quantum state �19,20�. It must be stressed,
and this is very important in our considered scenario, that EW
can also quantify different kinds of multipartite entangle-
ment: the restricted set W can be chosen as a set of entangle-
ment witnesses which detect only a certain kind of entangle-
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ment. Besides that, among the witnessed entanglement
quantifiers, we can find both operational measures �21–23�
�i.e., entanglement quantifiers with some operational mean-
ing� and geometrical ones �18,24,25� �i.e., quantifiers related
to geometrical aspects of the state space�.

II. MULTIPARTITE ENTANGLEMENT OF
SUPERPOSITIONS

The main scope of this work is to obtain an upper bound
to the witnessed entanglement of the state �1� based on the
entanglement of the superposed states ��� and ��� and the
coefficients appearing in the superposition. In this section,
we first derive an inequality relating these quantities and then
prove its tightness. The witnessed entanglement of ��� can be
written as

EW��� = max�0,− min
W�W

	��W����

= max�0,− min
W�W

��a�2	��W��� + �b�2	��W���

+ 2Re�a*b	��W������ , �4�

an expression that resembles the usual interference pattern
originated by superpositions. The minimization problem is
solved using the so-called optimal entanglement witness
Wopt �inside the set W which defines the quantifier�. So we
can write

EW��� = max�0,− �a�2	��Wopt
� ��� − �b�2	��Wopt

� ���

− 2Re�a*b	��Wopt
� ����� . �5�

Again, Wopt
� denotes a witness that is optimal for the state

���. Different states usually have different optimal entangle-
ment witnesses. We are naturally led to the inequality

EW��� � max�0,− �a�2	��Wopt
� ���� + max�0,

− �b�2	��Wopt
� ���� + max�0,

− 2Re�a*b	��Wopt
� �����

= �a�2EW��� + �b�2EW��� + 2max�0,

− Re�a*b	��Wopt
� ����� , �6�

where we have also made use of the inequality max�0,a
+b��max�0,a�+max�0,b�. Attention must now be paid to
the interference term. The Cauchy-Schwarz inequality im-
plies

EW��� � �a�2EW��� + �b�2EW��� + 2�a��b�
Wopt
� 
 . �7�

Note that the normalization of the kets involved was used,
and we take, as a matter of fact, the norm of an operator as
its maximal singular value. Expression �7� relates the en-
tanglement of ��� to the entanglement of each one of the
superposed states �and the coefficients of the superposition�
but also depends on the form of the optimal entanglement
witness Wopt

� . This dependence on the optimal entanglement
witness is expected, as the restrictions in Wopt

� imply the fea-
tures of the entanglement quantifier we are dealing with.

At this point it is worth asking if inequality �7� can be
saturated. Let us choose the negativity as a quantifier for

instance. In this case we can compute Wopt
� analytically. For a

given state �, it is given by the partial transposition of the
projector onto the subspace of negative eigenvalues of �TA,
where �TA denotes the partial transposition of � �26�. It is
now easy to see that, for the two-qubit states ���= �00� and
���= �11�, the inequality �7� becomes �a � �b � � �a � �b�.

In the previous examples, we used the fact that we knew
the optimal witness Wopt

� . Let us now remove this strong
assumption. It was shown in Ref. �8� that, if W �in Eq. �2�� is
the set of entanglement witnesses satisfying −nI�W�mI,
where m ,n�0, EW is an entanglement monotone �27�. Set-
ting k=max�m ,n� we have

EW��� � �a�2EW��� + �b�2EW��� + 2k�a��b� . �8�

As our main goal here is to work in the multipartite case,
it would be interesting to find examples of multipartite states
for which relation �8� is saturated. The main barrier to be
overcome in this case is the fact that it is not known, in
general, how to compute multipartite entanglement quantifi-
ers. Nevertheless, we develop a way of calculating the gen-
eralized robustness of entanglement for Greenberger-Horne-
Zeilinger– �GHZ-�like states and use this information to
prove the tightness of inequality �8� regardless of the number
of particles involved.

The generalized robustness of entanglement �17� admits
two representations, one in terms of how robust the entangle-
ment of a state is against arbitrary noise and the other as a
witnessed entanglement. Let us present both definitions pre-
cisely.

Definition 1. The generalized robustness of entanglement
of a state � is given by

Rg��� = inf
��D

min�s:	��,�,s� � S� , �9�

where 	 denotes the state

	��,�,s� =
� + s�

1 + s
, �10�

D the set of all density operators, and S the set of separable
ones �with respect to the specific form of entanglement that
is considered�.

Definition 2. Rg��� is the witnessed entanglement EW���
when W is the set of witness operators satisfying W� I.

The equivalence of these definitions was proven in �8�.
We make use of both to show that for the N-qubit family of
states

�GHZN�
�� =
�0�

N
� + ei
�1�

N
�

�2
, �11�

the inequality �8� is saturated. Clearly, if one chooses an
arbitrary state � such that the state 	�� ,� ,s� is separable for
some value of s, this number s gives an upper bound for the
value of Rg���. On the other hand, taking an arbitrary en-
tanglement witness W for the state � satisfying the condition
W� I, −Tr�W�� gives a lower bound to Rg��� according to
�2�. We will now establish lower and upper bounds for
Rg(GHZN�
�) that turn out to be equal, getting the exact
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value of this quantity and also the value of k needed for the
bound �8�.

