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Short dephasing times pose one of the main challenges in realizing a quantum computer. Different ap-
proaches have been devised to cure this problem for superconducting qubits, a prime example being the
operation of such devices at optimal working points, so-called “sweet spots.” This latter approach led to
significant improvement of T2 times in Cooper pair box qubits �D. Vion et al., Science 296, 886 �2002��. Here,
we introduce a new type of superconducting qubit called the “transmon.” Unlike the charge qubit, the transmon
is designed to operate in a regime of significantly increased ratio of Josephson energy and charging energy
EJ /EC. The transmon benefits from the fact that its charge dispersion decreases exponentially with EJ /EC,
while its loss in anharmonicity is described by a weak power law. As a result, we predict a drastic reduction in
sensitivity to charge noise relative to the Cooper pair box and an increase in the qubit-photon coupling, while
maintaining sufficient anharmonicity for selective qubit control. Our detailed analysis of the full system shows
that this gain is not compromised by increased noise in other known channels.
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I. INTRODUCTION

Quantum information processing has emerged as a rich,
exciting field due to both its potential applications in cryp-
tography �1� and computational speedup �2–4� and its value
in designing quantum systems that can be used to study fun-
damental physics in previously inaccessible regimes of pa-
rameter space. A promising physical paradigm for quantum
computers is the superconducting Josephson junction qubit
�5–7�, which is classified into three types according to their
relevant degree of freedom: charge �8,9�, flux �10,11�, and
phase �12�. These systems have potentially excellent scal-
ability thanks to well-established fabrication techniques such
as photo and electron-beam lithography. Unfortunately, su-
perconducting qubits currently have coherence times which
are not yet sufficient for error correction and scalable quan-
tum computation.

There are several different strategies for enhancing the
dephasing times in superconducting qubits. One approach
�13� is to improve the properties of junctions and materials to
eliminate excess sources of 1 / f noise, whose origin remains
unclear so far. This is a difficult and costly process, but it is
likely to benefit a wide range of qubit designs when it is
successful. A second approach is the elimination of linear
noise sensitivity by operating qubits at optimal working
points. So-called “sweet-spot” operation has already demon-
strated �14� an increase in dephasing times over previous
experiments �9� which could be as large as three orders of
magnitude, and illustrates that simple tailoring of quantum
circuit design can boost qubit performance. In the long run, a
combination of both strategies will probably be necessary to
realize a scalable design for superconducting quantum com-
puting.

In this paper, we follow the second approach and propose
a new superconducting qubit: a transmission-line shunted
plasma oscillation qubit, which we call the transmon. In its

design, it is closely related to the Cooper pair box �CPB�
qubit in Ref. �8�. However, the transmon is operated at a
significantly different ratio of Josephson energy to charging
energy. This design choice, as we will show, should lead to
dramatically improved dephasing times.

Two quantities crucial to the operation of a CPB are the
anharmonicity and the charge dispersion of the energy levels.
A sufficiently large anharmonicity is needed to prevent qubit
operations from exciting other transitions in the system. The
charge dispersion describes the variation of the energy levels
with respect to environmental offset charge and gate voltage,
and determines the sensitivity of the CPB to charge noise:
the smaller the charge dispersion, the less the qubit fre-
quency will change in response to gate charge fluctuations.
The magnitudes of charge dispersion and anharmonicity are
both determined by the ratio of the Josephson energy to the
charging energy EJ /EC. Increasing this ratio reduces the
�relative� energy level anharmonicity �which limits the speed
of qubit operations�. However, it also decreases the overall
charge dispersion and thus the sensitivity of the box to
charge noise. This reduction is important, since even with
operation at the first-order insensitive sweet spot, the Cooper
pair box can be limited by higher-order effects of the 1/ f
charge noise �15�, and by the problem of quasiparticle poi-
soning, which can both shift the box from its optimal point.

The transmon exploits a remarkable fact: the charge dis-
persion reduces exponentially in EJ /EC, while the anharmo-
nicity only decreases algebraically with a slow power law in
EJ /EC �16�. Consequently, by operating the transmon at a
much larger EJ /EC ratio than the CPB, one can greatly re-
duce charge noise sensitivity in the qubit while only sacrific-
ing a small amount of anharmonicity. In fact, the charge
dispersion can be so strongly suppressed that the qubit be-
comes practically insensitive to charge. This eliminates the
need for individual electrostatic gates and tuning to a charge
sweet spot, and avoids the susceptibility to quasiparticle poi-
soning, which both benefit the scaling to larger numbers of
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qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. �17�.
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. �5–7� for recent reviews. The device presented in Ref.
�17� operated at an energy ratio of EJ /EC�2�104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained �and further im-
proved� in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
�18�.

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics �circuit-QED� physics �19�
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation �T1� and dephasing �T2� times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB �see, e.g., Ref.
�6��, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max �cos��� /�0�� by
means of an external magnetic flux �. For simplicity, we
initially assume that both junctions are identical. �The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.� Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system �20�,

Ĥ = 4EC�n̂ − ng�2 − EJ cos �̂ . �2.1�

It describes the effective circuit of Fig. 1�a� in the absence of
coupling to the transmission line �i.e., disregarding the reso-
nator mode modeled by Lr and Cr�, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and �̂ denote the num-

FIG. 1. �Color online� �a� Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions �with capacitance and Jo-
sephson energy CJ and EJ� are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
�b� Simplified schematic of the transmon device design �not to
scale�, which consists of a traditional split Cooper pair box, shunted
by a short �L�� /20� section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB�
and hence in the effective capacitances CB and Cg in the circuit.
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ber of Cooper pairs transferred between the islands and the
gauge-invariant phase difference between the superconduct-
ors, respectively. By means of the additional capacitance CB,
the charging energy EC=e2 /2C� �C�=CJ+CB+Cg� can be
made small compared to the Josephson energy. In contrast to
the CPB, the transmon is operated in the regime EJ�EC.

The qubit Hamiltonian, Eq. �2.1�, can be solved exactly in
the phase basis in terms of Mathieu functions, see, e.g., Refs.
�6,16�. The eigenenergies are given by

Em�ng� = EC a2�ng+k�m,ng���− EJ/2EC� , �2.2�

where a	�q� denotes Mathieu’s characteristic value, and
k�m ,ng� is a function appropriately sorting the eigenvalues;
see Appendix B for details. Plots for the lowest three energy
levels E0, E1, and E2, as a function of the effective offset
charge ng, are shown in Fig. 2 for several values of EJ /EC.
One clearly observes �i� that the level anharmonicity depends
on EJ /EC, and �ii� that the total charge dispersion decreases
very rapidly with EJ /EC. Both factors �i� and �ii� influence
the operation of the system as a qubit. The charge dispersion
immediately translates into the sensitivity of the system with
respect to charge noise. A sufficiently large anharmonicity is
required for selective control of the transitions, and the ef-
fective separation of the Hilbert space into the relevant qubit
part and the rest, H=Hq � Hrest. In the following sections,
we systematically investigate these two factors and show that
there exists an optimal range of the ratio EJ /EC with suffi-
cient anharmonicity and charge noise sensitivity drastically
reduced when compared to the conventional CPB.

B. The charge dispersion of the transmon

The sensitivity of a qubit to noise can often be optimized
by operating the system at specific points in parameter space.

An example for this type of setup is the “sweet spot” ex-
ploited in CPBs �21�. In this case, the sensitivity to charge
noise is reduced by biasing the system to the charge-
degeneracy point ng=1/2, see Fig. 2�a�. Since the charge
dispersion has no slope there, linear noise contributions can-
not change the qubit transition frequency. With this proce-
dure, the unfavorable sensitivity of CPBs to charge noise can
be improved significantly, potentially raising T2 times from
the nanosecond to the microsecond range. Unfortunately, the
long-time stability of CPBs at the sweet spot still suffers
from large fluctuations which drive the system out of the
sweet spot and necessitate a resetting of the gate voltage.

Here, we show that an increase of the ratio EJ /EC leads to
an exponential decrease of the charge dispersion and thus a
qubit transition frequency that is extremely stable with re-
spect to charge noise; see Fig. 2�d�. In fact, with sufficiently
large EJ /EC, it is possible to perform experiments without
any feedback mechanism locking the system to the charge
degeneracy point. In two recent experiments using transmon
qubits, very good charge stability has been observed in the
absence of gate tuning �22,23�.

Away from the degeneracy point, charge noise yields
first-order corrections to the energy levels of the transmon
and the sensitivity of the device to fluctuations of ng is di-
rectly related to the differential charge dispersion �Eij /�ng,
as we will show in detail below. Here Eij �Ej −Ei denotes
the energy separation between the levels i and j. As expected
from a tight-binding treatment, the dispersion relation Em�ng�
is well approximated by a cosine in the limit of large EJ /EC,

Em�ng� � Em�ng = 1/4� −

m

2
cos�2�ng� , �2.3�

where


m � Em�ng = 1/2� − Em�ng = 0� �2.4�

gives the peak-to-peak value for the charge dispersion of the
mth energy level. To extract 
m, we start from the exact ex-
pression �2.2� for the eigenenergies and study the limit of
large Josephson energies. The asymptotics of the Mathieu
characteristic values can be obtained by semiclassical
�WKB� methods �see, e.g., Refs. �24–26��. The resulting
charge dispersion is given by


m � �− 1�mEC
24m+5

m!
	 2

�

 EJ

2EC
�m

2
+ 3

4
e−	8EJ/EC, �2.5�

valid for EJ /EC�1. The crucial point of this result is the
exponential decrease of the charge dispersion with 	EJ /EC.

