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We study collective excitations of rotational and spin states of an ensemble of polar molecules, which are
prepared in a dipolar crystalline phase, as a candidate for a high-fidelity quantum memory. While dipolar
crystals are formed in the high-density limit of cold clouds of polar molecules under one- and two-dimensional
trapping conditions, the crystalline structure protects the molecular qubits from detrimental effects of short-
range collisions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence
mechanisms, and estimate their effects on gate operations, when a molecular ensemble qubit is transferred to
a superconducting strip line cavity (circuit QED). In the case of rotational excitations coupled by dipole-dipole
interactions we identify phonons as the main limitation of the lifetime of qubits. We study specific setups and
conditions, where the coupling to the phonon modes is minimized. Detailed results are presented for a one-

dimensional dipolar chain.
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I. INTRODUCTION

In recent presentations [1,2] we have studied trapped po-
lar molecules strongly coupled to a superconducting micro-
wave strip line cavity, which represents a basic building
block for hybrid quantum circuits, interfacing high-fidelity
molecular quantum memory with solid state elements such
as Cooper pair boxes (CPB) [3-6], superconducting flux qu-
bits [7], or quantum dots [8—11]. This suggests a hybrid
quantum computing scenario with the goal of combining the
advantages of quantum optical and solid state implementa-
tions by interfacing molecular and solid state qubits in com-
patible experimental setups [12]. Polar molecules provide
two key features for these interfaces. First, the long coher-
ence times for qubits stored in polar molecules is based on
identifying long-lived rotational or electron and nuclear spin
states in the electronic and vibrational ground state manifold.
Second, the strong coupling of molecular qubits to the mi-
crowave cavity is based on transitions between rotational ex-
citations (in the few GHz domain), with large electric dipole
moments of the order of a few debyes. In this context, Ref.
[1] is a study of the storage of single polar molecules on
electric molecular chips ~100 nm above a superconducting
strip line cavity, resulting in a single molecule—single photon
coupling g of up to 1 MHz. Here, the strong coupling to the
microwave cavity provides the additional features of cooling
of the center-of-mass motion of molecules and read out of
the molecular qubits. In Ref. [2] a setup was studied (see Fig.
1), where a qubit was stored in the collective spin (or rota-
tional) excitation of a thermal ensemble of N cold polar mol-
ecules, with the advantage of an enhanced collective cou-
pling gy= g\W of the qubit to the cavity (typically of the
order of 1 to 10 MHz for N=10*—10° and trapping distances
~10 wm), but at the expense of introducing dephasing of the
qubit due to state-dependent collisions.

In the present work we will investigate a molecular en-
semble quantum memory in the form of a dipolar (self-
assembled) crystal. Formation of a molecular dipolar crystal
(MDC) is based on inducing electric dipole moments ;4 of
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polar molecules with an external dc field, which gives a
Wi g/ 4megr = Cs/r* interaction between molecules at dis-
tance r. For molecules confined to one dimensional (1D) or
two dimensional (2D) by an external trapping potential and
dipole moments aligned perpendicular, this interaction is re-
pulsive and allows the formation of a high-density crystal,
where molecules perform small oscillations around their
equilibrium positions, reminiscent of a Wigner crystal of
trapped ions [13]. In this crystalline phase, close encounter
collisions are strongly suppressed in comparison with ther-
mal ensembles.

The paper is organized as follows. We start in Sec. II with
a brief review on molecular ensemble qubits and the hybrid
quantum processor proposed in Ref. [2]. In Sec. IIT we then
study the dynamics of collective rotational excitations in a
MDC due to state-dependent dipole-dipole interactions and
the coupling to motional degrees of freedom. We derive a
general model for this system and calculate the resulting
limitations for the lifetime of ensemble qubits stored in rota-
tional degrees of freedom. In Sec. IV we extend our model to
molecules with an additional spin degree of freedom and
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FIG. 1. (Color online) (a) Schematic picture of a hybrid quan-
tum computer consisting of Cooper pair boxes (CPB) representing a
solid state quantum processes and molecular ensemble qubits
(MEQ) acting as long-lived quantum memories. Quantum informa-
tion is shuttled between two systems via a superconducting strip
line cavity. (b) Dipolar crystal of polar molecules. Under 1D (or
2D) trapping conditions and dipole moments aligned by a strong
electric field, repulsive dipole-dipole interactions stabilize the mol-
ecules against short-range collisions. See text for more details.
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show how we can realize a highly protected quantum
memory using spin-ensemble qubits in a MDC. In Sec. V we
discuss in some detail a potential experimental implementa-
tion of a MDC using electrostatic traps, where in particular
we study the effects of an additional longitudinal confining
potential. A summary and concluding remarks are given in
Sec. VL.

