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We show that a general linear transformation from one single photon qudit to another, the dimension of
which can be either equal or unequal to that of the first one, can be implemented by linear optics. As an
application of the scheme we elaborate a method to deterministically realize any finite-element positive
operator-valued measure on single photon signals, which is also generalizable to any quantum system in
principle.

DOI: 10.1103/PhysRevA.76.042326 PACS number�s�: 03.67.Lx, 42.50.Dv, 03.65.Ta

I. INTRODUCTION

Linear optics is considered as one of the promising can-
didates for quantum computing �for a recent overview see,
e.g., Ref. �1�� and can be also applied to many other areas
such as quantum cryptography �for a review see, e.g., Ref.
�2��. In these applications an essential technique is the imple-
mentation of all possible operations, including generalized
quantum measurements in the form of positive operator- val-
ued measures �POVMs�, on the signals encoded as photon
states by practical linear optics circuits.

A typical and important case of the signal states is single
photon qudits, i.e., the linear combinations of the modes
ak

†�0�, k=1, . . . ,N �multiple-rail encoding�. It was proposed
by Reck et al. �3� that any unitary operator U�U�N� on the
N-dimensional qudits, �i=1

N ciai
†�0�, can be realized by an

N-port interferometer, which is an array of beam splitters and
phase shifters performing SU�2� elements, because this uni-
tary operator can be decomposed into the product of these
SU�2� elements �see Fig. 1�. This scheme was further studied
in Ref. �4� and has been applied to a variety of research fields
in quantum information theory and experiment.

The generalization of the scheme is the implementation of
all possible linear maps on single photon qudits, which is a
fundamental task in processing quantum information. It is
intimately related to the realization of POVMs that are at the
heart of many quantum information processing protocols. A
finite-element POVM is a set of non-negative operators ��i	,
where �i are its elements, satisfing

�
i=1

n

�i = I , �1.1�

with I being the identity operator. It has been proved that any
rank-one POVM in the form of �i=ki

2��i�
�i�, where

�i �� j���ij and �ki � �1, can be realized by the Neumark
extension �5�, which extends the POVM elements to the or-
thogonal projectors in a larger space. For the input signals
prepared with single photons, such a POVM can be imple-
mented with linear optics circuits, performing unitary trans-

formations, and photon detectors only �6�. The realization of
POVMs with arbitrary rank is, however, much more difficult.
Since �i�0, it can be decomposed into �i=Ai

†Ai �7�. The
general POVM will be implemented if we simultaneously
realize the maps

�in → �out,i =
Ai�inAi

†

Tr�Ai�inAi
†�

, �1.2�

and successfully detect these outputs. The detection opera-
tors Ai �and their transforms by an arbitrary unitary operator
Ai�=UiAi� can be any allowed linear map in quantum me-
chanics with equal dimensional input and output signal
space, i.e., an N�N square matrix.

The detection operators of a POVM are, however, only a
special case of more general maps called quantum operations
�QOs�. A QO connects pairs of input and output states via the
map

�in → �out =
E��in�

Tr�E��in��
. �1.3�

E is a linear, trace-decreasing map that preserves the com-
plete positivity �CP�, and generally occurs with nonunit
probability Tr�E��in���1. The general form of E is given as
�8�
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FIG. 1. �Color online� The unitary transformation module con-
structed with beam splitters �dark rectangles� and phase shifters
�white recangles�. Any unitary operator U can be decomposed into
the product of SU�2� elements implemented by the beam splitters
and the phase shifters, and the maximum number of beam splitters
needed is N�N−1� /2. The input ports are with unprimed numbers
and output ports with primed numbers.
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E��in� = �
i

Ki�inKi
†, �1.4�

with the independent Kraus operators Ki satisfying the bound
�iKi

†Ki� I. If a QO transforms pure states to pure it is called
a pure map. In this case there is only one term K�inK

† in the
above equation with K being a contraction, i.e., �K � �1. For
an isolated pure state input �in= ��in�
�in� �9�, the QOs in Eq.
�1.3� can be therefore written in the form �10�

��in� → ��out� =
K��in�

�K��in��
. �1.5�

The output signal of such a linear map, with K as contrac-
tion, is detected with a probability 
�in�K†K��in��1. These
contractions can be more general than the detection operators
of a POVM because the input space dimension N1 and the
output space dimension N2 of K can be different, so K is an
N2�N1 matrix whose entries are complex numbers. The de-
tection operators Ai of a POVM correspond to a special case
of contractions when N1=N2�N.