The physics behind this feature can be understood by
mapping the transmon system to a charged quantum rotor,
see Fig. 3. We consider a mass m attached to a stiff, massless
rod of length l, fixed to the coordinate origin by a frictionless
pivot bearing. Using cylindrical coordinates �r ,� ,z�, the mo-
tion of the mass is restricted to a circle in the z=0 plane with
the polar angle � completely specifying its position. The
rotor is subject to a strong homogeneous gravitational field
g=gex in x direction, giving rise to a potential energy
V=−mgl cos �. The kinetic energy of the rotor can be ex-
pressed in terms of its angular momentum along the z axis,

FIG. 2. �Color online� Eigenenergies Em �first three levels, m
=0,1 ,2� of the qubit Hamiltonian �2.1� as a function of the effec-
tive offset charge ng for different ratios EJ /EC. Energies are given
in units of the transition energy E01, evaluated at the degeneracy
point ng=1/2. The zero point of energy is chosen as the bottom of
the m=0 level. The vertical dashed lines in �a� mark the charge
sweet spots at half-integer ng.
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L̂z= �r�p� ·ez=−i� �
�� , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos � . �2.6�

Identifying the �integer-valued� number operator for Cooper

pairs with the angular momentum of the rotor, n̂↔ L̂z /�, and
relating EJ↔mgl, EC↔ ��2 /8ml2�, one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0�−y ,x ,0� /2 �symmetric gauge� and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, �2.7�

one finds that the offset charge ng can be identified with
qB0l2 /2�. This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
�and CPB� the island charge is well defined so that n̂ has
discrete eigenvalues and � is a compact variable leading to
����=���+2��. In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” � and �+2� are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., �27�, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around �=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation �Duffing oscillator�. �This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections.� However, the charge dispersion 
m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach �at any finite order� the � periodicity is lost
and the angular variable becomes noncompact, −
 ���
.
Now, in the absence of the boundary condition ���+2��
=���� the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2� rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4�a�. The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
�2.5� constitutes a very good approximation when EJ /EC
�20. Asymptotically, the differential charge dispersion
�E01/�ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. �2.3� and �2.5� we have

FIG. 3. �Color online� �a� Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field �ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of �=0. Only tunneling events
between adjacent cosine wells �i.e., a full 2� rotor movement� will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. �b� Cosine potential
�black solid line� with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. �Color online� Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
�a� Charge dispersion �
m� as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. �2.5�. The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. �b�
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression �2.11�. The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.
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�E01

�ng
� �
1 sin�2�ng� . �2.8�

As a result, the maxima of ��E01/�ng� for EJ /EC=20, 50, and
100 are 7.3�10−2EC, 1.5�10−4EC, and 8.9�10−8EC, re-
spectively. These values should be contrasted with typical
values of conventional CPBs operating in the limit of
EJ /EC�1 at the sweet spot ng=1/2. In that case, the charge
dispersion relation can be approximated by

E01 = 	�4EC�2ng − 1��2 + EJ
2. �2.9�

At the sweet spot, the system is only sensitive to second-
order noise, related to the curvature �2E01/�ng

2 of the charge
dispersion. This is given by �8EC�2 /EJ, which for EJ /EC=1
and 0.1 leads to a curvature of 64EC and 640EC, respectively.
A comparison of these numbers demonstrates the remarkable
robustness of the transmon to charge noise. In Sec. V, we
will return to this point and translate our results into an es-
timate for the charge-noise-induced dephasing time. As we
will see, the transmon’s dephasing time due to charge noise
is exponentially increased in the parameter EJ /EC. Another
consequence of the drastically reduced charge sensitivity is
that measurements of the island charge, see, e.g., �28,29�,
cannot be employed to discriminate the qubit states. Even
more, Eq. �2.3� implies that all higher derivatives of the
eigenenergies with respect to offset charge become exponen-
tially small. Thus, more general concepts such as the quan-
tum capacitance Cq��Ei

2 /�ng
2 �30�, which works well at the

CPB sweet spot, will fail. This simply reflects the fact that
the inability of charge noise to “measure” the qubit state and
hence dephase it also means that a charge-based qubit read-
out becomes impossible. Instead, we propose a dispersive
readout via the cavity which we discuss in Sec. III B.

C. Anharmonicity of the transmon

The impressive gain in charge-noise insensitivity by in-
creasing EJ /EC must be paid by a loss in anharmonicity.
Sufficient anharmonicity is required to reduce the many-level
system to a qubit, which ultimately sets a lower bound on the
duration of control pulses. In the following we show that, in
contrast to the charge dispersion, the anharmonicity only de-
creases with a weak power law. Therefore, we can find an
EJ /EC range with significantly improved charge-noise insen-
sitivity compared to the CPB as well as a sufficiently large
anharmonicity. We define the absolute and relative anharmo-
nicity by

� � E12 − E01, �r � �/E01. �2.10�

Combining Eqs. �2.2� and �2.10�, one concludes that the rela-
tive anharmonicity only depends on the effective offset
charge and the energy ratio EJ /EC. In the following, we in-
vestigate the anharmonicity evaluated at the charge-
degeneracy point ng=1/2, so that we can track the full cross-
over from the regular CPB regime �operating at the sweet
spot� to the transmon regime �31�. As shown in Fig. 5�a�, �r
then scales as 9�EJ /EC�−1 in the small EJ /EC limit. For
EJ /EC�9, it changes sign, indicating that for larger energy
ratios the transition energy E12 becomes smaller than E01.

The relative anharmonicity exhibits a shallow local mini-
mum around EJ /EC�17.5 and asymptotically approaches
zero for EJ /EC→
.

The scaling in this limit can be understood in terms of
perturbation theory in �EJ /EC�−1�1 �32�. Expanding the co-
sine in Eq. �2.1� around �=0 up to fourth order, and treating
the resulting quartic term in leading order perturbation
theory, one obtains the following approximation for the
eigenenergies �see Appendix C for details�:

Em � − EJ + 	8ECEJ
m +
1

2
� −

EC

12
�6m2 + 6m + 3� ,

�2.11�

where �p=	8ECEJ /� is also known as the Josephson plasma
frequency. A comparison of this approximation to the nu-
merically exact result is shown in Fig. 4�b�. The resulting
asymptotic expressions for the absolute and relative anhar-
monicity are

� � − EC, �r � − �8EJ/EC�−1/2, �2.12�

depicted in Figs. 5�a� and 5�b� �33�.
With these relations and assuming that the transition fre-

quency has a value of �01/2��10 GHz typical for experi-
ments �34�, we can estimate the optimal EJ /EC range. The
resulting absolute anharmonicity is given by �=��01�r.
From the frequency spread of a transform-limited pulse, we
can estimate the corresponding minimum pulse duration to
be �p���01�r�−1. For coherent control of the system, the

FIG. 5. �Color online� Relative �a� and absolute �b� anharmonic-
ity at the degeneracy point as a function of the ratio EJ /EC. The
solid curves show the exact results from Eq. �2.2�, the dashed
curves depict the perturbative result from Eq. �2.12�. �c� Minimum
pulse duration �p �blue �gray� line� and dephasing time due to
charge fluctuations T2 �black line, Eq. �5.9�� as a function of EJ /EC.
�Arrows indicate the corresponding axis.� Starting in the charge
regime, an increase of the EJ /EC ratio initially leads to a strong
increase in the minimum pulse duration, which diverges when the
anharmonicity � crosses zero �“anharmonicity barrier”�. Above the
barrier, the operation time scales with a weak power law
��EJ /EC�1/2. At the same time, the inverse charge dispersion deter-
mining the dephasing time due to charge noise increases exponen-
tially in �EJ /EC�1/2.
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pulse duration must remain small compared to T1 and T2. If
the total dephasing times for the transmon were of the order
of a few hundreds of nanoseconds as in recent experiments
on CPBs �34�, reasonable pulse durations would be in the
range of several tens of nanoseconds. It is interesting to note
that significantly shorter microwave pulses are difficult to
achieve, so that the large anharmonicity in CPBs cannot ac-
tually be exploited fully. Using a typical pulse length of
10 ns, we require a minimum anharmonicity of

��r
min� � ��p�01�−1 � �10 ns � 2� � 10 GHz�−1 = 1/200� .

�2.13�

Employing Eq. �2.12�, we find that the energy ratio should
satisfy 20�EJ /EC�5�104, opening up a large range with
exponentially decreased sensitivity to charge noise and yet
sufficiently large anharmonicity for qubit operations. In other
words, the transmon regime is reached without paying any
serious penalty, and pulse generation techniques common for
CPB qubits can directly be transferred to the transmon qubit.
This is further illustrated in Fig. 5�c�, where the inverse
charge dispersion �determining T2 due to charge noise, see
Sec. V� and the minimum pulse duration �p are plotted. As
discussed in detail in Sec. V below, dephasing times for the
transmon are expected to be significantly larger as compared
to CPBs. With the projected dephasing times of the order of
20 �s �most likely limited by critical current noise�, pulse
durations much longer than 10 ns could be used, making
accessible even larger EJ /EC values and greater charge-noise
insensitivity.

