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We study entanglement dynamics between four qubits interacting through two isolated Jaynes-Cummings
Hamiltonians, via an entanglement measure based on the wedge product. We compare the results with similar
results obtained using bipartite concurrence resulting in what is referred to as “entanglement sudden death.” We
find a natural entanglement invariant under evolution, demonstrating that entanglement spreads out over all of
the system’s degrees of freedom that become entangled through the interaction. We also provide an analysis of
why certain initial states lose all their entanglement in a finite time, although their excitation and coherence
vanish only asymptotically with time.
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I. INTRODUCTION

Entanglement plays a key role in quantum-information
processes �1� and therefore it is important to study entangle-
ment dynamics in different scenarios. The simplest situation,
two-qubit entanglement dynamics, has been extensively
studied in different contexts �2–12�.

When interacting with a reservoir, one would naively ex-
pect the entanglement between the two qubits to vanish as-
ymptotically. However, for certain initial entangled states,
the entanglement can vanish completely in a finite time. This
is often referred to as “entanglement sudden death;” see, for
example, �3–9� and the references therein. A recent experi-
mental demonstration was presented in Ref. �10� and an
open-systems analysis was done in Refs. �3–7�. Neverthe-
less, if one were to include the “reservoirs” in the studied
system and consider the full entanglement between two non-
interacting partitions of the system, one would expect the
entanglement to be preserved, and therefore an associated
entanglement invariant should exist. In addition, considering
the reservoir as part of closed system until the moment it is
ignored �and in mathematical terms “traced over”�, one can
reap insights into both the qualitative and quantitative trans-
fer of excitation �and associated entanglement� from the at-
oms to the reservoir.

An important bipartite interaction is described by the
Jaynes-Cummings �JC� model �13� that describes, in a con-
cise and elegant way, the near-resonant interaction between a
single two-level atom and a single-mode quantized field. If
the initial atom-field system contains a single excitation, the
system is a model of a two-qubit system. Since the JC model
is excitation number preserving, the system will always stay
within the two-qubit Hilbert space �but of course such a JC
model spans only the one-excitation subspace of the full two-
qubit space�. However, since this model is one of the few
exactly solvable models in quantum physics it has been ex-
ploited for studying the dynamics of entanglement �14�.

Recently, a double JC model has been proposed in this
context �8,9�. The model consists of two separate JC-model
systems �atom A interacting only with the cavity field a and
similarly for the atom B and the field b�, where it has been
assumed that the systems are identical. �Note that this model
is applicable to any one-excitation, two-qubit system that is

linearly coupled, e.g., to the experiment in Ref. �10� where
fields couple pairwise to each other rather than atoms to
fields.� A major reason this particular interaction has been
chosen is because it is local to subsystems Aa and Bb. If the
atoms, or the fields, couple to each other, the coupling will
alter the entanglement between the system partitions Aa and
Bb in general, and subsequently, if the fields are traced over,
between A and B. The whole point with these studies, how-
ever, is to study the entanglement dynamics between A and B
in absence of any coupling, direct or indirect, between them.

The focus of interest has been the pairwise entanglement
dynamics in terms of the concurrence �15� between the ini-
tially entangled atoms. Through the JC interaction they may
become unentangled through the excitation transfer to the
initially unexcited fields which are traced over after the in-
teraction. In Ref. �8�, in particular, the authors study en-
tanglement between the two atoms, and they find that for the
initial state ���0��=cos ��↑ ↓ �+sin ��↓ ↑ �, where we have
used the notation �↑ �A � �↓ �B= �↑ ↓ �, etc., and �↑� ��↓�� de-
notes the atom’s excited �ground� state, the concurrence CAB
behaves in a harmonic oscillatory manner. Translating this
into a dissipation language, the entanglement vanishes as-
ymptotically with increasing coupling to the reservoir. In
contrast, the concurrence CAB of the state ���0��
=cos ��↑ ↑ �+sin ��↓ ↓ � for certain values of �, specifically
�tan ���1, falls rapidly and nonsinusoidally to zero in a fi-
nite time and remains zero for some time. In a dissipation
language this means that the entanglement will vanish in a
finite time although both the atomic excitation and the
atomic coherence decay asymptotically.