II. IMPLEMENTATION OF NONUNITARY LINEAR MAPS

We now address the problem of how to realize any pos-
sible linear map K on single photon qudits with only three
unitary operator modules of the kind shown in Fig. 1. We
realize K by its unitary dilation U, the unitary operator con-
structed from K in a larger space, which we obtain by using
the direct sum extension of the system with an ancilla HS
� HA. In terms of Hilbert space dimensionality, this scheme
minimizes the physical resources needed to realize a QO
�11�. We embed the state vector �c1 ,c2 , . . . ,cN1

�T �T stands
for transpose� of the input signal ��in�=�i=1

N1 ciai
†�0�, into a

larger space and map it by U to a vector containing the state
vector of the output ��out�=�i=1

N2 ci�ai�
†�0� �unnormalized� of K:


c1�

]

cN2
�

]

� =
U1,1 U1,2 U1,3 ¯

U2,1 U2,2 U2,3 ¯

U3,1 U3,2 U3,3 ¯

] ] ] �

�
c1

]

cN1

]

0
� . �2.1�

It should be noted that we realize this unitary dilation always
with a vacuum state ancilla �0,0 ,¯ ,0�T added to the input
state vector as a direct sum. Next, we will derive the algo-
rithm to generate the unitary dilation U of linear map K.

K†K and KK† are positive matrices of N1�N1 and N2
�N2, respectively. Suppose N1�N2, we choose to diagonal-
ize KK† by a unitary operator U. We can also construct an
N1�N1 unitary matrix V to obtain the singular value decom-
position �SVD�, K=U	V†, with the uniquely determined sin-
gular values on the diagonal of the N2�N1 matrix 	. If N1

N2, on the other hand, we will choose to diagonalize K†K
to get a similar result.

Then we extend the rectangular matrix 	 to the following
max�N1 ,N2��max�N1 ,N2� square matrix:

	� =
��1�

�

��N2
�

1

�

1

� , �2.2�

where the singular values �i satisfy ��i � �1 since K is a
contraction. The extension of 	 in the case of N1
N2 also
takes the above form except that ��N2

� is replaced by ��N1
�.

Using the fact that 	� is still a contraction, we can obtain a
max�2N1 ,2N2��max�2N1 ,2N2� unitary dilation

G = � 	� �I − 	�2�1/2

�I − 	�2�1/2 − 	�
� �2.3�

of it �see, e.g., Ex. I.3.6 in Ref. �7��, which acts on a space
H � H with H being max�N1 ,N2� dimensional. We also ex-
tend U and V to max�2N1 ,2N2� by max�2N1 ,2N2� matrices
by adding the identity matrix I in the diagonal and zero ma-
trices off the diagonal. A general linear map K is therefore
realized by the following unitary dilation

U = UGV†. �2.4�

In our setup, we perform its equivalence by acting U† on
the spatial mode vector �a1

† , . . . ,aN1

† �. The circuits to imple-
ment V and U† are the corresponding N1-port and N2-port
modules. After the input spatial mode vector is processed
by V, we redirect the output to a max�2N1 ,2N2�-port module
of G with the input ports numbered from N1+1 to
max�2N1 ,2N2� in Fig. 1 black or a vacuum state. Here is
some detail about the step to implement 	 through its unitary
dilation G. Picking out the entries containing only one of the
singular values �i from the matrix of G, we form a 2�2
submatrix, which can be transformed by a rotation
Ti,i+max�N1,N2� to a diagonal one

� ��i� �1 − �i
2�1/2

�1 − �i
2�1/2 − ��i�

��cos �i − sin �i

sin �i cos �i
� = �1 0

0 − 1
� .