We emphasize that our considerations regarding �p pro-
vide a rough and simple order-of-magnitude estimate for the
practical EJ /EC range. A more detailed analysis will also
have to take into account exact pulse durations and shapes
�35,36�.

D. Comparison: transmon and phase qubit

There exist some remarkable similarities between the
transmon and typical phase qubits: both operate at EJ /EC�1
�transmon, �102; phase qubit, �104 �12,17��, so that their
relevant energy scale is given to a good approximation by the
plasma oscillation frequency, and both are well protected
against charge noise. Given these similarities and based on
the phase-number uncertainty �37�, one might wonder
whether the transmon is in fact more closely related to the
phase qubit than to the CPB. We now show that this is not
the case.

Structurally, the Hamiltonians of the CPB and the trans-
mon are identical, see Eq. �2.1�. For both the CPB and the
transmon the number operator counting the charge trans-
ferred across the junction is well defined and the phase is
compact, i.e., the phase is restricted to the interval 0��
�2�. Increasing the parameter EJ /EC smoothly maps the
CPB into the transmon. By contrast, in the case of a phase
qubit there is a dc connection between the two sides of the
Josephson junction permitting a current �or equivalently flux�
bias, and making the states with phases � and �+2� physi-
cally distinct. This topological difference makes it impos-
sible to establish a continuous mapping between the trans-

mon and the phase qubit via adiabatic changes of EJ /EC.
We emphasize that the relationship between transmon and

Cooper pair box does not imply that the eigenstates of the
transmon are pure charge states. This is illustrated in Fig.
6�a�, where the overlap of the transmon eigenstates with pure
charge states is shown. For increasing EJ /EC, the transmon
eigenstates spread over an increasing number of charge
states. However, as derived in Appendix C and depicted in
Fig. 6�b�, the charge fluctuations only grow slowly as

	
n̂2�m − 
n̂�m
2 � 
m +

1

2
�1/2
 EJ

8EC
�1/4

, �2.14�

valid in the large EJ /EC limit. As an example, for EJ /EC
=100 the number of Cooper pairs only fluctuates by approxi-
mately 1 and 2 in the ground and first excited state. In con-
clusion, the transmon is a CPB operated in the EJ /EC�1
regime with charge fluctions of the order of unity.

E. Split transmon: The flux degree of freedom and junction
asymmetry

In the preceding sections, we have ignored the fact that
the proposed transmon design in fact involves two Josephson
junctions. Strictly speaking, this is only appropriate if the
two junctions are identical �i.e., they feature the same Jo-
sephson coupling energy EJ1=EJ2�. In that case the contribu-
tions simply add and our previous treatment is valid. How-
ever, with current junction fabrication techniques, junction
parameters vary and typically lead to junction asymmetries
up to d�

EJ2−EJ1

EJ1+EJ2
� ±10%. In the following, we discuss the

FIG. 6. �Color online� Solutions to the qubit Hamiltonian �2.1�
in the charge basis. Panel �a� shows plots of the probabilities
�
n ��m��2 for the presence of n Cooper pairs when residing in the
transmon eigenstates m=0 and 1 for three different EJ /EC ratios
�ng=1/2�. In the limit EJ /EC�1, the solutions converge to �a dis-
cretized version of the� harmonic oscillator wave functions with
increasing width. �b� Fluctuations of the number of Cooper pairs n
as a function of EJ /EC for the first three transmon levels. Solid lines
show numerically exact results, dashed lines correspond to the
asymptotic solution �2.14�. The Cooper pair number in the ground
state �first excited state� fluctuates by approximately 1 �2� for an
EJ /EC ratio of 100.
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effects of this asymmetry, which are also known in the con-
text of CPBs; see, e.g., �14�.

The case of asymmetric junctions is described by replac-
ing the cosine term in the Hamiltonian �2.1� by the Joseph-
son Hamiltonian

ĤJ = − EJ1 cos �̂1 − EJ2 cos �̂2, �2.15�

where �1,2 now describe the individual superconducting
phase differences across the junctions 1 and 2; see, e.g., �27�.
The usual argument of flux quantization then leads to the
condition

�1 − �2 = 2�n + 2��/�0, �2.16�

with integer n, and �, �0=h /2e denoting the magnetic flux
through the SQUID-like ring and the superconducting flux
quantum, respectively. Defining the effective phase differ-
ence of the device as �= ��1+�2� /2 and EJ�=EJ1+EJ2, the
Josephson Hamiltonian may be rewritten as

ĤJ = − EJ��cos���/�0�cos �̂ + d sin���/�0�sin �̂�

= − EJ� cos
��

�0
�	1 + d2 tan2
��

�0
�cos��̂ − �0� ,

�2.17�

where the phase �0 is determined by tan �0=d tan��� /�0�.
For constant magnetic flux, this phase can be eliminated by a
shift of variables. As a result, our previous results for the
symmetric transmon �d=0� translate to the general case by
substituting the Josephson energy by

EJ → EJ� cos
��

�0
�	1 + d2 tan2
��

�0
� . �2.18�

Interestingly, for asymmetric junctions the flux dependence
of �0 may allow for additional qubit control, not involving
the resonator, by applying ac magnetic fields. As with all
extra control channels, junction asymmetry leads to an addi-
tional qubit decay channel from flux fluctuations, which we
will discuss in Sec. IV.

III. CIRCUIT QED FOR THE TRANSMON

In close analogy to the situation of the CPB, embedding
the transmon in a superconducting transmission line resona-
tor opens up the possibility of control and readout of the
qubit state—a scenario that has been termed circuit QED
�19,34�. We start from the quantum-circuit Hamiltonian for a
transmon attached to a superconducting transmission line,
depicted in Fig. 1�a�. With the Josephson junctions centered
in the transmission line, the relevant resonator mode is the
�=2 mode �voltage antinode at the center of the resonator�,
and it can be described by a simple LC oscillator �19�. In the
realistic limit of large resonator capacitance Cr�C�, the
quantization of the circuit results in the effective Hamil-
tonian

Ĥ = 4EC�n̂ − ng�2 − EJ cos �̂ + ��râ
†â + 2�eVrms

0 n̂�â + â†� ,

�3.1�

see Appendix A for the detailed derivation. Here, �r

=1/	LrCr denotes the resonator frequency, and â �â†� anni-
hilates �creates� one photon in the transmission line. The
root-mean-square voltage of the local oscillator is denoted by
Vrms

0 =	��r /2Cr. The parameter � is defined as the ratio of
the gate capacitance and the total capacitance, �=Cg /C�.

Rewriting the Hamiltonian in the basis of the uncoupled
transmon states �i�, one obtains the generalized Jaynes-
Cummings Hamiltonian

Ĥ = ��
j

� j�j�
j� + ��râ
†â + ��

i,j
gij�i�
j��â + â†� , �3.2�

with coupling energies

�gij = 2�eVrms
0 
i�n̂�j� = �gji

* . �3.3�

The general expression �3.2� can be significantly simplified
by examining the matrix elements 
i � n̂ � j�, and invoking the
rotating wave approximation. First, note that the asymptotic
behavior of the matrix elements can be evaluated within the
perturbative approach introduced in Sec. II C and detailed in
Appendix C. Asymptotically, the number operator assumes

the form n̂=−i�EJ /8EC�1/4�b̂− b̂†� /	2, so that

�
j + 1�n̂�j�� �	 j + 1

2

 EJ

8EC
�1/4

, �3.4�

�
j + k�n̂�j�� →
EJ/EC→


0 �3.5�

with �k � �1, and b̂, b̂† denoting the annihilation and creation
operator for the harmonic oscillator approximating the trans-
mon. It is interesting to note that off-diagonal matrix ele-
ments with an even difference k between states fall off ex-
ponentially, which can be understood from the point of view
of the parity of the states, as well as from the fact that the

leading anharmonic perturbation �b̂+ b̂†�4 does not mix even
and odd states. By contrast, matrix elements with odd k�1
show a slower power-law-type decay as EJ /EC→
. This is
illustrated in Fig. 7�a�. From Eqs. �3.4� and �3.5� we con-
clude that nearest-neighbor coupling gi,i±1 constitutes the
only relevant coupling in the large EJ /EC limit.

Finally, employing the rotating wave approximation to
eliminate terms describing the simultaneous excitation �de-
excitation� of both the transmon and the resonator, we arrive
at the effective generalized Jaynes-Cummings Hamiltonian

Ĥ = ��
j

� j�j�
j� + ��râ
†â + 
��

i

gi,i+1�i�
i + 1�â† + H.c.� .

�3.6�

We remark that in contrast to the regular Jaynes-Cummings
Hamiltonian, this generalized version does not allow for an
exact analytical solution. The Hamiltonian remains block di-
agonal. However, due to the presence of many transmon lev-
els and nearest-neighbor coupling, the tridiagonal blocks
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grow in size, and the solution of the general case requires
numerical methods. The dispersive limit allows for analytical
solutions as we show in Sec. III B.

A. The coupling strength of the transmon

Despite the exponentially decreasing charge dispersion
for large EJ /EC, the coupling between cavity and transmon,
expressed by the coupling energies �gij, does not become
small but in fact even increases. This is a central message of
this paper, and it is crucial for utilizing the transmon system
as an actual qubit.