In order to study the transfer of entanglement between the
atom and the reservoir the authors extend the work in Ref.
�8� and study all the six concurrences CAB, CAa, CBb, Cab, CAb,
and CBa for the four-qubit system in Ref. �9�. They find that
for the state ���0�� the sum of the concurrences between the
atoms and the fields, CAB+Cab, is constant under the JC evo-
lution. This is not so for the state ���0��, but another function
of the six pairwise concurrences and the initial state �param-
etrized by ��, CAB+Cab+ �CAa+CBb��tan ��− �CAb+CBa�, is an
entanglement invariant.

In Ref. �12� the dynamics for the initial state ���0�� in an
equivalent model, two separately systems composed by two
two-level systems in a dipolelike interaction, is considered.
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Here, the authors consider the effect of different coupling
constants in the separately systems. However, the pairwise
entanglement dynamics is expressed in terms of the negativ-
ity �16� and its relation to with the energy transfer.

Motivated by these studies, and in the hope that a more
general entanglement invariant can be found to illuminate
the transfer of entanglement to the system’s different parts,
we study the same four-qubit system, where we do not as-
sume that the systems are identical. To be able to consider all
possible bipartite entanglement we use an entanglement mea-
sure introduced by Heydari in Ref. �17�, which is based on
the wedge product. We take all the different possible parti-
tions of the four-qubit system into account, and we find an
entanglement invariant which does not depend on the system
parameters or on the initial state, provided that it belongs to
a class of pure states denoted X states in Ref. �5�, including
both the states ���0�� and ���0��. The invariant shows that
the fields become entangled with all other parts of the sys-
tem, all of which is “destroyed” �or rather ignored� when
treating the fields as reservoirs.

II. THE MODEL

Consider a model consisting of two two-level atoms A
and B, each interacting with a single-mode near-resonant
cavity field, denoted a and b, respectively. Following Refs.
�8,9�, we will assume that each atom-cavity system is iso-
lated and that the cavities are initially in the unexcited state
while the atoms are initially in an entangled state. The dy-
namics of this model is given by the double JC Hamiltonian

Ĥtot = ĤA + ĤB, �1�

where the Hamiltonians �under the rotating-wave approxima-
tion and setting �=1� are �13�

Ĥk = �k�âk
†âk + 1/2� +

�k

2
�̂z

k + gk�âk
†�̂−

k + âk�̂+
k� , �2�

where k=A ,B �where the letter case is to be interpreted as
appropriate�, �k is the field frequency, �k is the transition
frequency between the atomic excited and ground states, and
gk is the coupling constant between the cavity field and the
atom. The field annihilation operators are âk, and �̂±

k are the
spin-flip operators defined by �̂−

k �↑ �k= �↓ �k, �̂−
k �↓ �k= �̂+

k �↑ �k
=0, �̂+

k �↓ �k= �↑ �k, and �̂z
k is the atomic inversion operator,

viz., �̂z
k�↑ �k= �↑ �k and �̂z

k�↓ �k=−�↓ �k. As mentioned in the
Introduction, if we have at most one excitation in each atom-
cavity system, each such system will stay within a two-qubit
space. Hence, since the two atom-cavity systems do not in-
teract, the double JC model will result in a four-qubit state
�but again, spanning only a subspace of the whole four-qubit
Hilbert space�.

The corresponding evolution operator for the Hamiltonian
�2� is

Ûk = e−itĤk
0�cos�	̂kt� − itsinc�	̂kt��
k

2
�̂z

k + gk�âk
†�̂−

k

+ âk�̂+
k�	
 , �3�

where Ĥk
0=�k�âk

†âk+ ��1+ �̂z
k� /2�� is a constant of motion,

proportional to the total number of excitations of system k,

k=�k−�k is the detuning between the atom and the cavity
for each system, sinc�x��x−1 sin�x�, and

	̂k = �gk
2�ak

†ak + �1 + �̂z
k�/2� + 
k

2/41/2.

We will consider that the atoms are initially in an X state,
characterized by a �reduced� atom density operator whose
nonzero elements are found only in the main diagonal and
antidiagonal in the basis �↑↑�, �↑↓�, �↓↑�, �↓↓�. This class of
atom states has the property that the corresponding two-qubit
density matrix preserves the X form when evolving under the
action of certain system dynamics �5,7–9�. In this case �8,9�,
the reason is simple. When an atom transfers its excitation to
the initially empty field, it leaves a signature in terms of the
excitation in the field. Therefore, there cannot exist any co-
herence between the states �↑↑� and the states �↑↓�, �↓↑� un-
less such coherence existed initially. This is not the case, by
definition, for the X states, and therefore they will retain their
X form under the assumed evolution whose form was moti-
vated in the Introduction.