�2.5�

With a series of rotations in the form of Ti,i+max�N1,N2� � Irest,
for i=1, . . . ,min�N1 ,N2�, G can be realized by min�N1 ,N2�
beam splitters with the reflection coefficients R=1−�i

2 and
phase shifters giving rise to ei. Therefore, the upper bound
of the total number of the beam splitters required in the
scheme is

Nmax =
N1

2

2
+

N2
2

2
− �N1

2
−

N2

2
� , �2.6�

which is determined by the dimensions of the input and out-
put Hilbert spaces. In the whole extended space, we will
obtain two outputs after the action of the three unitary op-
erator modules: one is the exact output �a1�

† , . . . ,aN2
�†� of the

linear map K from the output ports of U†, and the other is an
extra output �aN2+1�† , . . . ,amax�2N1,2N2��† � from the output ports of
G numbered from �N2+1�� to �max�2N1 ,2N2���. Figure 2
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displays the scheme that realizes the effect of K on the input
state �in.

This linear optics scheme can be directly applied to where
we need nonunitary transformation on photon states, e.g., in
the production of single photon qudits in any form of
�iciai

†�0�, where �i�ci�2�1 �possibly unnormalized�, by
multiple-rail encoding, and in the enhancement of the en-
tanglement of a pair of partially entangled photons such as
�iciai

†�0�1ai
†�0�2, with different �ci� unequal, by one party op-

eration.

III. IMPLEMENTATION OF A GENERAL POVM

Now we look in some detail at the realization of POVMs
as one important application of our scheme. We start with the
simplest situation of n=2, where the two POVM elements
are always commutative, ��1 ,�2�=0. Suppose that the di-
mension of the signal space is N, and the N�N detection
operators Ai of the POVM can be factorized by SVD as Ai
=Vi	iUi with Ui, Vi unitary and 	i diagonal. We first set up
an N-port module for U1 and, after the signal leaving the U1
module, we process it with a 2N-port module to implement
the unitary dilation of 	1. From its output ports numbered
from 1� to N� we get an output ��mid

1 ��	1U1��in�, while
from the ports numbered from �N+1�� to 2N� another output
��mid

2 ��	1CU1��in�, with 	1C
2 = I−	1

2. Then we will just redi-
rect them to modules of V1 and V2 and finally obtain the
outputs A1��in� / �A1��in�� or A2��in� / �A2��in�� from the corre-
sponding terminals.

For a POVM with the number of elements n�3, the situ-
ation is much trickier. Instead of �2, what we realize from
the corresponding output ports of ��mid

2 � is the operator I
−�1. By the diagonalization, all elements of a general
POVM can be factorized into �i=Ui

†	i
2Ui, where the differ-

ent Ui do not generally commute, i.e., �Ui ,Uj��0 for i� j.
In the realization of �2, therefore, we need to consider two
different situations: �1� If ��1�
1 �12�, because I−�1
��2 when n�3, we can find a diagonal matrix 	2

* with
�	2

*��1 �13� and a unitary operator U2L such that

�2 = U1
†	1CU2L

† 	2
*2U2L	1CU1 = U2

†	2
2U2. �3.1�

These two matrices 	2
* and U2L are obtained by a standard

diagonalization procedure following the above equation.

Then, after performing U2L with an N-port module, 	2
* as a

contraction map can be implemented by a 2N-port linear
optics module with at most N beam splitters. To realize A2
completely, we add one more module of a proper V2. �2� If
��1�=1, after the signal goes through the part of the circuit
implementing I−�1, some of the output ports will be black
because the corresponding components have been projected
out by �1 �14�. Then we will just inverse the remaining �N
−D�� �N−D� nonzero part of the 	1C matrix, where D is the
multiplicity of the unit eigenvalue of �1, in finding U2L and
	2

* of this size in Eq. �3.1�.
Repeating the above procedure from the output ports

where the operator I−�1−�2 is realized, we add all the
corresponding modules performing UnL, 	n

*, etc., for n�3, to
implement the remaining A3, A4 , . . ., An, respectively. The
total number of modules of Fig. 1 needed in our scheme to
realize a general POVM with n elements is 3n−2. As an
illustration of this general scheme, Fig. 3 shows the setup to
perform any POVM with three elements.