Mathematically, the couplings gij are determined by a
prefactor containing the capacitance ratio �, the rms voltage
of the local oscillator Vrms

0 , and by a matrix element of the
number operator for Cooper pairs, which depends on the
energy ratio EJ /EC. It is interesting to note that there is a
fundamental upper bound to the magnitude of the prefactor.
To see this, we rewrite

2�eVrms
0

��r
= 4�	�


r
, �3.7�

where we have used the relation Cr=
r� /2�rZ0 valid for a
half-wave transmission line resonator, and �=e2 /4�
0�c de-
notes the fine structure constant. For realistic values of the
effective dielectric constant, this limits the relative coupling
to about 10% of the resonator frequency �r.

While the magnitude of the prefactor is limited, the rel-
evant matrix elements between neighboring transmon states
exhibit an approximate power-law increase as a function of
EJ /EC, as depicted in Fig. 7. As a result of Eq. �3.4�, the

couplings gi,i+1 asymptotically increase as �EJ /EC�1/4 �40�.
Comparing this with Eq. �2.14�, we find that the increase of
gi,i+1 can be directly related to the increase of the charge
number fluctuations. We emphasize that the parameters �
and EJ /EC can be tuned separately; � is essentially deter-
mined by the geometry of the device, while EJ /EC can be
tuned in situ by the external magnetic flux up to a maximum
value fixed by the device design.

This result is quite remarkable. While the sensitivity of
the transmon spectrum to the dc component of ng decreases
exponentially, the ac response to the oscillating cavity field
increases in a power-law fashion. In other words, the charge
dispersion and the magnitude of ac coupling are completely
disparate. We can illustrate the fundamental difference be-
tween dc and ac response by the following intuitive picture,
see Fig. 8 �38�. For large EJ /EC, the transmon can be inter-
preted as a harmonic oscillator in the charge basis, with its
quadratic potential centered at n=ng. Charge noise typically
occurs at low frequencies so that it can be treated as an
adiabatic displacement of the oscillator potential �dc re-
sponse�. In the general case, this leads to adiabatic changes
of the qubit frequency and hence dephasing. However, for a
harmonic oscillator the frequency remains unchanged, de-
spite the significant change of the oscillator state under dis-
placement. Thus, the charge dispersion vanishes, and dephas-
ing is exactly eliminated. Remarkably, the transmon
approaches this ideal point while retaining sufficient anhar-
monicity. On the other hand, the question of ac response
corresponds to driving the oscillator at its resonance fre-
quency. Classically, the drive transfers energy into the oscil-
lator; quantum mechanically, it induces transitions between
different oscillator states leading to the coupling. This illus-
trates that strong coupling and zero �or exponentially small�
charge dispersion are in fact not contradictory. This is the
central point of the transmon: it is highly polarizable and
responds strongly to electric fields at all frequencies. Just as

FIG. 7. �Color online� �a� Off-diagonal matrix elements of the
Cooper pair number operator as a function of the energy ratio
EJ /EC �ng=1/2�. Solid curves represent the exact result, dashed
curves depict the asymptotic behavior, Eq. �3.4�. The results illus-
trate that coupling between neighboring transmon states is the only
relevant coupling in the limit of large EJ /EC. �b� Level scheme for
the coupled transmon system. Transmon states are denoted by �i�,
i=1,2 ,3 for the ground, first, and second excited state. Photon
numbers nph in the cavity are plotted vertically. The two arrows on
the �i=1,n=2� level illustrate the perturbative level repulsions lead-
ing to the dispersive shift.

FIG. 8. �Color online� Mechanical analogy illustrating the fun-
damental difference between dc and ac response. �a� For a slow
�adiabatic� change in the suspension point of the oscillator, the os-
cillator mass is displaced but the oscillator frequency does not
change. �b� For an ac drive at resonance, energy is forced into or
extracted from the system. Quantum mechanically, this leads to the
coupling between the transmon and the cavity field.

KOCH et al. PHYSICAL REVIEW A 76, 042319 �2007�

042319-8



for a harmonic oscillator however, the adiabatic response to
low-frequency fields does not lead to changes in the transi-
tion frequencies. Unlike the harmonic oscillator though, the
transmon remains moderately anharmonic.

B. Control and readout: The dispersive limit

It has been demonstrated that coherent control and read-
out of CPB qubits can be achieved by operating the system
in the dispersive limit �19,34�. Qubit operations are imple-
mented by means of microwave pulses, readout corresponds
to a measurement of the phase or amplitude of the transmit-
ted radiation of a microwave drive field. In the following, we
demonstrate that these concepts may be directly transferred
to the transmon: Readout and control of the transmon work
exactly the same way as for the CPB.

In the dispersive limit, the detunings �i=�i,i+1−�r be-
tween transmon and cavity are large, i.e., in particular
g01/ ��0 � �1, g01/ ��0+� � �1. In this case, we can eliminate
the cavity-qubit interaction to lowest order by a canonical
transformation, see Appendix D for details. It is important to
note that due to the reduced anharmonicity, virtual transitions
through excited transmon states must be taken into account.
Only after this can we restrict the transmon Hilbert space to
the ground state and first excited state. This procedure leads
to the following effective Hamiltonian:

Ĥeff =
��01�

2
�̂z + ���r� + ���̂z�â†â . �3.8�

Here, the primes signal parameter renormalizations: both the
qubit transition frequency and the resonance frequency of the
cavity get renormalized due to the interaction, �r�=�r
−�12/2 and �01� =�01+�01. �The definitions of the partial dis-
persive shifts �ij will be discussed below.�

The crucial point of Eq. �3.8� is that the form of this
Hamiltonian is identical to the dynamical Stark-shift Hamil-
tonian encountered for a CPB coupled to a transmission line
�19,39�. Remarkably, despite its reduced anharmonicity the
transmon behaves in a way quite similar to a CPB when
operated in the dispersive regime. This is very convenient as
it implies that control and readout techniques previously de-
veloped for CPBs can be transferred to the transmon regime.
Specifically, the readout proceeds by subjecting the cavity to
a microwave field close to its resonance frequency. The ac
Stark effect causes a dispersive shift of the resonator fre-
quency depending on the qubit state. Consequently, a mea-
surement of the phase or amplitude of the transmitted field is
sufficient to infer the state of the qubit. We stress that this
measurement is very different from measurements of the
quantum capacitance ��Ei

2 /�ng
2 �30�, which would fail due

to the exponentially small charge dispersion in the transmon
regime.

The only difference between transmon and CPB regards
the effective dispersive shift � in Eq. �3.8�. It is given by

� = �01 − �12/2, �3.9�

with

�ij �
gij

2

�ij − �r
�3.10�

and �ij =� j −�i. We emphasize that these expressions can be
obtained either through the canonical transformation pre-
sented in Appendix D, or alternatively, through a straightfor-
ward application of second-order perturbation theory. The
latter can be understood in terms of pairwise level repulsions
between coupled levels as indicated in Fig. 7�b�.

In contrast to the CPB case, the transmon’s dispersive
shift consists of two contributions which enter with different
signs, and which for a pure harmonic oscillator exactly can-
cel each other. The partial cancellation for the transmon sys-
tem with low anharmonicity is compensated by the increase
in the coupling strength g. As a result, the magnitude of the
transmon’s effective dispersive shift is comparable to that of
a CPB.

As we will show now, the contribution of two terms to the
dispersive shift also leads to interesting new physics beyond
the usual ac Stark effect for the two-level case—in particular,
negative dispersive shifts as well as significantly increased
positive shifts, depending on the detuning of the qubit. Using
Eq. �3.3�, the dispersive frequency shifts between neighbor-
ing transmon states can be written as

��i,i+1 =
�2�eVrms

0 �2

��i
�
i�n̂�i + 1��2. �3.11�

By combining Eqs. �3.4� and �3.11�, we obtain the following
asymptotic expression for the dispersive frequency shift from
Eq. �3.9�, valid for EJ /EC�1:

�� � − ��eVrms
0 �2
 EJ

2EC
�1/2 EC

��0���0 − EC�
. �3.12�

The full expression �3.9� is plotted in Fig. 9. Intriguingly, the
interplay of the contributions from �01 and −�12/2 leads to
three distinct regions in the ��0, EJ /EC� plane. These are
separated by the poles of Eq. �3.12� ���0=0, ��0=EC�
where the dispersive limit breaks down. The regions are
characterized by differing signs for � �see inset of Fig. 9�b��:
�i�, �ii� for negative detunings, �0�0, and positive detunings
exceeding the absolute anharmonicity, �0�EC, the disper-
sive frequency shift is negative; �iii� for small positive de-
tunings 0��0�EC, which place the cavity frequency be-
tween the transition frequencies �01 and �12, � becomes
positive and obtains comparatively large values. After its
special location in parameter space, we name this regime the
“straddling regime.” The comparatively large dispersive shift
renders this region particularly interesting for qubit opera-
tions and readout.

It is not completely obvious from the outset that the strad-
dling regime can be occupied without either violating the
dispersive constraint g01/ ��0 � ,g01/ ��0+� � �1, or losing
strong coupling which requires g��=max�� ,��. Here, �
and � denote the cavity and qubit decay rates, respectively.
In the following, using realistic values for the relevant pa-
rameters, we demonstrate that the straddling regime can in-
deed be accessed in the strong coupling and dispersive re-
gime, and that it can lead to larger overall dispersive shifts �.
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Based on data from a recent experiment �22�, decay rates
of the order of � /2�=2 MHz are achievable. This is much
lower than the strong coupling g /2��100 MHz demon-
strated in experiments with the qubit operated at a transition
frequency of �01/2��7 GHz. We argue that the charging
energy cited in Ref. �22� can be further lowered to values of
the order of EC /h=300 MHz.