II. OVERVIEW AND BACKGROUND MATERIAL

Before introducing our models of ensemble qubits in di-
polar crystals in detail we find it useful to summarize briefly
ensemble qubits and their coupling to microwave cavities,
and dipolar crystals, to introduce and motivate the models
for rotational and spin qubits described in the following sec-
tions.

A. Molecular ensembles coupled to a superconducting
strip line cavity

We consider the setup of Fig. 1(a), where a molecular
ensemble is coupled to a superconducting microwave cavity.
In addition, the cavity could be coupled strongly to a CPB
(or a quantum dot) representing a circuit QED system [6]. As
discussed in detail in Sec. III B, molecular spectroscopy al-
lows us to identify long-lived rotational states |g) and |e)
within the electronic and vibrational ground state manifold.
We assume that the ensemble of N polar molecules is pre-
pared initially in the state |g,...gy) and is coupled to a single
mode of a superconducting microwave cavity with a fre-
quency w, close to the rotational transition frequency w,,.
The dipole coupling between the molecules and the cavity
can then be written in the form

Hcav—mol = ﬁg \"%(RZC + C-I-Re) s (1)

with g the single molecule vacuum Rabi frequency and ¢ (c")
the cavity annihilation (creation) operator. The collective
molecular operator R! creates symmetric Dicke excitations
|n,) with the lowest two states

0.)=1g1 .- &n)
|1€> ERZ|06>= (1/\”N)2 |g1 ... € ...gN>,

representing an ensemble qubit, in addition to higher excita-
tions of the form [2,)=(1/v2)(R})?|0,), etc. For low number
of rotational excitations the operator R, fulfills approximate
bosonic commutation relations [RE,RZ] =1. As noted above,
for typical experimental parameters the collectively enhanced
coupling strength gy=g\N can be of the order of 10 MHz,
exceeding experimentally demonstrated decay rates of high-
Q superconducting strip line cavities by several orders of
magnitude [14,15].

For a single molecular ensemble coupled to a single CPB
the total Hamiltonian for the hybrid system is

Hgy= Hepp + hw.cle+ ﬁwegRZRe +hg(o.c+o.ch)
+hgy(Ric+c'R,). (2)

Here terms in the first line represent the bare Hamiltonian
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operators for the CPB, the cavity and the molecular en-
semble. The second line of Eq. (2) contains the Jaynes-
Cummings-type interaction between cavity and CPB with a
vacuum Rabi frequency g, (see Ref. [6]) as well as the
molecule-cavity interaction given in Eq. (1). Interactions can
in principle be controlled by tuning frequencies in and out of
resonance or, as we explain later in this paper (see Sec. V D),
by using a switchable Raman process. Hamiltonian (2) is
readily generalized to multiple molecular ensembles and
CPBs.

In summary Hamiltonian (2) provides the basic ingredient
to convert the state of the CPB into a cavity photon super-
position state |,)=a|0,)+B|1,.) [16], and in a second step to
map it on an ensemble superposition

(e]0.) + B1:))[0,) < [0)(ef0,) + BI1.)). 3)

and vice versa. As discussed in Ref. [2] coupling of a mo-
lecular ensemble qubit (MEQ) to higher excitations |2,), etc.,
can be suppressed by employing the CPB as a tool to gener-
ate single photons for state preparation and as a nonlinear
phase shifter to construct two qubit gates between different
molecular ensembles.