As pointed out in Ref. �5�, the X class of states include the
Bell states and the Werner states. Following Refs. �8,9� we
will focus on the Bell-like pure states

���0�� = cos ��↑↑� + sin �ei��↓↓� ,

���0�� = cos ��↑↓� + sin �ei��↓↑� ,

where 0��� /2, 0���. �In Sec. V we will consider
more general states.� As motivated above, we will assume
that the initial state for the four qubit model is

���0�� = ���0�� � �00�, ���0�� = ���0�� � �00� , �4�

respectively, where the abbreviated notation �0�a � �0�b= �00�
has been used. Notice that Bell states can be recovered by
setting �= /4 and �=0, /2. The initial states �4� under the

action of the operator ÛA � ÛB evolve as

���t�� = x1�↑↑00� + x2�↑↓01� + x3�↓↑10� + x4�↓↓11�

+ x5�↓↓00� , �5�

���t�� = y1�↑↓00� + y2�↓↑00� + y3�↓↓10� + y4�↓↓01� , �6�

where the coefficients for the state �5� are given by

x1 = fA�t�fB�t�cos � , �7�

x2 = fA�t�gB�t�cos � , �8�

x3 = gA�t�fB�t�cos � , �9�

x4 = gA�t�gB�t�cos � , �10�
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x5 = hA�t�hB�t�ei� sin � . �11�

The functions fk�t�, gk�t�, and hk�t� are given by

fk�t� = e−i�kt�cos�	kt� − i

k

2	k
sin�	kt�	 , �12�

gk�t� = − i
gk

	k
e−i�kt sin�	kt� , �13�

hk�t� = ei
kt/2, �14�

where the Rabi frequencies are 	k= �gk
2+
k

2 /4�1/2.
Similarly, the state �6� will have the the coefficients

y1 = fA�t�hB�t�cos � , �15�

y2 = hA�t�fB�t�ei� sin � , �16�

y3 = gA�t�hB�t�cos � , �17�

y4 = hA�t�gB�t�ei� sin � . �18�

III. ENTANGLEMENT DYNAMICS

In this section we will analyze the entanglement evolution
in the double JC model. As an entanglement measure we will
use a wedge-product-based measure introduced in Ref. �17�,
which, for the two-qubit case, coincides with the well-known
concurrence �15�, and in the multiqubit case with the en-
tanglement monotones �18�. This measure is defined for any
number of subsystems, each having an arbitrary, but finite,
dimension.

By partitioning the total system into two we can compute
the entanglement between these partitions. Consider some
partition composed by P1 with dimension M and P2 with
dimension N �note that each partition could contain more
than one physical subsystem�. Assume a pure system defined
by

��� = �
m=1

M

�
n=1

N

�mn�m� � �n� , �19�

where ��m� and ��n� are orthonormal bases. In order to es-
timate the entanglement between partitions P1 and P2, we
project ��� onto the basis states of one of the partitions. To
this end we define the unnormalized state

��m� = �m��� .

If the system can be written as a tensor product between a
pure state in each partition, then all states ��m� are parallel.
That is, ��m�=cm��1� for all m=1, . . . ,M, where cm denotes a
c number. If, on the other hand, the pure state �19� is en-
tangled, then at least two of the vectors, say ��m� and ��l�, are
not parallel, and the degree to which they are not parallel is
characterized by the “area” the vectors span. This area is
given by the wedge product between the vectors, but as the
wedge product, in general, is signed and complex, we take

the absolute square of the area as a measure of the nonsepa-
rability between these two vectors. The square of the mea-
sure introduced in Ref. �17� can hence be written as the
determinant

A2�m,l� = ���m��m� ��m��l�
��l��m� ��l��l�

� .

Summing all contributions and using symmetry and the fact
that the wedge product between a vector and itself vanishes,
the entanglement between P1 and P2 can finally be defined

EP1–P2
=

1

2 �
m=1

M

�
l=1

M

A2�m,l� . �20�

In the case of the double JC model, the possible partitions
are �a� one qubit–three qubit partitions A-Bab, B-Aab,
a-ABb, and b-ABa; �b� two qubit–two qubit partitions
Aa-Bb, Ab-Ba, and AB-ab.