First, we consider the case of negative detuning, �0 /2�
=−150 MHz, i.e., the cavity frequency is higher than all
transmon transition frequencies. Assuming a coupling
strength of g01/2�=20 MHz, the conditions for strong cou-
pling and the dispersive limit are met, and we obtain a nega-
tive dispersive frequency shift of ��−1.4 MHz. This should
be contrasted with the situation of positive detuning �0 /2�
=150 MHz in the straddling regime, i.e., the cavity fre-
quency is located between the transition frequencies �01 and
�12. Very remarkably, this sign change of the detuning leads
to an increase of the dispersive frequency shift to �
=3.4 MHz. We have also confirmed the validity of the dis-

persive straddling regime by a numerical diagonalization of
the full Jaynes-Cummings Hamiltonian.

IV. ESTIMATES FOR THE TRANSMON’S RELAXATION
TIME „T1…

We have argued that a main advantage of the transmon as
compared to other existing solid-state qubits is its remark-
able insensitivity to charge noise. In this and the following
section, we investigate in detail the sensitivity of the trans-
mon to various noise channels and discuss its performance in
terms of the projected relaxation and dephasing times.

A. Relaxation by spontaneous emission

The fact that the transmon qubit couples to the electro-
magnetic field inside the transmission line resonator indi-
cates that radiative decay of the transmon is one inevitable
relaxation channel. We can estimate the order of magnitude
of the resulting T1 by a simple semiclassical argument, which
agrees with the quantum result from Fermi’s golden rule. The
average power emitted into free space from an electric dipole
with dipole moment d, oscillating at angular frequency � is
given by

P =
1

4�
0

d2�4

3c3 , �4.1�

see, e.g., �41�. We can obtain an estimate for the transmon’s
dipole moment from the distance a Cooper pair travels when
tunneling between the two superconducting islands. In a re-
cent experiment approaching the transmon limit �22�, this
distance is of the order of L�15 �m. Hence, as an estimate
for the dipole moment we obtain d=2eL. As a result, the
decay time for the excited transmon level due to emission of
radiation is given by

T1
rad = ��01/P =

12�
0�c3

d2�01
3 . �4.2�

For a realistic qubit frequency �01/2�=8 GHz this leads to
relaxation times of the order of 0.3 ms and a corresponding
Q factor of 107.

B. The Purcell effect

When a system is placed inside a resonator, its spontane-
ous emission rate is altered. This effect is known as the Pur-
cell effect �42�. It has been observed in microwave cavities
using Rydberg atoms �43�, and recently also in electrical cir-
cuits �23�. For the transmon coupled to a transmission line
resonator, the same effect will occur and each transmon level
will experience a different change to its spontaneous relax-
ation rate. In this section we compute these rates.

The simplest way to obtain estimates for the decay rates is
to apply Fermi’s golden rule to the Hamiltonian that de-
scribes the interaction of the resonator with its bath. This
Hamiltonian is

H� = ��
k

�k�b̂k
†â + â†b̂k� , �4.3�

where b̂k and b̂k
† are the bath operators for mode k, and �k

determines the coupling strength of the resonator to this bath

FIG. 9. �Color online� �a� Dispersive frequency shift � as a
function of detuning �0 between cavity and transmon and energy
ratio EJ /EC �top panel�, for fixed transition frequency �01, as well
as �=1/2 and ng=1/2. �b� Cross sections of the three-dimensional
plot for EJ /EC=20 �a�, 40 �b�, 60 �c�, 80 �d�. The right-hand side y
axis shows the dispersive shift in MHz for the representative pa-
rameters chosen in the text. In the general case, the universal axis
for �� �left-hand side� can be translated into MHz with the conver-

sion factor
�g01/2��2

��01/2���
0�n̂�1��2 . Inset, level configuration and regimes for

the dispersive frequency shift.
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mode. Using Fermi’s golden rule and performing a con-
tinuum limit, the rate for a transition from an eigenstate �i� of
the Hamiltonian �3.6� to the final state �f� is

��
�f ,i� =

2�

�
p��k��
1k, f ���

k�

�k��b̂k�
† â + â†b̂k���0,i��2

,

�4.4�

here exemplified for the case of the loss of one photon with
energy ��k=Ei−Ef to the bath. The reservoir’s density of
states at energy ��k is denoted by p��k�. Defining �
=2��p��k� ��k�2, this can be written as

��
�f ,i� = ��
f �â�i��2. �4.5�

In the resonant limit of zero detuning, the system’s lowest
excitation consists of an equally weighted superposition of
the single photon state and the excited qubit state. Conse-
quently, we obtain the standard result that the resonator’s
bath will relax this excited state at rate � /2.

By contrast, in the dispersive limit the transmon states
acquire only a small photonic component �and photons only
a small qubit component�, which can be obtained perturba-
tively from Eq. �3.6�,

�n, j� = �n, j� +
	ngj,j+1

� j,j+1 − �r
�n − 1, j + 1�

−
	n + 1gj,j+1

� j−1,j − �r
�n + 1, j − 1� . �4.6�

As a result, the spontaneous emission rate for the excited
qubit state �0,1� will acquire the additional Purcell contribu-
tion

��
�0,1� = �

g01
2

�0
2 . �4.7�

Similarly, in the absence of photons in the cavity the higher
transmon levels will see a Purcell-induced relaxation rate of

��
�i,i+1� = �

gi,i+1
2

��i,i+1 − �r�2 . �4.8�

For a cavity with lifetime 1/�=160 ns �Q=104� and
g01/�0=0.1, the Purcell effect leads to a T1 contribution of
16 �s.

C. Dielectric losses

Dielectric losses from insulating materials, especially
amorphous SiO2, have recently been marked as a potentially
crucial channel of relaxation in superconducting qubits �13�.
While substrates such as crystalline Si and sapphire offer
favorably low loss tangents tan �=Re 
r / Im 
r of the order
of 10−6 and 10−8 at cryogenic temperatures, amorphous SiO2
has been found to exhibit loss tangents as large as 5�10−3

�13�. Such dielectric losses affect the electric fields associ-
ated with the qubits and cause energy relaxation with a rate
proportional to tan �.

These findings clearly call for a cautious choice of mate-
rials when designing superconducting qubits. In addition, we

point out that the participation ratio of the different materials
present in the immediate vicinity of the actual qubit will play
a similarly crucial role. In particular, in the transmon design
the shunting capacitance CB offers the possibility to accumu-
late a large percentage of the electric fields in a well-
controlled spatial region with favorable substrates, as op-
posed to storing them in the less well-defined Josephson
junction region. As a result, we expect good performance of
the transmon in terms of robustness with respect to dielectric
losses. An additional significant advantage of the transmon
geometry is that it can be fabricated with single layer pro-
cessing with no deposited dielectric layers that might cause
large losses.

D. Relaxation due to quasiparticle tunneling

The presence of quasiparticles in the system, due to an
overall odd number of electrons or thermal breaking of Coo-
per pairs, leads to both relaxation and dephasing in qubits
based on Josephson junctions �44,45�. Following the argu-
ments by Lutchyn et al. �45� we may estimate the resulting
decoherence rates for the transmon system. With the total
number of conduction electrons given by Ne=nV, n and V
denoting the conduction electron density and the metal vol-
ume, respectively, the number of quasiparticles may be ob-
tained as

Nqp = 1 +
3	2�

2
Ne

	�kBT

EF
e−�/kBT, �4.9�

valid for temperatures small compared to the superconduct-
ing gap �. We have assumed there is thermal breaking of
Cooper pairs, as well as one unpaired electron, which could
naturally arise if the finite volume of the qubit contains an
odd number of electrons. The rate of tunneling for one qua-
siparticle across the junction is given by �qp=�gT /4�� �45�,
where �=1/	V is the mean level spacing of the reservoir, 	,
V its density of states and volume and gT the junction con-
ductance measured in units of e2 /h. Generalizing the expres-
sions from �45� to the transmon regime, we obtain for the
full relaxation rate due to quasiparticle tunneling,

�1 = 1/T1 � �qpNqp	 kBT

��01
�
g,ng ± �1/2�e,ng��2.

�4.10�

The matrix element is the Franck-Condon factor which ac-
counts for the shake-up of the transmon collective mode due
to tunneling of one quasiparticle in the sudden approxima-
tion, and in the EJ /EC�1 limit becomes independent of ng.
For our rough estimate, we disregard the issue of possible
nonequilibrium quasiparticle distributions and use typical pa-
rameter values �V=300�5�0.1 �m3, gT=1, T=20 mK;
aluminum: EF=11.7 eV, n=18.1�1022 cm−3, 	=3n /2EF�
and obtain a relaxation time due to quasiparticle tunneling of
the order of T1�1 s. It is important to note that the increased
volume of the transmon does not lead to smaller T1 in the
quasiparticle channel. In fact, the matrix element in Eq.
�4.10� leads to an increase of T1 for large EJ /EC because the
quantum fluctuations of the coherent charge grow larger rela-
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tive to the charge displacement caused by the quasiparticle
tunneling. The projected temperature dependence of the T1
contribution due to quasiparticle tunneling is depicted in Fig.
10. The conclusion we draw from Fig. 10 is that below
100 mK quasiparticles should not lead to significant contri-
butions to relaxation in the transmon. This result should be
rather robust to the actual number of quasiparticles present in
the limit of T→0, since a relevant decrease in T1 is expected
only when the number of quasiparticles reaches several thou-
sands.

