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Entanglement generation in a two-mode quantum beat laser
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We analyze the quantum correlations between side modes of a quantum beat laser when a two-level atomic
medium is driven strongly by a classical field. The squeezing and the entanglement generation of the cavity
radiation are investigated. It turns out that there is neither squeezing nor entanglement when the strong driving
field is resonant with the atomic transition but the generated light exhibits both two-mode squeezing and
entanglement when the driving field is tuned away from the atomic transition.
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I. INTRODUCTION

The field of quantum information has recently attracted
great interest due to its applications in information storage,
communication, and computing [1]. Quantum entanglement
is viewed as the key resource for these applications, espe-
cially for quantum teleportation [2], dense coding [3], and
quantum computation [4]. A variety of physical systems pre-
senting entanglement have been investigated both theoreti-
cally and experimentally. The vast majority of schemes con-
centrate on discrete variable systems, such as trapped ions
[5], few photons electromagnetic field in the cavity QED [6],
spontaneous parametric down conversion [7], and nuclear
magnetic resonance [8].

Continuous quantum-variable systems are proposed as an
alternative to discrete level systems for performing quantum
information tasks. Gaussian states play a central role as they
can be produced from reliable sources and can be controlled
experimentally using accessible set of operations such as
beam splitters, phase shifters, and different detection sys-
tems. Entanglement between two Gaussian modes can be
generated in the laboratory, e.g., two output beams of a para-
metric down converter [9]. Schemes for the generation of
macroscopic entanglement in atomic ensembles have been
demonstrated via quantum state transfer from nonclassical
light to atoms [10]. A number of schemes for the generation
of such entangled states for photons or the bright light beams
have also been proposed and experimentally verified
[11-19]. Recently, we proposed the generation and evolution
of entangled light in a correlated spontaneous emission laser
[16] and two-mode laser from a three-level cascade atom
[17]. In a two-level quantum beat laser [20], the gain me-
dium is two-level atoms. When the two-level atomic medium
is driven strongly by an intense light, the three-peak Mollow
spectrum of the fluorescence light appears due to ac Stark
splitting. In the present paper, we examine the squeezing and
the entanglement between the side modes for cases where the
driving field is either resonant or off resonant with the atomic
transition. We find that the side modes are entangled only
when the frequency of the driving field is not resonant with
the atomic frequency when the system operates below and
above threshold.
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II. MODEL AND THE MASTER EQUATION

We consider a linear theory of two-level quantum beat
laser which describes a system in which a strong field mode
interacts with two-level atomic medium. These levels are
being pumped and decayed to another level. For convenience
we take the upper level to ground level decay and consider
the situation when atoms are being excited to upper level
only. Two side modes of frequencies v; and v; are buildup
because of spontaneous emission. The coherence is produced
by the pump mode of frequency v,, which is responsible for
the coherent superposition of the lasing levels. The side
modes are then correlated with each other in a particular
direction. The side mode frequencies are locked in a doubly
resonant cavity and the mode locking condition v,—v;=v3
— v, is satisfied, as shown in Fig. 1. The symmetric place-
ment of the side band frequencies v, and v; about the pump
frequency v, is shown in Fig. 2. We take the pump field to be
arbitrarily intense and treat it classically. Side modes of fre-
quencies v; and v; are considered weak and treated quantum
mechanically up to second order in coupling constant. Under
these conditions the Hamiltonian for the system takes the
form

3
H=N(w-1)o. + > Al (v;— vz)aj-aj + (gajUja'T +H.c.)]
J=1 '
(1)
In this expression a; is the annihilation operator for the jth
field mode, U;=U/(r) is the corresponding spatial mode
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FIG. 1. Cavity configuration of a doubly resonant cavity.
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FIG. 2. Diagram showing symmetric placement of side band
frequencies v»; and v3; about the pump frequency »,. For good
squeezing and entanglement they are detuned from the atomic line
center .

function, o and o, are the atomic spin flip and probability
difference operators, w is the atomic frequency and v; is the
frequency of jth mode, and g is the atom-field coupling con-
stant. The rotating wave approximation has been made and
the Hamiltonian is in the interaction picture rotating at the
strong pump frequency v,.