In Figs. 1 and 2 we plot the evolution of the concurrence
CAB between the two atoms A and B, and the evolution of
4EAa-Bb �since 0�CAB�1, we use 4EAa-Bb to scale it to es-
sentially the same range of values as CAB may obtain� in the
case of exact resonance �
A=
B=0�. Note that, while CAB

represents only the remaining entanglement between the two
atoms after the field states have been traced out, EAa-Bb rep-
resents the entire bipartite entanglement between the atom-
field systems Aa and Bb.
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FIG. 1. �Color online� �a� The concurrence CAB between the
atoms in state ���0�� as a function of the coupling parameter 	At
when gA /gB=1 for �= /4 �green, dashed line�,  /6 �blue, dash-
dotted line�; and 4EAa-Bb for �= /4 �black, solid line� and  /6
�red, dotted line�. �b� The concurrence when gA /gB=2 for the pa-
rameter values �= /4 �green, dashed line� and  /6 �blue, dash-
dotted line�; and 4EAa-Bb for �= /4 �black, solid line� and  /6
�red, dotted line�.
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First we consider different values of �. In Fig. 1�a�, cor-
responding to gA=gB, we can observe that concurrence for
the initial state ���0�� evolves in a typical oscillating way
between 0 and 1 �8,9,12�; meanwhile EAa-Bb=sin2 � cos2 � is
invariant and equals 1 /4 of the initial concurrence squared.
In Fig. 1�b� we show the time evolution of the concurrence
between the atoms, and that of 4EAa-Bb, for gA /gB=2. When
gA�gB the concurrence is not evolving in a typical oscilla-
tory manner as was pointed out in Ref. �12�. Meanwhile,
EAa-Bb depends only on the initial state, namely, on �, and
not on the ratio gA /gB.

Figure 2 shows the evolution of the concurrence and
4EAa-Bb for the state ���0�� when both cavity-atom systems
are in exact resonance. In Fig. 2�a� we can observe the so-
called entanglement sudden death for different values of �.
�In the next section we shall discuss this phenomenon in
more detail.� We also see that EAa-Bb is no longer constant
but increases initially and oscillates with time. However, the
oscillation amplitude decreases as �→ /2. In Fig. 2�b� we
show the effect of a different ratio between gA and gB, and
we notice that EAa-Bb evolves in a different way for different
ratios.

The difference between the evolution of the two states
arises because state ���0�� is evolving simultaneously in two
closed manifolds, one consisting of the one-excitation, sub-
system Aa manifold �consisting of states �↑↓00� and �↓↓10��,
the other consisting of the one-excitation, subsystem Bb
manifold �consisting of states �↓↑00� and �↓↓01��. On the
other hand, the state ���0�� is evolving only in one manifold,
consisting of the states �↑↑00�, �↑↓01�, �↓↑10�, and �↓↓11�.

State ���0�� also has a ground-state component �↓↓00� but
this state does not evolve.

IV. DISSIPATIVE DYNAMICS

While the model presented above is closed and does not
involve any dissipation, the atoms’ evolution under dissipa-
tion can still be described. As can be seen from Eqs.
�7�–�10�, �12�, �13�, and �15�–�18�, the excitation of the at-
oms is transferred to the fields in a monotonic fashion during
the time interval where 0�	kt� /2. In the resonant case
�
A=
B=0⇒	k=gk�, all the excitation will be transferred
from the atoms to the cavity fields. Formally, during this time
interval, one can then see the fields as a dissipative channel
for the atoms’ excitation. On can subsequently map a dissi-
pative evolution, e.g., spontaneous emission of the atom’s
excitation obeying an exponential decay proportional to
exp�−�kt��, onto the JC dynamics by the identification be-
tween the times t and t�: exp�−�kt��=cos2�	kt�. Quite obvi-
ously, 	kt→ /2 correspond to t�→�. Hence, if the en-
tanglement between the atoms �after the fields are traced out�
become zero in a time �� / �2	k�, then in the dissipative
picture it vanishes in a finite time t�=�−1 ln�cos−2�	k���.
This is indeed what happens for the state ���0�� as it evolves.