We have reduced the problem of realizing a POVM to that
of finding a sequence of unitary operators with the POVM
elements and realizing them with the ancilla states of
vacuum and then detecting the outputs with the standard pro-
jective measurements on the extended space. The algorithm
to obtain these unitary operators is given, and the implemen-
tation of any POVM, with elements of arbitrary rank, can be
therefore realized for single photon input signals. Using this
method, we will directly obtain the output states of a POVM,
which can be tailored by choosing the appropriate Vi mod-
ules, from the corresponding terminals where the signal de-
tectors are placed. If our signals are just single photon polar-
ization qubits, ��in�=c1�H�+c2�V� �polarization modes H and
V�, we can use much a simpler circuit to implement any
POVM on them as in Ref. �15�, where a POVM is realized as
the decomposition of an identity operator but the necessary
algorithm to obtain, e.g., 	n

*, UnL for the implementation of
all specified �i is not given. Given the beyond-linear-optics
methods to implement unitary operations on more compli-
cated quantum systems than single photon states, this scheme

FIG. 2. The circuit to perform the unitary dilation U of K, the
general linear transformation on a pure state input �in= ��in�
�in�.
We will obtain two outputs, �out= ��out�
�out� of K and an extra
�ex= ��ex�
�ex�, from the corresponding terminals. Because the lin-
ear map K is not generally inversable, we need to add an ancilla
��ex� to ��out�, i.e., ��in� �= ��out� � ��ex�, if we are to convert it back
to the original ��in� by using the same circuit from the inverse
direction.

FIG. 3. The setup to perform any POVM with three elements.
The seven unitary operator modules, two of which perform the pairs
of operators 	1 and 	1C= �I−	1

2�1/2, 	2
* and 	2C

* = �I−	2
*2�1/2, re-

spectively, are designed with the POVM elements. The detectors
at the terminals effect a dephasing to eliminate the interference
between Ai��in� �16�, and capture the outputs �out,i

=Ai�inAi
† /Tr�Ai�inAi

†�, for i=1,2 ,3, with the probabilities pi

=Tr�Ai�inAi
†�. The outputs redirected to only one set of detectors

form a probability distribution as the mixture �18�, �ipi�out,i

=�iAi�inAi
†, there.
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can be applied to more general situations of photonic states
as well as the signals of any other type of radiation.

IV. IMPLEMENTATION OF A GENERAL QUANTUM
OPERATION OR CP MAP

In the whole extended output space HT, the overall output
of the unitary map U implemented by the POVM circuit
is ��out� �= (�A1��in��T , . . . , �An��in��T)T. Applying a proper
dephasing map �16� to this output as D��out� �, we will obtain
a direct sum of Ai�inAi

† in HT, which can be transformed by
a contraction map L �17� to W��in�= ��i=1

n Ai�inAi
†� /n in one

subspace of HT. The other n−1 pieces of such outputs will
be obtained in some other subspaces if we extend L to a
unitary operator. The output state of the total map W in
one of the subspaces, normalized as in Eq. �1.3�, is �out
=�iAi�inAi

† of a QO mapping ��in� from a pure to mixed
state. A general QO can be therefore realized by a corre-
sponding combined map W. To a single set of detectors that

effect a dephasing map by detecting Ai��in� coming from
different terminals, what is being measured is effectively the
output of a general QO �see the caption of Fig. 3�.

V. CONCLUSION

In summary, we have presented the linear optics schemes
�including the photon detection� to realize all QOs and
POVMs on a single photon qudit. The circuits to perform all
the relevant tasks are only the combinations of some scalable
unitary operator modules which have been widely applied in
quantum information processing. Given current technologies,
our schemes can realize all linear transformations and
POVMs on single photon signals in a deterministic way.
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