The time dependence of an atom-field density operator
pa.s can be obtained from the standard density operator equa-
tion of motion

pa-fz_i[H9pa-f]+ ) (2)

where the ellipsis represents the relaxation terms related to
the cavity dissipation and the spontaneous emission of the
atoms [20,21]. Under the adiabatic approximations the
steady-state solution of the atomic equations of motion can
be obtained by considering the slowly varying field modes as
compared to atomic decay times [21]. By taking the trace of
pa.r over the atomic states, the slowly varying density matrix
equation of motion for the quantized field modes becomes

-=_A( Tt )_ B E(T _ T)
p i\payay —apa; 1+Q ajap—apa

+ C,(a’;a;p - agpaD + Dl(pa;fair - afpa;r) +[1 3]
+Hec., (3)

where 1« 3 represents the same terms with subscript 1 and 3
interchanged and v/(Q is the cavity loss rate for a given cav-
ity configuration. The expressions for the coefficients
A,B,C{,D, are

Ng2E, {Isz
_NgE\ | bl

1+ LL,| 2
(LyFI2)[(ILL,E)/2 — E5(1 + T/iA)/2] @
1 + LEY(E, + E3)/2 ’

Ng’E LL

14Dl 2
(LyFI2){[1 + (I,L,/2)]E, + E5(1 = T'/iA)/2}
1+ LFyY(E, +E3)/2 '

)
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~ Ng%E, { (LYFI2)[(ILL,EDI2 - Ex(1 +T1iA)2] }
1 5

T 1+LL, |+ LEYE, + ED/2
(6)
_—Ng’E,
Y+ LL,
y [ (LYFI){1 + (LLo/2)|ES + Ex(1 — F/iA)/Z}]
1 + LFY(E, + E})/2 '
(7)

where following the notations of Ref. [21], the complex
Lorentzian denominator E,, is

1
=, 8
v+i(w=—v,) @®
the dimensionless Lorentzian L, is
v
Ly=——""—""73, 9
’ Y +(0- 1) ©)
the dimensionless Intensity 7, is
L=4|V,|*T\T,, (10)
and the dimensionless “population pulsation” term F is
r
F= . 11
I'+iA (1)

Here V,=u&,U,/2k, where &, is the field amplitude in mode
2 and U, is the corresponding spatial mode factor, u is the
electric dipole matrix element, N is the total number of in-
teracting atoms, and A=w,— v, is the beat frequency between
modes 1 and 2. These coefficients assume that the only re-
laxation processes are upper-to-lower-level decay described
by I'(=1/T)), and the dipole decay described by y (=1/T),).
This is the usual experimental situation in laser spectroscopy.
For pure spontaneous decay, v is equal to I'/2. The quantity
A +A] can be interpreted as the spectrum of resonance flo-
rescence, while A;—B; is the semiclassical complex gain
and/or absorption coefficient and C;—D; is the semiclassical
complex coupling coefficient. The expressions for the coef-
ficients Az, B3, Cs, E; can be obtained by replacing 1 and 3 in
the above expressions for A;,B;,C;,E;.

III. ENTANGLEMENT ANALYSIS

We now discuss the entanglement of the two side modes
in the cavity based on the time-dependent solution of the
master Eq. (3). If the two side modes are initially in the
vacuum state, the cavity field is always in a two-mode
Gaussian state since the master Eq. (3) only contains the
quadratic terms of the bosonic operators a; and a}L (j=1,3).
Under this initial condition, the time evolution of the non-
zero expectation values for the quadratic operators obey

d * * ZU T
Z(a;a1>= (Al +Al _Bl _Bl - §><a1a1>+ (Cl _Dl)

X{aja}) + (C; = D)){ajas) + A, + AT, (12)
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d N . 20
E(agaﬁ = (A3 +A;-B3—B;— 5)@5“3) +(C3-Dy)

X(ajal) + (C;— D3)a,az) + As + A3, (13)

d 2v
E<a1a3> = (A1 +A3;—-B;—-B;— 5)<a1a3> +(C,-Dy)

X<a§a3> + (C3 - D3)<a-[a1> + Cl + C3. (14)

In free space no buildup of photon number occurs, and
d{ala,)/dt=A,+A’. Thus we interpret A;+A] as the spec-
trum of resonance fluorescence. Similarly the inhomoge-
neous term in the Eq. (14), C;+ C;, is the source contribution
for the quantum combination tone {a,a;). We will show that
this quantity is responsible for entanglement and squeezing.
Because the field in the cavity is in a two-mode Gaussian
state, inseparability of the field in the cavity can be judged
sufficiently and necessarily by use of the criteria proposed by
Duan et al. [22] and Simon [23]. This criterion mentions that
if a state of two-party quantum systems is inseparable, then
the uncertainties in a pair of EPR-like operators # and ¥
satisfy

1
M = (Ad)* + (AD)* —m* - — <0, (15)
m

where

1

12 = |m|)?1 + —3?2,
m

] L1
U= |m|p1 - P2 (16)
m

for any arbitrary nonzero real number_ m. Here, )2j
=(ajei"+e‘i9a;)/\f'2 and ﬁj=(aje”’—e‘”’a;)/\f'2i (with j=1,2)
are the quadrature operators for the two modes 1 and 2 sat-
isfying the relation [X;, p;]=i8;. Any state of two-party sys-
tems which obeys the inequality (15) must be an entangled
state. The criterion depends upon the parameter m. By taking
m= <a§a3>/ (aIa,), the inequality becomes

M= V<a§a3><aTa1> - |<a?a;>| <0. (17)

That is to say, the entanglement between the two modes re-
quires the nonclassical correlation between the two modes.
For a two-mode Gaussian state with the standard covariance
matrix [22,23], the condition becomes sufficient and neces-
sary.