For molecular ensembles to qualify as a quantum memory
we not only need fast read/write operations but we also de-
mand that the lifetime of an arbitrary ensemble superposition
|,)=al0,)+B|1,) is substantially longer than coherence
times of solid state qubits. The lifetime of ensemble qubits is
limited by the single molecule decoherence time as well as
mutual interactions. With expected single molecule decoher-
ence rates of the order of a few Hz [1] we identify state-
dependent elastic and inelastic collisions [2] between mol-
ecules as the fundamental limitation of the lifetime of a
molecular ensemble quantum memory stored in a thermal
gas of molecules.

B. Dipolar crystal

To avoid collisional dephasing while still keeping the ben-
efit from a collectively enhanced coupling we consider mo-
lecular ensemble qubits prepared in a high-density crystalline
phase under 1D or 2D trapping conditions. Dipolar crystals
of molecules have recently been studied in Ref. [17], where
it has been shown that with dipole moments aligned by an
external dc electric field molecules are stabilized by repul-
sive dipole-dipole interactions V,;=C5/r* in a plane perpen-
dicular to the bias field. Attractive interactions along the re-
maining direction are suppressed by a strong transverse
confinement [17,18]. Under such conditions the low-
temperature physics of the molecules is characterized by the
dimensionless parameter

_Epo _ Mind (477€0a7) _Gm @)
Ekin ﬁzlma% ﬁzao ’

which is the ratio between potential energy and kinetic en-
ergy for molecules of mass m for a given density n
=1/(ay)? and dimension d=1,2. For y> 1 the dipolar repul-
sion wins over kinetic energy leading to the formation of a
crystalline phase, i.e., small oscillations of the molecules
around their equilibrium values. The formation of a dipolar
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crystal at high densities, i.e., in the limit where collisions are
most damaging is in contrast to the familiar Wigner crystal
for trapped ions or electrons where crystallization occurs at
low densities. Numerical Monte Carlo simulations
[17,19-21] have predicted a crystalline phase for y=1 in 1D
and y=20 in 2D. For typical experimental numbers a stable
crystal of polar molecules is found for a lattice spacing a, of
a few times 100 nm.

C. Ensemble qubits in dipolar crystals

In the following sections we address the question whether
it is possible to achieve a stable molecular crystal and at the
same time encode quantum information in ensemble super-
positions |i,)=a|0,)+B|1,). In this context we distinguish
between two types of ensemble qubits: (i) rotational qubits,
i.e., the states |0,) and |1,) introduced above, and (ii) spin
qubits. In Sec. III we first consider rotational ensemble qu-
bits which are directly affected by state-dependent dipole-
dipole interactions and decay by phonon-induced scattering
processes out of the symmetric state |1,). In Sec. IV we
extend our model to molecules with an additional spin de-
gree of freedom and study ensemble qubits encoded in col-
lective excitations of two spin states |g) and |s) within the
same rotational manifold. As spin degrees of freedom are
essentially unaffected by dipole-dipole interactions, spin-
ensemble qubits in a MDC form indeed a highly protected
quantum memory. However, a degrading of the spin-
ensemble quantum memory due to dipole-dipole interactions
still occurs during gate operations when molecules are (vir-
tually) excited into the rotational state |e). To estimate the
resulting gate fidelities under realistic experimental condi-
tions we focus in Sec. V on a specific implementation of a
1D dipolar crystal and include effects of an additional longi-
tudinal confining potential into our model.

III. ROTATIONAL ENSEMBLE QUBITS IN A
HOMOGENEOUS DIPOLAR CRYSTAL

In this section we consider the properties of ensemble
qubits with N molecules prepared in a crystalline phase, and
qubits encoded in collective rotational excitations. Our goal
is to study the dynamics, and thus decoherence, of an initial
rotational ensemble qubit |#,)=a|0,)+ B|1,) under the influ-
ence of dipole-dipole interactions. We start with the simplest
possible model of a homogeneous 1D or 2D crystal, return-
ing to questions of experimental implementations and re-
quirements (e.g., questions of transverse and longitudinal
trapping potentials, and the choice of particular molecular
states) at a later stage.