One may then ask why one state’s entanglement vanishes
in finite time while the other’s does not. The reason is the
fundamentally different way the states decay. The state
���0�� decays directly into the ground state �↓↓�. Whatever
excitation is left in the atoms will still be in a superposition
state, and such a statistical mixture between a Bell state and
the ground state cannot be written as a convex sum of any
separable states, no matter to what extent the state has de-
cayed. The state ���0�� decays to the ground state via the
intermediate states �↑↓� and �↓↑�. As the decay leaves differ-
ent “signatures” in the reservoirs �the states �01� and �10�,
respectively�, no coherence between these states is estab-
lished. When the excitation of these intermediate states is
large compared to the remaining coherence between the
states �↑↑� and �↓↓�, the state can be written as a convex
combination of separable states so the state is no longer en-
tangled. This happens when

tan � � sin2�	At� = 1 − exp�− �kt�� �21�

as pointed out in Refs. �6,10�. If cos ��sin �, the atomic
excitation is insufficient to excite the intermediate states �↑↓�
and �↓↑� to the extent that the entanglement between the
atoms vanishes in a finite time.

If the coupling constants gA and gB are different, say,
gA�gB as in Figs. 1�b� and 2�b�, the dissipative picture just
presented is valid only as long as 0�	At� /2, where
	k=gk when the atoms and cavities are resonant. For times
longer than  / �2gA� the excitation of atom A starts to revive
again in the JC model, a phenomenon not compatible with
dissipation. However, as seen from the figures, the behavior
of the states for times 	At� /2⇔	Bt� /4�0.79 is
qualitatively the same as in the symmetric �gA=gB� case.
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FIG. 2. �Color online� �a� The concurrence CAB between the
atoms in state ���0�� as a function of the coupling parameter 	At
when gA /gB=1 for �= /4 �green, dashed line�,  /6 �blue, dash-
dotted line�; and 4EAa-Bb for �= /4 �black, solid line� and  /6
�red, dotted line�. �b� The concurrence when gA /gB=2 for the pa-
rameter values �= /4 �green, dashed line� and  /6 �blue, dash-
dotted line�; and 4EAa-Bb for �= /4 �black, solid line� and  /6
�red, dotted line�.

ISABEL SAINZ AND GUNNAR BJÖRK PHYSICAL REVIEW A 76, 042313 �2007�

042313-4



V. AN ENTANGLEMENT INVARIANT

The form of the chosen interaction Hamiltonian, which
does not include any interaction between subsystems Aa and
Bb, ensures that no entanglement is formed between these
subsystems that was not already present in the initial state.
Therefore, it is reasonable to expect an entanglement invari-
ant to exist that measures the net entanglement between these
subsystems. �Should the Hamiltonian include coupling be-
tween any of A and a and any of B or b, such an expectation
would of course be unfounded since, with regards to the
partition Aa-Bb, the Hamiltonian would be nonlocal.� How-
ever, in general, EAa-Bb represents only some of the entangle-
ment present in the system because, due to excitation trans-
fer, some of the initial Aa-Bb entanglement will, e.g., be
manifested as a-ABb entanglement as soon as the evolution
starts. If we include the entanglement in the other partitions
we can find the invariant

E = 2EAa-Bb + EAB-ab + EAb-Ba

− �EA-Bab + EB-Aab + Ea-ABb + Eb-ABa� , �22�

valid for all parameter values, that is, even for nonresonant
coupling and different atom-cavity coupling ratios. We see
that the invariant in not symmetric in all bipartitions of the
system, reflecting the fact that the interaction has specifically
been chosen not to alter the entanglement between the parti-
tions Aa and Bb. The presence of the negative terms in the
invariant stems from the fact that, e.g., the entanglement in
partitions Aa-Bb and A-Bab are not independent and neither
is the entanglement between, e.g., the partitions Aa-Bb and
Ab-Ba. Hence, the terms apart from EAa-Bb in E can be seen
as a means of not “counting the same entanglement twice.”
However, even in this simple model the interdependence of
the various kinds of entanglement of the state is not very
intuitive, so a detailed explanation of the form of E is prob-
ably rather difficult and we will not attempt to provide one
here.