E. Relaxation due to flux coupling

The coupling of the transmon to an external magnetic flux
bias allows for an in situ tuning of the Josephson coupling
energy, but also opens up additional channels for energy re-
laxation: �i� there is an intentional coupling between the
SQUID loop and the flux bias �allowing for the EJ tuning�
through a mutual inductance M; �ii� in addition, the entire
transmon circuit couples to the flux bias via a mutual induc-
tance M�; see Fig. 11. Here, we provide simple order of
magnitude estimates of the corresponding relaxation times.
For the estimate of relaxation rates due to the mechanism �i�,

we assume that the overall flux applied to the SQUID ring
can be decomposed into the external flux and a small noise
term, i.e., �=�e+�n with �n��e. Then, a Taylor expan-
sion of the Josephson Hamiltonian �2.17� yields

ĤJ → ĤJ + �nÂ , �4.11�

where

�Â =
�ĤJ

��
�

�e

= EJ�

�

�0
�sin
��e

�0
�cos �̂

− d cos
��e

�0
�sin �̂� . �4.12�

As in Sec. II E, EJ�=EJ1+EJ2 denotes the total Josephson
energy and d= �EJ1−EJ2� /EJ� parametrizes the junction
asymmetry. Treating the noise perturbatively, one can relate
the relaxation rate to the noise power spectrum, see, e.g.,
�29�,

�1 =
1

T1
=

1

�2 �
1�Â�0��2M2SIn
��01� . �4.13�

Here, we have made use of the connection between flux
noise and current noise determined by the mutual inductance,
S�n

���=M2SIn
���. At low temperatures kBT���01 the cur-

rent quantum noise is given by SIn
���=2 ����� /R. For a

typical junction asymmetry of 10% and realistic device pa-
rameters �EJ=20 GHz, EC=0.35 GHz, M =140�0 /A, R
=50 !� we obtain relaxation times ranging between 20 ms
and 1 s, where the maximum �minimum� T1 is reached for an
integer �half-integer� number of flux quanta threaded through
the SQUID loop.

For the decay channel �ii�, we may model the entire trans-
mon circuit by a simple LC oscillator with L��2 /4e2EJ and
C�e2 /2EC. Classically, the charge then oscillates according
to Q�t�=Q0 cos �t with oscillator frequency �=1/	LC. As-
suming that the energy stored in the oscillator is of the order
of one energy quantum ��, we obtain Q0=	2C�� and I�t�
=−I0 sin �t with I0=�	2C��. Through the mutual induc-
tance, this oscillating current induces a voltage Vind�t�
=V0 sin �t in the flux bias circuit, where V0=M��2	2C��.
The environmental R�50 ! impedance will dissipate the
average power P=V0

2 /2R, which allows for the following
estimate of the relaxation time:

T1 �
��

P
=

R

M�2�4C
=

RC

"2 , �4.14�

where "=M� /L measures the effective coupling strength in
units of the Josephson inductance. It is crucial to note that
for the particular case of a SQUID loop and a flux bias line
exactly centered in the middle of the transmission line reso-
nator �cf. Fig. 1�b��, the mutual inductance M� identically
vanishes for symmetry reasons and relaxation via this chan-
nel would not occur. However, when realizing the flux bias
line with a coplanar waveguide, it is natural to displace the
line in order to maximize coupling to the SQUID loop. The
resulting mutual inductance can be estimated and we obtain
values of the order of M�=10�0 /A. Using realistic numbers

FIG. 10. �Color online� Number of quasiparticles and contribu-
tions to the relaxation time T1 due to inelastic quasiparticle tunnel-
ing as a function of temperature at EJ /EC=60. From this estimate,
tunneling of quasiparticles is not expected to limit the performance
of the transmon at cryogenic temperatures. In typical dilution re-
frigerator experiments, �phonon� temperatures are of the order of
20 mK, marked in the plot by a vertical bar.

FIG. 11. �Color online� Model for the estimate of relaxation
times due to flux coupling, describing �i� flux coupling between the
transmon’s SQUID loop and the external flux bias with mutual in-
ductance M, and �ii� flux coupling between the transmon circuit and
an external flux bias circuit via the mutual inductance M�.
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for the Josephson coupling, charging energy, and the envi-
ronmental impedance �EJ=20 GHz, EC=0.35 GHz, R
=50 !� we obtain relaxation times of the order of 70 ms.
Therefore, relaxation due to flux coupling is unlikely to limit
the performance of the transmon system. This can be ex-
plained by the smallness of the effective coupling ", which
for the parameters above is of the order of 10−6.

F. Coupling to spurious modes, balancing, and other noise
sources

It is a common phenomenon that measured relaxation
�and dephasing� times tend to be shorter than theoretically
predicted, indicating that the microscopic origin of decoher-
ence is not yet well understood in all cases and that addi-
tional, unknown noise channels participate. Various candi-
dates for this can be discussed, such as coupling to spurious
resonator modes and pinning and unpinning of vortices, etc.
In addition, phonon emission due to bulk and interface pi-
ezoelectricity in solid-state qubits has recently been pointed
out as another possible source for energy relaxation �46�.
While bulk piezoelectricity can be avoided by selecting ma-
terials with inversion symmetry, interface piezoelectricity
will always be present. With a Rayleigh velocity of vR
=4.92 nm/ps for surface acoustic waves �SAWs� in Si �47�,
one obtains acoustic wavelengths of the order of �R
�1 �m at typical qubit frequencies. Consequently, there is a
significant mismatch between the acoustic wavelength and
the overall lateral size of the transmon, �R�30 �m. This
makes an efficient coupling to surface acoustic wave modes
less likely. In addition, well-defined mesas with step heights
exceeding the evanescent wave depth will act as mirrors for
SAWs, which may be further exploited in the device design
to minimize coupling to SAW modes. An accurate estimate
of this coupling will require a detailed modeling of the trans-
mon’s capacitor shapes. Thus, obtaining quantitative esti-
mates for the decoherence rates in these additional channels
may not always be simple. Ultimately, the experiment will
determine whether they play any role in decohering the
transmon qubit.

We finally emphasize that the design shown schematically
in Fig. 1�b� may require special care due to the possibility of
imbalance in the coupling to the transmission line resonator.
Due to its location between bottom line and center pin, the
transmon will tend to couple to a spurious slotline mode of
the resonator in which the bottom and top line are out of
phase. It is important to note that this issue is eliminated by
a design with top and bottom symmetry. Alternatively, a tai-
loring of the relevant capacitances in the spirit of a Wheat-
stone bridge can compensate for the problem, thus effec-
tively balancing the asymmetry between top and bottom line
that is induced by the geometric layout.

V. ESTIMATES FOR THE TRANSMON’S DEPHASING
TIME „T2…

Generally, the origin of qubit dephasing can be under-
stood in terms of fluctuations of the qubit transition fre-
quency due to its coupling to the environment. This can be

described as noise in the external parameters �i of the Hamil-
tonian. In the present case of the transmon, prominent noise
sources are the charge fluctuations as well as the fluctuations
in the critical current and the magnetic flux. We first review
the general formalism appropriate to the treatment of small
fluctuations around the controlled dc value of the external
parameters and turn to the investigation of the individual
noise channels in the subsequent sections.

Formally, the qubit Hamiltonian may be written as

Ĥq =
1

2 �
u=x,y,z

hu���i���̂u, �5.1�

and each external parameter can be decomposed into its
�controlled� dc value and fluctuations around it, �i=�i

�0�

+��i. Following Refs. �48,15�, the case of weak fluctuations
can be addressed by a Taylor expansion with respect to ��i.
To lowest order we have

Ĥq =
��01

2
�̂z +

1

2�
j

�
u=x,y,z

�hu���i��
�� j

�� j�̂u + O���2� ,

�5.2�

where all derivatives are evaluated at the dc values �i
�0�. The

fluctuations ��i generally result in two distinct effects: �i�
For sufficiently low frequencies, the fluctuations in the �z
component can be treated within the adiabatic approxima-
tion. In this case, they cause random shifts of the transition
frequency of the qubit, leading to pure dephasing �time scale
T2�. �ii� Higher frequencies will break the adiabatic approxi-
mation and induce transitions between qubit states �energy
relaxation, time scale T1�. Here, we focus on the dephasing
aspect �i�, i.e., we consider low-frequency noise in the �z
component.