Another important quantity in the two-mode field is the
two-mode squeezing. Defining the difference operator for the
cavity modes as

0 Fo-i0 T

e’ —ale”
242

ae’’ —aze’’+a i0

d =

: (18)

for the field generated in the two-mode cavity in the present
scheme, its variance is expressed as
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1 1 .
((Ad)* = Z+ Z[(aicﬁ)+<a;a3)—2|(a1a3)|]. (19)

Here the parameter @ is chosen so that (Ad,)? takes its mini-
mum value [24]. The state is called a squeezed state if
((Ad,)*)<1/4. Evidently, the condition for the appearance
of two-mode squeezing can be written as

Kaas)| > \/<a{a1><a3‘a3>+z<aia1 —ajaz)*. (20)

Comparing Eq. (17) with (20), it is easy to see that the con-
dition for the appearance of the two-mode squeezing is more
strict than that for the entanglement, that is, there may exist
entanglement but no two-mode squeezing appears. Only
when <aial>=<a§a3), i.e., the cavity field reduces to a two-
mode symmetric Gaussian state, do both the conditions for
the appearance of the two-mode squeezing and the entangle-
ment become the same. In the following discussion, accord-
ing to the conditions (17) and (20) we will investigate the
entanglement and squeezing property in detail.

A. Resonant case

First we consider that the atomic transition frequency w is
resonant to central mode frequency v,. In this case, the co-
efficients A; =A%, B|=B;, C,=Cj, and D, =Dj. Therefore, the
two side-modes are in a symmetrical Gaussian state. The
solution of Egs. (12)—(14) is
(A + C)[l _ e2t(A—B—V/Q+C—D):|

2(W/Q-A+B-C+D)

(A _ C)[l _ eZt(A—B—v/Q—C+D)]
2(V/Q-A+B+C-D)

(aja)) =(alas) =

s

(A+O)1 - eZt(A—B—v/Q+C—D)]
2(v/IQ-A+B-C+D)
(A= C)[1 — g2(A-B-1I0-C+D)]

2(W/Q-A+B+C-D)

where A, B, C, and D are the real parts of A|, B;, Cy,
and D, respectively. The entanglement occurs only when
[(ayas)| > \{a}a,){da}a;) and the two mode squeezing occurs
when [(a,as)|> \/(aia1><a§a3>+i(aial—aTan. In the above
equations we always have [(aas3)|<\(aja;}ajas). This
means that in the resonance case there is no entanglement
between the two side modes and there is no squeezing.
Physically, it means that side band field are less correlated
with each other than with themselves. This result is consis-
tent with Refs. [24-26], where it is shown that the squeezing

occurs only when pump field v, is highly detuned from the
atomic resonance w.

(ayas) =

, 21

B. Nonresonant case

Now we consider another case when the atomic frequency
is nonresonant with the pump mode frequency v, by an
amount A,=w—1,. When the atoms are nonresonantly driven
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by the laser field, the nonclassical correlation may be estab-
lished in the two-mode cavity field and entanglement may
appear. In the nonresonance case, solving differential Eqs.
(12)—(14) becomes complicated. By defining

v
fi:Ai_Bi_é’
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gi=C;—D,,
hi=A;+A?,
h2= C] + C3

with i=1,3, we find the solution of Eq. (12)—(14) for the
initial vacuum state

. |
(ala,)(t) (Z{|\R+f1 f|2 +|\’R f1+f|2 +((Vﬁ—f1 +f§)(V’/I?+ﬁ—f3)e ¢ +C-C-)}
3
{ 281{(“% +f - f)( -1 el4_1)—(wﬁ—f]+f§)(62_l—83_1>}+c.c.}
Sy $2 53
+h3|g1|2< -le L - )), (22)
N §3 S4q
1 —1 — s30 _
(a3a3)(t) ( {|\’R f1+f*|2 +|V/E+f1_ 3 +((\”R+f1—f§)(\’/1?—ff+f3)e +C-C-)}
RR S S3
2g3 e | [ -1 e -1
(R* —f1+f3) - - (VR +f1=f3) - +c.c.
S1 53 S2 Sy
+hylgsf? ( el —eS4t_1>), (23)
83 Sq
higs| . | -1 eW—l | -1 e‘w—l
<a1a3>(t) 'RR( > |: R* +f1- f3)< 5 )_(\R f+f3)< 5 >:|
st _ l Szt_l s l_l Sqt _ l h* — st _ l
g L L )+§[<\~R—fl + AR +fi-£)°
81 N S3 Sq 81
R+ i YR i ) 4 (Rt Sy = )R 4 £ = ) bt (R LR — 4 S