The introduced measure �22� does not depend on time for
the initial pure X states �5� and �6�. The value of E in both
cases is

E = sin2 � cos2 � . �23�

This value is proportional to the square of the two atoms’
initial concurrence C �15�:

4E = C2.

The result is expected, because, as the Hamiltonian is chosen
not to change the entanglement between Aa-Bb, it must re-
main equal to its initial value at all times. Hence, the oscil-
lations and different behavior for different ratios gA /gB
present in EAa/Bb for the state �5� �see Fig. 2� are compen-
sated by the rest of the terms in Eq. �22�. What is more
significant is that for the generic class of states

��g� = c1�↑↑00� + c2�↓↑10� + c3�↑↓01� + c4�↓↓11� + c5�↓↓00� ,

�24�

��g� = d1�↑↓00� + d2�↓↑00� + d3�↓↓10� + d4�↓↓01� ,

�25�

we find that Eq. �22� is still invariant under evolution under

ÛA � ÛB, where

E���g�� = �c5�2��c1�2 + �c2�2 + �c3�2 + �c4�2� , �26�

E���g�� = ��d1�2 + �d3�2���d2�2 + �d4�2� . �27�

As we have discussed in Sec. III, both states ��g� and
��g� are composed by states belonging to two different evo-
lution manifolds. The corresponding entanglement measures
in Eqs. �26� and �27� are just products of the total excitation
probabilities of the two manifolds. As expected, E is not
invariant for a more general state, e.g., a superposition of the
states �24� and �25�, since it would then consist of states
associated with four evolution manifolds. �Such states would
in general not lead to states of the X class after tracing out
the fields, whereas ��g� and ��g� do, for reasons explained in
Sec. IV.� However, we believe that similar invariants to that
expressed in Eq. �22� could be found, even for states more
general than ��g� and ��g�, but it is then likely that they
should be written as functions of higher powers of the four
different excitation probabilities while the measure �20� con-
tains only direct products of probabilities.

The generic class of states ��g� and ��g� are the most
general class of states that do not involve more than two
evolution manifolds, and that simultaneously stay in the cor-
responding two-qubit subspaces. In contrast, e.g., the two-
excitation state �↑↓10� will excite the state �↓↓20� under the
JC Hamiltonian. The latter state cannot be described in the
four-qubit context and must therefore be excluded from the
generic states if one has such a context in mind. It should be
noted that in the dissipative picture, the states ��g� and ��g�
model coupling to excited reservoirs, and in general the
states cannot, at any time, be written as a product state be-
tween the atoms and the fields. Hence, some entanglement
between atom and fields is already there at the start of the
evolution. The states ���0�� and ���0�� are special cases of
��g� and ��g� where the atoms couple to initially empty
reservoirs, a relevant but special case.

When we study the terms in Eq. �22�, we have seen that,
for both states, any single term is zero only at discrete times.
This means that at all times, except a discrete set of times of
zero measure, all parts of the system become entangled in
some degree through excitation transfer. This phenomenon is
generic for entangled systems and has, e.g., been used to
entangle subsystems that have never interacted through so-
called entanglement swapping �19�. In a dissipative system,
this entanglement spread is of course detrimental and may
lead to complete elimination of entanglement.

VI. DISCUSSION

In this work we have discussed the entanglement dynam-
ics for two excited atoms coupled to cavity field modes
through a Jaynes-Cummings Hamiltonian. We have dis-
cussed both the closed-system dynamics and the dynamics if
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the cavities are viewed as reservoirs. We have discussed why
different initial atomic states face different fates �asymptotic
vs sudden decay� with respect to their entanglement under
dissipation. We have also shown that, as expected, there ex-
ists an entanglement invariant valid for a large class of so-
called X states in the closed system. The invariant shows that
the entanglement spreads out over all the degrees of freedom
of the whole system. When treating the fields as reservoirs
�i.e., when tracing over the fields�, some of the entanglement
transferred to the cavities is ignored. The state ���0�� trans-
fers its excitation over a larger set of distinguishable field
states ��01�, �10�, and �11�� than the state ���0�� �that excites
only the field states �01� and �10��, and therefore it is not so

surprising that the former state may lose all of its entangle-
ment through even a finite dissipation.

It would be interesting to find an invariant for every state
in the double JC system Hilbert space. We think that with a
similar entanglement measure, but including higher powers
of the excitation manifold probabilities, such an invariant
could be found.
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