Upper bound. Consider, in Eq. �10�,

� = �GHZN�
��	GHZN�
�� �12�

and

� = �GHZN�
���	GHZN�
��� , �13�

where

�GHZN�
��� =
�0�

N
� − ei
�1�

N
�

�2
. �14�

Using the Peres criterion �28� we see that 	 has positive
partial transposition only for s=1. Moreover, for this point it
can be directly verified that 	 is also separable. So we get

Rg„GHZN�
�… � 1. �15�

Lower bound. The following operator is a genuine en-
tanglement witness for the state �GHZN�
�� �25,29�:

W = I − 2�GHZN�
��	GHZN�
�� , �16�

which clearly satisfies the condition W� I. Hence, definition
�2� leads to

− Tr�W�GHZN�
��	GHZN�
��� = 1 � Rg„GHZN�
�… .

�17�

As the upper bound �15� and lower bound �17� coincide, we
have that Rg(GHZN�
�)=1, and can also conclude that the

witness �16� satisfies the minimization problem in �2�. It then
allows us to extract the value k=1.

Putting all these facts together, we conclude that the in-
equality �8� saturates for the class of states �11�.

III. CONCLUSIONS

We extended the notion of entanglement of superpositions
to the multipartite scenario. An inequality relating the en-
tanglement of quantum states to the entanglement of the state
constructed through their superposition was found. This in-
equality was proven to be tight for a family of N-qubit states
and a choice of entanglement quantifier. Moreover, a large
class of entanglement quantifiers, with both operational and
geometrical meanings, was put in this context.

It is also worth noting that the inequalities derived here
can be extended for the case where more than two states are
superposed �30�. Future research could include the study of
other examples of states and quantifiers treated in our general
perspective.

ACKNOWLEDGMENTS

The authors thank F. Brandão for comments on this manu-
script. D.C. acknowledges hospitality at the University of
Leeds where part of this work was done. M.O.T.C. thanks
ICFO for hospitality, and also CNPq, PRPq-UFMG, and
Fapemig for funding. This work is supported by Brazilian
Millennium Project on Quantum Information, the EU Qubit
Applications Project �QAP� Contract No. 015848, the Span-
ish Projects No. FIS2004-05639-C02-02 and Consolider
QOIT, and the Generalitat de Catalunya.

�1� R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
e-print arXiv:quant-ph/0702225.

�2� N. Linden, S. Popescu, and J. A. Smolin, Phys. Rev. Lett. 97,
100502 �2006�.

�3� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-
cher, Phys. Rev. A 53, 2046 �1996�.

�4� W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
�5� C.-S. Yu, X. X. Yi, and H-S. Song, Phys. Rev. A 75, 022332

�2007�.
�6� J. Niset and N. J. Cerf,Phys. Rev. A 76, 042328 �2007�.
�7� Y.-C. Ou and H. Fan, Phys. Rev. A 76, 022320 �2007�.
�8� F. G. S. L. Brandão, Phys. Rev. A 72, 022310 �2005�.
�9� M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 �1996�.
�10� B. Terhal, Phys. Lett. A 271, 319 �2000�.
�11� We suppose ��� to have the kind of entanglement that Wopt

� is
constructed to witness. Remember that in the multipartite case
a state can show different kinds of entanglement, and possibly
the set W is tailored to witness one kind of entanglement,
while ��� can show other kinds of entanglement.

�12� As discussed in Ref. �8�, EW can be defined for both finite- and
infinite-dimensional systems. However, for infinite dimensions
finding the optimal witness for a general state is an unfeasible

problem, while in the finite case semidefinite programming
techniques can be employed for this end.

�13� J. Eisert, Ph.D. thesis, University of Potsdam, 2001, e-print
arXiv:quant-ph/0610253.

�14� G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 �2002�.
�15� G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 �1999�.
�16� A. W. Harrow and M. A. Nielsen, Phys. Rev. A 68, 012308

�2003�.
�17� M. Steiner, Phys. Rev. A 67, 054305 �2003�.
�18� M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 002261

�1998�.
�19� D. Cavalcanti and M. O. Terra Cunha, Appl. Phys. Lett. 89,

084102 �2006�.
�20� J. Eisert, F. G. S. L. Brandão, and K. M. R. Audenaert, New J.

Phys. 9, 46 �2007�.
�21� K. Audenaert, M. B. Plenio, and J. Eisert, Phys. Rev. Lett. 90,

027901 �2003�.
�22� F. G. S. L. Brandão, Phys. Rev. A 76, 030301�R� �2007�.
�23� M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Vir-

mani, Phys. Rev. Lett. 96, 040501 �2006�.
�24� R. A. Bertlmann, H. Narnhofer, and W. Thirring, Phys. Rev. A

66, 032319 �2002�.
�25� D. Cavalcanti, Phys. Rev. A 73, 044302 �2006�.
�26� M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys.

MULTIPARTITE ENTANGLEMENT OF SUPERPOSITIONS PHYSICAL REVIEW A 76, 042329 �2007�

042329-3



Rev. A 62, 052310 �2000�.
�27� Entanglement monotones are functionals that do not increase,

on average, under local operations and classical communica-
tions. This requirement is the basis for the construction of good
entanglement quantifiers; see G. Vidal, J. Mod. Opt. 47, 355
�2000�.

�28� A. Peres, Phys. Rev. Lett. 77, 1413 �1996�.
�29� T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307

�2003�.
�30� Y. Xiang, S.-J. Xiong, F.-Y. Hong, e-print arXiv:quant-ph/

0701188.

CAVALCANTI, TERRA CUNHA, AND ACÍN PHYSICAL REVIEW A 76, 042329 �2007�

042329-4