A. Hamiltonian

Let us consider an (infinite) homogeneous dipolar crystal
of a given density corresponding to a lattice spacing ay,
which is initially prepared in the qubit state [0,)=|g;...gn).
We denote by r? the classical equilibrium positions of the
molecules, which form a linear chain in 1D or a triangular
lattice in 2D. As discussed in Sec. II, the stability of the
crystal requires y=Cym/h%ay> 1, where now C;= ,ué/47'r€0
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is determined by w,, the induced dipole moment of state lg).
The dynamics of the system including internal and motional
degrees of freedom is given by the Hamiltonian

2
Hypc= 2 (;)_rln + hweg|ei><ei|> + Vaa{rd), (5)

with 1D or 2D position and momentum operators denoted by
r; and p;, respectively, and w,, the transition frequency be-
tween states |e¢) and |g). The Hamiltonian (5) is the sum of
the kinetic energies of the molecules, a bare molecular
Hamiltonian for the internal (rotational) states, and the
dipole-dipole interaction \A/dd({r,-}) which couples the internal
and motional degrees of freedom. With u denoting the elec-
tric dipole operator of the molecule the dipole-dipole inter-
action is given by

V) = 3 P30 )0 1)
8T€y £, Ir;— l'j|

where n;;=r;;/ |r,-j| is the unit vector pointing along direction

rj=r;,—T;.

To study the dynamics of ensemble states |0,) and |1,)
under the action of Hypc we proceed as follows. Since in the
crystalline phase molecules are located around equilibrium
positions r,-%r?, we describe in a first step the action of the

ij

internal operator V,= Vdd({r?}) on the qubit state |1,). As the
dipole-dipole interactions depend on the actual choice of ro-
tational states |g) and |e) we start with a short overview on
rotational spectroscopy of polar molecules in Sec. III B. In
Sec. III C we then discuss the action of dipole-dipole inter-
actions on ensemble states |0,) and |1,). We find that at least

in a homogeneous crystal the only effect of V, is an energy
shift for state |1,) which does not destroy the decoherence of
a qubit state |,). Therefore, in Sec. Il E we include molecu-
lar motion and write the position operator of each molecule
as r,»=r?+x,-, with x; accounting for small fluctuations around
the classical equilibrium positions . By expanding V,,({r;})
in powers of x; we obtain the dominant contributions for the
interactions between internal and external degrees of free-
dom which, for example, account for state-dependent forces
on the molecules due to a difference of the induced dipole
moments of states |g) and |e). The analysis of the resulting
model given in Sec. III F finally allows us to estimate the
ensemble quantum memory lifetime, 7,, for a wide range of
system parameters.

B. Rotational spectroscopy

Since the interactions between molecules depend on the
actual choice of rotational states |g) and |e) we will first
summarize the rotational spectroscopy of polar molecules in
the presence of external electric fields [22]. To keep the dis-
cussion on a basic level we consider in this section only
molecules like SrO or CsRb with a closed electron shell and
a '3 electronic ground state. In Sec. IV we extend our model
to molecules with additional spin degrees of freedom.

At sub-Kelvin temperatures with electronic and vibra-
tional degrees of freedom frozen out the energy spectrum of
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FIG. 2. (Color online) (a) Rotational energy spectrum for zero
bias field £,=0 (solid lines) and the corresponding shifted energy
levels at E,=3B/ u, (dashed lines). (b) Energies spectrum and (c)
induced dipole moments u;={i|u.|i) for the lowest few eigenstates
as a function of the applied bias field E,,. Different curves for eigen-
states [N, My)g, are labeled by (N,[My]).

a 'S molecule is well described by the rigid rotor Hamil-
tonian H,,=BN? with N the angular momentum of the nuclei
and B the rotational constant which is typically in the order
of several GHz. In the presence of an external electric bias
field E,, polar molecules interact with the field via the dipole
coupling —uE,, with u the electric dipole operator of the
molecule. In the following we choose our z axis along the
direction of the bias field, i.e., E,=E,e, and the total Hamil-
tonian is Hy=BN*- w.E,,.