h “1 e
3gl{(\'R f1+f)< -2 S )_(\’R+f1 f)(
4
where
5 = f1+fk;'f3+fy+1(NR+ VRY),
s2=f1+f1k +f3+f3 l(\’,ﬁ_,_ JR).
2 2
53=f—1+ﬁ;f3+f§+%(\/1?—\"'E),

S Sq
~1 e3—1>})’ o)
53

g lthdhr s L o (25)
2 2
with
R=(f\-f3)?+4g,g5. (26)

Figures 3-5 show the time evolution (kt) of the average
photon number, the entanglement quantity M, and the vari-
ance (Ad,)?, where xk=v/Q. When the system operates be-
low the threshold, the system evolves similar to a damped
coupled oscillator. At higher intensities the atom saturates
and Stark shifting of the atomic energy level occurs. The
inelastic scattering process now involves two laser photons
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FIG. 3. Time evolution of the total photon number, the entangle-
ment quantity M and the variance (Ad;)>. Here C=2000,
A,/y=-100, A/y=50, and 1,=10 000 (solid), 8000 (dash), 6000
(dot).

at frequency v, and scattered photons at frequencies v; and
v3. In the presence of detuning between the pump and the
atomic frequency w, the nonclassical correlation between
side modes may dominate the self-correlation terms. Both
the ac Stark shifts and the nonclassical correlation depend on
the collective cooperativity C=Ng?/(yv/Q), the detunings
A, and A, and the laser intensity /,. The ac Stark shifts re-
strict the increase in the photon number and the squeezing in
time. So it could not get a larger photon number below
threshold as shown in Fig. 3(a). Since the strength of the
two-photon correlated emission process is proportional to
1/1, when the driving field is strong, increasing /, may de-
crease the squeezing and the entanglement as shown in Figs.
3(b) and 3(c). As shown in Figs. 4, by increasing the collec-
tive cooperativity C (larger C has been achieved in a recent
experiment [27]) the photon number can be increased but the
squeezing and the entanglement can be enhanced in the very
short time region. In the long time limit, the squeezing and
the entanglement may be reduced with increasing C. Since in
the nonresonance case the absorption and the gain for the
modes 1 and 3 are asymmetric, the generated state is an
asymmetric two-mode Gaussian state. This leads to the ap-
pearance of the entanglement but the absence of the two-
mode squeezing as shown in Figs. 4(b) and 4(c).

In order to get bright field in the cavity, the system should
operate above threshold. However, although the photon num-
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FIG. 4. Time evolution of the total photon number, the entangle-
ment quantity M and the variance (Ad,)>. Here I,=30 000,
A,/ y==85, A/ y=50, and C=3000 (solid), 2000 (dash), 1000 (dot).
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FIG. 5. Time evolution of the total photon number, the entangle-
ment quantity M and the variance (Ad,)?. Here I,=30 000,
A,/ y==85, A/y=70, and C=10 900 (solid), 10 800 (dash).
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ber increases exponentially, the noises from the spontaneous
emission and the photon dissipation also grow quickly. These
noises destroy the entanglement very quickly so that the en-
tanglement and squeezing can only appear in the very short
time region as shown in Fig. 5. Therefore, the present system
is not suitable for the generation of bright entangled field
which may be maintained in a long-time regime.

IV. CONCLUSIONS

The squeezing and entanglement properties of two side-
band modes of a two-mode quantum beat laser with strongly
driven two-level atomic medium are investigated. When the
pump mode is resonant to the atomic transition, we show that
neither entanglement nor squeezing in the side modes appear
because the side band field modes are less correlated with
each other than with themselves. If the pump mode is tuned

PHYSICAL REVIEW A 76, 042317 (2007)

away from the atomic transition, under threshold, the en-
tanglement and the squeezing can be generated and main-
tained in a longer period. We also notice that there is a region
in which the entanglement exists but the squeezing is absent
since the two side modes are in an asymmetric position for
gain and absorption. However, above threshold, although the
photon number in the two side modes increases exponen-
tially, only the weak squeezing and entanglement can be gen-
erated and maintained in a short time region because the
noise from atomic spontaneous emission and photon dissipa-
tion are amplified.
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