It is convenient to define T2 via the law for the decay of
the off-diagonal density matrix elements, which is given by

#01�t� = ei�01t
e−i�0
t dt�v�t��� , �5.3�

where v�t�=� j

�hz���i��

��� j
�� j. Assuming Gaussian noise, it is

straightforward to carry out the noise average, and the result
can be expressed in terms of the noise power

Sv��� = �
−





d�
v�0�v����e−i�� = �
j

�hz���i��
� � � j

S�j
��� ,

�5.4�

which yields �15,48�,

#01�t� = ei�01t exp
−
1

2
�

−



 d�

2�
Sv���

sin2��t/2�
��/2�2 � . �5.5�

As a consequence, the resulting dephasing critically depends
on the magnitude of the autocorrelation time tc of the noise.
For correlation times small compared to the typical acquisi-
tion time, tc� t, the dephasing follows an exponential law:

#01�t� � ei�01t exp�− 1
2 �t�Sv�� = 0�� . �5.6�

The corresponding line shape is Lorentzian �homogeneous
broadening� and the dephasing time T2�2/Sv��=0�. Note
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that this expression is valid for noise spectra with a regular
low-frequency behavior. For spectra singular at �=0, the full
equation �5.5� must be invoked. In particular, this applies to
the case of 1 / f noise,

S�i
��� =

2�A2

����
, �5.7�

which has been identified as the typical noise spectrum for
various noise channels. In experiments, the scaling exponent
� in �−� is typically in a range 0.8���1.3. For simplicity,
we assume �=1 in the following. The parameter A deter-
mines the overall amplitude of the fluctuations and will be
specified for the various noise sources below; see also Table
I. Denoting the infrared and ultraviolet cutoffs by �i and �u,
this leads to

#01�t� � ei�01t exp�−
A2

�2
 �h

��i
�2

t2�ln �it�� , �5.8�

valid for �it�1 and �ut�1, see, e.g., Refs. �15,48,49�.

A. Charge noise

We now relate the differential charge dispersion �E01/�ng
to the sensitivity of the qubit with respect to charge noise.
The charge noise observed for transmon devices in experi-
ments �50� indicates that large fluctuations of the offset
charge only occur on time scales exceeding the typical ac-
quisition time of a single experiment. Additionally, small
fluctuations may persist within each single shot. Both aspects
contribute to dephasing and are investigated in the following.

Small fluctuations can be treated in terms of Eq. �5.8�
with the external parameter given by �i→ng. A rough esti-
mate of the resulting dephasing time T2 is obtained by sub-
stituting the logarithmic contribution by a constant, such that

T2 �
�

A
� �E01

�ng
�−1

�
�

A��
1�
. �5.9�

Using Eq. �2.8�, we indeed find an exponential increase of T2
for large EJ /EC. Hence, the qubit becomes essentially im-
mune to charge noise in this limit. Using realistic parameter
values �EJ=30 GHz, EC=0.35 GHz, A=10−4 �51�� we obtain
a dephasing time of the order of T2�8 s.

We now turn to the investigation of slow charge fluctua-
tions with large amplitudes, which cannot be treated within a
perturbative scheme. In this case, we explicitly write the qu-
bit Hamiltonian as

Ĥq �
1

2

��01 +


1

2
cos�2�ng + 2��ng�t����̂z. �5.10�

The corresponding decay law of the off-diagonal density ma-
trix element then reads

#01�t� � ei�01t�exp
− i

1

2�
�

0

t

dt� cos�2��ng + �ng�t������ .

�5.11�

For variations slow compared to the typical measurement
time, the effective offset charge will vary for different runs
but remain constant within each single run, and we can sub-
stitute ng+�ng�t� by a single constant. As the worst-case sce-
nario, we will assume that the effective offset charge ran-
domly switches according to a uniform probability
distribution on �0,1�. This results in

#01�t� � ei�01t�
0

1

dng exp�− i
1t cos�2�ng�/2��

= ei�01tJ0��
1�t/2�� . �5.12�

The envelope of the Bessel function J0�z� asymptotically
falls off as 	2/�z. Thus, using the 1/e threshold as a mea-
sure for the dephasing time, we obtain T2� 4�

e2��
1� , which
again increases exponentially with EJ /EC. For the parameter
values used above, we find a T2 of the order of 0.4 ms.
Hence, we find that the increase in the ratio EJ /EC featured
by the transmon leads to an exponential immunization of the
device against charge noise.

For a full appreciation of these numbers, it is useful to
contrast our results with the charge dephasing in a regular
CPB operated at the charge sweet spot. In this case, noise is
eliminated to linear order and second-order contributions
dominate. Taking these into account, Eq. �5.9� can be gener-
alized and the CPB dephasing time due to charge noise may
be expressed as �15�

T2 � ��2A2

�

�2E01

�ng
2 �

ng=1/2

−1

=
�

A2�2

EJ

64EC
2 , �5.13�

which for parameter values realized in experiments on CPBs
�21� leads to dephasing times of the order of T2�1 �s.

B. Flux noise

Noise in the externally applied flux translates into fluctua-
tions of the effective Josephson coupling energy EJ. For sim-

TABLE I. Comparison of dephasing times for the transmon and
Cooper pair box qubits. Contributions to T2 are theoretical predic-
tions based on Sec. V. Entries in boldface type mark the dominant
noise channel. For the CPB second-order charge noise at the sweet
spot is most likely limiting the performance of the qubit. In con-
trast, for the transmon dephasing is suppressed to an extent that
coherence times should be limited by relaxation �T1� processes
only. All times are given in ns, which is close to the clock cycle
used in experiments. Typical qubit frequencies are of the order of
1–10 GHz, pulse durations usually range between 1 and 10 ns.

Noise source 1/ f amplitude

Transmon
EJ /EC=85

T2 �ns�

CPB
EJ /EC=1

T2 �ns�

Charge A=10−4−10−3e �51� 400 000 1 000a

Flux A=10−6−10−5�0 �52,54� 3 600 000a 1 000 000a

Critical current A=10−7−10−6I0 �53� 35 000 17 000

aThese values are evaluated at a sweet spot �i.e., second-order
noise�.
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plicity, we consider the symmetric junction case d=0. Since
in the experiment flux is used to tune the qubit transition
frequency via EJ, we consider both flux noise at and away
from the flux sweet spot. Assuming that the flux noise is
sufficiently small, we can employ Eq. �5.8� and obtain

T2 �
�

A
� �E01

��
�−1

=
�

A

�0

�

2ECEJ��sin

��

�0
tan

��

�0
��−1/2

,

�5.14�

valid for EJ�EC. In this transmon regime, the device is
necessarily operated away from points of half-integer num-
bers of flux quanta where EJ=0 and T2 vanishes. For an
order of magnitude estimate, we may use a flux bias of �
=�0 /4 and representative values A=10−5�0 �52�, EJ�

=30 GHz, and EC=0.35 GHz. This yields a dephasing time
of the order of T2�1 �s.

It is important to note that Eq. �5.14� results in infinite T2
for an integer number of flux quanta. This is the flux sweet
spot �21�, where second-order contributions �neglected in Eq.
�5.2�� dominate. Analogous to Eq. �5.13�, the dephasing time
is given by

T2 � ��2A2

�

�2E01

��2 �
�=0

−1

=
��0

2

A2�4	2EJ�EC

. �5.15�

Using the same representative parameters as above, we ob-
tain for the sweet spot a dephasing time of the order of T2
�3.6 ms. By comparison, flux dephasing at the double sweet
spot in the CPB regime yields a dephasing time of

T2 �
��0

2

A2�4EJ�

, �5.16�

which for realistic parameters gives values of the order of
1 ms.

C. Critical current noise

A second source of fluctuations of the Josephson energy
consists of noise in the critical current, which is believed to
be generated by trapping and detrapping of charges associ-
ated with spatial reconfigurations of ions inside the tunneling
junction �53�. Such rearrangements in the junction directly
influence the critical current and hence the Josephson cou-
pling energy EJ= Ic� /2e. The corresponding dephasing time
for the transmon is obtained as

T2 �
�

A
� �E01

�Ic
�−1

=
2�

ĀE01

, �5.17�

where Ā=A / Ic denotes the dimensionless fluctuation ampli-
tude �independent of EJ�. For A=10−6Ic �based on �53��,
EJ�=30 GHz, and EC=0.35 GHz, this results in a dephasing
time of the order of T2�35 �s. For comparison, evaluation
of the critical current noise in the CPB regime yields T2

� �

ĀE01
, i.e., one half the dephasing time expected for the

transmon. We remark that based on our estimates, critical
current noise is likely to be the limiting dephasing mecha-
nism.

D. Dephasing due to quasiparticle tunneling

In principle, the tunneling of quasiparticles not only re-
sults in relaxation but also in dephasing. For the CPB re-
gime, EJ�EC, Lutchyn et al. demonstrated that the dephas-
ing rate may be approximated by �2

qp��qpNqp �45�, where
we are using the same definitions as in Sec. IV D. A crucial
ingredient in this estimate is the fact that in the charge limit,
the transition frequency of the qubit is drastically altered
when adding or removing a single charge from the island. As
a result, in the CPB regime complete dephasing is achieved
by the tunneling of a single quasiparticle. We emphasize that
this does not hold in the transmon regime, where the charge
dispersion is exponentially flat so that transition frequency
variations due to a single charge are minimal. Instead, we
expect that dephasing due to quasiparticles will mainly be
induced by tunneling-induced relaxation processes, de-
scribed in Sec. IV D.

E. EC noise

Remarkably, as compared to the Cooper pair box the
transmon should feature extended relaxation and dephasing
times in all noise channels discussed so far. A possible chan-
nel for which this does not hold is noise in the charging
energy, i.e., fluctuations in the effective capacitances of the
circuit. So far, there does not seem to be any concrete ex-
perimental evidence for this type of noise. In distinction to
the critical current, spatial reconfigurations of atoms or
groups of atoms inside junctions should only weakly affect
the actual capacitances �no exponential dependence�. Due to
the presence of a large shunting capacitance in the transmon,
EC noise �if existent� could be more important in this system
than for the CPB. However, presently there is no evidence
for this to be a limiting factor.