For a given electric field we label eigenstates of H,, as
N, M N>Eb with My the eigenvalue of the operator N,. In the
field free case (E,=0) the eigenstates [N, M), are the usual
angular momentum eigenfunctions and the corresponding
anharmonic energy spectrum, Ey=B(N+1)N, with energy
levels (2N+1)-fold degenerate is shown in Fig. 2(a). In the
presence of an electric bias field (Ej, # 0) the dipole coupling
mixes different angular momentum eigenfunctions and gen-
eral eigenstates |N,M N>Eb are superpositions of states
|N,My), with different N but with the same M, quantum
number. The modified rotor spectrum as a function of the
applied electric field E;, is shown in Fig. 2(b). The spectrum
retains its anharmonicity over a wide range of electric fields
values and only for E,> B/ ug with pu, the axis fixed dipole
moment of the molecule rotational excitations become ap-
proximately harmonic.

The mixing of different rotational states |N,My), in the
presence of an electric field corresponds to an alignment of
the molecules along the field direction, and in general an
eigenstate |#)=|N,My), exhibits a finite-induced dipole
moment {¢p|u.|¢) # 0 along the z direction. The magnitude
and sign of the induced dipole moments depend on the spe-
cific state and the strength of the bias field E,. The induced
dipole moments for the lowest rotational states are plotted in
Fig. 2(c) as a function of the electric field E,,. We find that for
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an axis fixed dipole moment uy=~5-10 D and moderate
electric fields, E,=~2B/ u, which typically corresponds to a
few kV/cm, induced dipole moments of a few debyes can be
achieved. Note that in general induced dipole moments of
nondegenerate states are different, although there are certain
values of the bias field, so-called “sweet spots” [1], where
induced dipole moments for two states are the same.

The anharmonicity of the rotor spectrum for low and
moderate electric fields allows us to choose two rotational
states, e.g., g)=|N,MN>Eb and |e)=|N’ ’M;V>Eb’ which are se-
lectively coupled by a dipole transition to the fields of a
microwave cavity of appropriate frequency and polarization.
Selection rules for dipole transitions require AMy=0, =1,
while the additional restriction AN= =1 applies only for van-
ishing E,. In the following the states |g) and |e) form our
truncated single molecule basis which defines our ensemble
states |0,) and |1,), as introduced in Sec. L

C. Dipole-dipole interactions

So far we have discussed ensemble qubits on the level of
independent molecules. As the crystalline phase is stabilized
by mutual interactions between molecules, which for differ-
ent internal states depend, e.g., on the different induced di-
pole moments, we proceed to study dipole-dipole interac-
tions given in Eq. (6).

Consider the action of Vdd on the qubit states. For fixed
positions r; we define the operator acting on the internal
states,

DAij(nij) = p=3ng - pm)(ng; - ). (7)

We will simplify D, ;(n;;) under the assumption that its action
is confined to the two molecule subspace H,»j={|e,»,e-),e,»
=g,e} and that it is independent of n;; when molecules are
confined in the (x,y) plane. This simplification is possible
under the following conditions. First, due to the compara-
tively large separation between molecules of |r,-j| =100 nm
the dipole-dipole interaction is a weak perturbation on the
scale of the rotational spectrum (~B). This is true for most
choices of states |g) and |e) and allows us to restrict the

action of the operator ﬁij(nij) to the subspace H;;. There are
exceptions, e.g., the combination |g)=|N,0) and |e)=|N",
+1) where the degeneracy between the states |N’,1) and
|N " —1) would lead to resonant transitions out of H;;- We can
nevertheless include those combinations of states in our dis-
cussion when we assume that the degeneracy is lifted, e.g.,
by additional ac microwave fields. Our second assumption is
that with molecular motion restricted to the (x,y) plane, i.e.,

n;; L e, the operator 55;(“5;) is independent of n;;. This con-
dition is fulfilled for |g) and |e) being eigenstates of N.. For
other states, e.g., |¢) as eigenstate of the operator N,, the

directional dependence of 55;(“5;) would lead to an addi-
tional x/y dependence in the models for 2D crystals derived
below. For simplicity we ignore these cases in the following
discussion.

With these assumptions we decompose DAij=DAEJ'.)+DAl(.;).
The first term, DAEJ'.), describes a state-dependent interaction
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due to a difference in the induced dipole moments, Su=pu,
— g, With g;=i| . |i). It is diagonal in the qubit basis and we
can write it as

Df) = (ol + SuleXe) (el + Sulee). ()
The second term, DAY), accounts for resonant exchange of
rotational quanta between molecules. Introducing a Pauli op-
erators notation o’ =|e;)(gj, etc., it is given by

DAEP—D(O'O' +0'cr) )

2, where 5=1 for ro-
tational states of equal quantum number M and »=-1/2 for
My=My=1.

While the diagonal operator D(l) acting on the qublt states

leads to a state-dependent energy shlft the operator D" i ﬂlpS
the rotational excitations between neighboring molecules.
When motional degrees of freedom are included, both pro-
cesses result in state-dependent forces on the molecules.

D. Effect of dipole-dipole interactions for
fixed lattice positions

Let us consider the simple situation where the molecules
are frozen at lattice positions r In this case the dipole-
dipole interaction takes on the form

. 1 D;;
V= — 55 (10)

877601#/ |I' - r0|3

In view of [V,,RZ]~RZ both ensemble qubit states |0,) and

[1,) are eigenstates of \7,. Therefore, apart from a small en-
ergy shift, the internal part of the dipole-dipole interactions
does not limit the lifetime of the ensemble qubit. This state-
ment, of course, ignores inhomogeneity and finite size effects
which depend on the specific experimental setup (see Sec.
V). However, these imperfections can in principle be avoided
and do not constitute a fundamental restriction to ensemble
quantum memories in dipolar crystals. We conclude that in
our model state-dependent forces and the resulting entangle-
ment with motional degrees of freedom is the primary source
of decoherence.

E. Effect of dipole-dipole interactions including
motional couplings

We return to the full Hamiltonian Hype given in Eq. (5)
which includes internal as well as external degrees of free-
dom.

1. Decomposition of the dipole-dipole interactions
acting on internal and motional degrees of freedom

With the assumption that the dipole-dipole interaction is
confined to the subspace H;;={|€;. €;),=g,e}, we write

E1U+K

8e €0i+j |l‘ - |

Vudrd) = >, (11)

where we introduced the dimensionless operator IA(U by
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120+ K. (12)

This decompositions separates Vdd into a part which is inde-
pendent of the internal state and describes purely repulsive
interaction between molecules which stabilize the crystal. All

state-dependent properties of Vdd are contained in the opera-
tor IA(U given by

K= elle)e] +le)e) + k(afa; + 070%).  (13)

Here e=(,—u,)/ p, is the normahzed difference of induced
dipole moments, and x=D,/ ,u is the normalized coupling
constant for resonant exchange processes. Note that in Eq.
(13) we have omitted the term €[e;,e;)(e;,¢;| which is neg-
ligible for a low number of rotational excitations, as is the
case for our initial ensemble qubit. Therefore, for a given
choice of states |g) and |e) we characterize dipole-dipole
interactions by the induced dipole moment of the ground
state u,, and the two dimensionless parameters € and K

We rewrite the molecular position operators as r;= r +X;
and expand Eq. (11) in x;, so that the dipole-dipole interac-
tion splits into three contributions,

Vaded) = Vi+ Vi(ixh) + Vi (x.1), (14)

with V, (V) acting on internal (external) degrees of freedom,

respectively, while \A/im contains all remaining terms which
couple the external and internal dynamics.

2. Excitons: Rotational excitations hopping on the lattice

Let us first return to the internal operator f/, defined in Eq.
(10), where by neglecting a global energy shift we can re-
place operators D, ;i by MgK, ;- The operator K given in Eq.
(13) preserves the total number of molecules i 1n state |e), but
allows a propagation of rotational excitations on the lattice.
In the limit of a low number of rotational excitations we

diagonalize 17, by introducing a set of collective operators RIT(
defined by

R{J0) =10 = (1NNZ g, ... e;... g,
J
with a wave vector k restricted to the first Brillouin zone of
the lattice. The operators Ry fulfill (approximate) bosonic
commutation relations, [Rk,Rli,] = Sxk’» and in the following
we refer to states created by R; as excitons. This nomencla-
ture is based on the similarities of rotational excitations with
localized Frenkel excitons in organic crystals [23]. We then
identify our qubit state |1,) as associated with the zero mo-
mentum exciton, RZ ERLO. Including the energy offset 1w,
the dynamics of these excitons is given by the Hamiltonian