VI. SUMMARY AND CONCLUSIONS

In summary, with the transmon we have proposed a new
type of superconducting qubit: the transmission-line shunted
plasma oscillation qubit. In terms of the value of the energy
ratio EJ /EC�102, the transmon is intermediate between a
CPB qubit and a current-biased phase qubit, but unlike either
of these has no dc connections. At the same time, it may be
viewed as a natural improvement of the CPB qubit, which
provides its underlying quantum circuit.

The realization of the vision of quantum computing de-
pends crucially on the design of physical systems which sat-
isfy the DiVincenzo criteria �55�, in particular the require-
ments of sufficiently long coherence time and scalability.
Remarkably, the transmon should offer significant improve-
ments with respect to both of these requirements: �i� we pre-
dict a strong improvement of insensitivity with respect to
charge noise in comparison to the CPB, see Table I; �ii� the
drastically improved charge insensitivity should make lock-
ing to the charge-degeneracy point unnecessary, thus simpli-
fying the setup of multiqubit systems significantly. As we
have shown, the key to the favorable properties of the trans-
mon lies in the combination of exponential decrease of the
charge dispersion, the slow power-law decay of the anhar-
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monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits �10,11� operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC�102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits �12� trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias �17� may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network �56�. This network is depicted in Fig. 12�a�. It is
based on the capacitances between the various conducting
islands, see Fig. 12�b�. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V� and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12�c�. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter �=Vab /Vg=Cg /C� and the total capacitance
C�=CB+Cg+CJ between the nodes a and b; see Fig. 12�c�.
�In the following, we absorb the junction capacitance into
CB.�

The parameters � and C� are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential �i �with respect to infinity�. These obey the
linear relation Qi=� jCij� j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i� i0, the charges Qi

* are known,
whereas for i� i0 the potentials �i

* are known. �Here, the
additional star signals that the quantity is known.� We thus
have the following system of linear equations:

Qi
* = �

j�i0

Cij� j + �
j�i0

Cij� j
* for i � i0, �A1�

Qi = �
j�i0

Cij� j + �
j�i0

Cij� j
* for i � i0, �A2�

from which we can determine the unknown quantities
�1 , . . . ,�i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. �Color online� �a� Full capacitance network for the
transmon device. �b� Simplified schematic of the transmon device
design �not to scale�. �c� Reduced network.

KOCH et al. PHYSICAL REVIEW A 76, 042319 �2007�

042319-16



ately calculate the voltage exhibited at the a-b port by sub-
tracting the corresponding island potentials. This yields the
splitting parameter �. The total capacitance C� is obtained
from the full network by substituting the voltage source by a
short and calculating the total charging energy of the network
when applying a voltage VJ across the junction. Equating the
result with C�VJ

2 /2, one obtains the parameter C�.
The treatment of the transmon embedded in a transmis-

sion line resonator is only slightly more complicated. Again,
the use of Thévenin’s theorem allows for the reduction of the
capacitance network to a few effective capacitances, see Fig.
1�a�. Here, the effect of the resonator can be modeled by a
local LC oscillator �19�. Following the standard quantization
procedure for circuits �20�, we obtain

Ĥ =
�̂r

2

2Lr
+

�CB + Cg�Q̂r
2

2C*
2

+
�Cg + Cin + Cr�Q̂J

2

2C*
2 − EJ cos
2�

�
�̂J�

+
CgQ̂rQ̂J

C*
2 +

�CBCin + CgCin�Q̂rVg + CgCinQ̂JVg

C*
2 . �A3�

For simplicity, we have absorbed the junction capacitances
into the parallel capacitance CB, and introduced the abbrevia-
tion

C*
2 = CBCg + CBCin + CgCin + CBCr + CgCr.

In Eq. �A3� the first two terms describe the local oscillator of
the resonator, the two terms in the second line capture the
qubit’s degrees of freedom, and the terms in the third
line give the coupling between the two of them and the cou-
pling to the gate electrode. Taking into account that

V̂=Vrms
0 �â+ â†� and assuming that Cr�CB, Cin, Cg, we re-

cover the Hamiltonian �3.1�.

APPENDIX B: MATHIEU SOLUTION FOR THE CPB
HAMILTONIAN

We briefly review the solution of the Hamiltonian �2.1� in
terms of Mathieu functions, generalizing the results from
Refs. �6,16� to arbitrary values of the effective offset charge
ng. In the phase basis, the stationary Schrödinger equation is
given by

�4EC
− i
d

d�
− ng�2

− EJ cos ������ = E���� , �B1�

where the boundary condition is ����=���+2��. We can
recast Schrödinger’s equation in the standard form of
Mathieu’s equation by introducing the function g�x�
�e−2ingx��2x�, so that

g��x� + 
 E

EC
+

EJ

EC
cos�2x��g�x� = 0. �B2�

The 2� periodicity of ���� translates into a pseudoperiodic-
ity of g�x� with characteristic exponent 	=−2�ng−k�, where

k�Z. Following the notation of Meixner and Schäfke �57�,
Eq. �B2� is solved by the Floquet-type solution
me	�q=−

EJ

2EC
,x�. Accordingly, the eigenenergies E are fixed

by Mathieu’s characteristic value, see Eq. �2.2�, and the wave
functions can be represented as

�m��� =
exp�ing��

	2
me−2�ng−k�m,ng��
−

EJ

2EC
,
�

2
� . �B3�

The integer numbers k must be chosen in such a way to
correctly sort the eigenenergies and eigenstates. This implies
that k becomes a function of the band index m and the effec-
tive offset charge ng. Extending Cottet’s treatment �16� to
cover the full range ng�R, we find that this function is given
by

k�m,ng� = �
�=±1

�int�2ng + � /2�mod 2�

��int�ng� + � �− 1�m��m + 1�div 2�� . �B4�

Here, int�x� rounds to the integer closest to x, a mod b de-
notes the usual modulo operation, and a div b gives the inte-
ger quotient of a and b.

APPENDIX C: PERTURBATION THEORY FOR THE
LARGE EJ /EC LIMIT

For completeness, we briefly review the perturbative ap-
proach employed in Secs. II C and III for large EJ /EC. Start-
ing from the Hamiltonian in the phase basis, Eq. �B1�, one
notes that the Josephson energy acts as a strong “gravita-
tional force” on the rotor, effectively restricting the angle �
to small values around zero. This motivates �i� the neglect of
the periodic boundary condition, and �ii� the expansion of the
cosine for small angles. Keeping terms up to fourth order,
this yields the potential energy −EJ+EJ�

2 /2−EJ�
4 /24.

The Hamiltonian can now be viewed as a harmonic oscil-
lator with a quartic perturbation describing the leading-order
anharmonicity. Due to �i�, the “vector potential” ng can be
eliminated by a gauge transformation, and the resulting
Hamiltonian can be cast in the form of a Duffing oscillator

H = 	8ECEJ�b̂†b̂ + 1/2� − EJ −
EC

12
�b̂ + b̂†�4, �C1�

where b̂, b̂† denote the regular annihilation and creation op-
erators for the harmonic oscillator approximating the trans-
mon. The leading-order correction to the eigenenergies aris-
ing from the quartic term is given by

Ej
�1� = −

EC

12

j��b̂ + b̂†�4�j� = −

EC

12
�6j2 + 6j + 3� . �C2�

Note that in this section, �j� denotes the pure harmonic os-
cillator state in the absence of any anharmonicity. The
leading-order correction to the state �j�,

� j��1� = −
EC

12 �
i�j


i��b̂ + b̂†�4�j�
Ei − Ej

�i� , �C3�

causes a mixing of �j� with the states �j±4� and �j±2�.
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Noting that for large EJ /EC the Cooper pair number op-
erator can be reexpressed in terms of

n̂ = − i
 EJ

8EC
�1/4 1

	2
�b̂ − b̂†� , �C4�

it is straightforward to evaluate the asymptotic expressions
for the matrix elements of n̂, n̂2 involved in the charge fluc-
tuations �see Sec. II D� and the coupling strength �see Sec.
III A�.

APPENDIX D: CANONICAL TRANSFORMATION

The elimination of the interaction term in Eq. �3.2� to
lowest order in gi,i+1 /�i �in the dispersive limit� can be ac-

complished by a canonical transformation Ĥ�= D̂ĤD̂†. Writ-

ing the unitary operator in the form D̂=exp�Ŝ− Ŝ†�, we find
that the appropriate generator for the lowest three qubit states
is given by

Ŝ = �
i

�iâ�i + 1�
i� . �D1�

Here, the parameters �i are defined as

�i =
gi,i+1

�i,i+1 − �r
=

gi,i+1

�i
. �D2�

Employing the Baker-Campbell-Hausdorff relation and re-
taining terms up to order gij

2 /�i
2, we obtain the transformed

Hamiltonian

Ĥ� = �
i

��i�i�
i� + ��râ
†â + �

i

��i,i+1�i + 1�
i + 1�

− ��01â
†â�0�
0� + �

i=1




���i−1,i − �i,i+1�â†â�i�
i�

+ �
i

�"iââ�i + 2�
i� + H.c. �D3�

with

"i =
gi,i+1gi,i+2���i+1 − �i+2� − ��i − �i+1��

2��i+1 − �i − �r���i+2 − �i+1 − �r�
�D4�

and �ij defined in Eq. �3.10�. The terms in the last line of Eq.
�D3� describe two-photon transitions, and are negligible as
compared to the remaining terms due to the smallness of the
parameters "i.
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