Hee= 2 hogleXe]+ Vi= 2 ERRIR,.  (15)
i k

The energy band of rotational excitations, E(Kk), is given in
Eq. (21) of Sec. III F where we will discuss it in more detail.
For the moment we simply note that Hamiltonian H, is
diagonal in k, such that [H,R']=E(0)R! as already
pointed out at the end of Sec. III C.
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3. Phonons

In a next step we consider the dynamics of external de-
grees of freedom of the molecules which is determined by

and the

=3,p?/2m. Since the first-order expansion of Ve({x}) van-
ishes due to the definition of equilibrium positions r?, the
first nonvanishing contribution is of second order in x; and
given by

the interaction Vy({x}) Kinetic energy Hy,

[x; - x j]2

3:U«g E S[(x; - X;) - n?,~]2—
TEY j+j |ri _r;)|5

Vil = (16)
The quadratic interaction between molecules causes collec-
tive oscillations (phonons) in the crystal described by the
Hamiltonian Hyon=Hyin+ Ve({x)). As H o is simply a set
of coupled harmonic oscillators it can be written in diagonal
form

Hypon= > hoy(@)al(q)ay(q). (17)
q.\

Here we introduced the annihilation (creation) operators
a\(q) (a;[(q)) for phonons of quasimomentum ¢ and fre-
quency wy(q). In 2D, the index \ labels the two different
phonon branches. The phonon modes in the dipolar crystal
are acoustic phonons. A discussion of the frequency spec-
trum is given in Sec. III F.

4. Exciton-phonon interactions

The remaining terms of V,,({r;}) which cannot be decom-
posed into purely internal or external operators are summa-

rized in \A/im({x,»}). The first nonvanishing order of Vint({x[}) is
linear in the operators X; and is given by

'“ _.L
877601#/ | 0 0|5

Vind{x}) = -x) @Ky (18)

It describes a state-dependent force on the molecules and
entangles internal and external degrees of freedom. In the
following we introduce a new symbol H,, =V, ({x;}) and
rewrite Eq. (18) in terms of exciton operators Ry and the
phonon operators a,. We obtain an interaction Hamiltonian
of the form

Hiy= 2 My(q.K)[a\(q) +af(- QIR R,  (19)
k.q.\

which describes scattering processes from state |K) into state
|[k+q) under the absorption (emission) of a phonon of qua-
simomentum q (—q). We postpone a discussion of the ex-
plicit form of the coupling matrix elements M, (q,k) to Sec.
I F.

5. Summary

In summary, we have shown that the dynamics of a mo-
lecular dipolar crystal given by Hypc in Eq. (5) contains the
three contributions,

Hyipe = Hexe + thon + Hiys

with

PHYSICAL REVIEW A 76, 042308 (2007)

a) J(k) C) )1
2 4
1
k(i'o
-7 m 2
-1
-
'Y qa ™
b) f(k) ’
6
-2
4
2
k(.lu -4

FIG. 3. Dipolar crystal in 1D: (a) Dimensionless band structure
J(k) [see Eq. (21)]. (b) Dimensionless phonon spectrum f(g) [see
Eq. (23)]. (c) Function g(g) which enters in the expression of cou-
pling matrix elements M(q,k) given in Eq. (25).

Hey. = E E(k)RiRk’
k
thon = 2 ﬁw)\(q)ai(q)a)\(q),
q.\

Hiy= 2 M\(q.K)[a\(q) + a)(- Q)IR], Ri.  (20)
k,q,\

which is the (minimal) model which describes the evolution
of ensemble qubits in a self-assembled molecular dipolar
crystal. While explicit expressions for the energy dispersion
E(k), the phonon spectrum w,(q), and the scattering matrix
elements M,(q,k) are given in Sec. III F for the 1D and 2D
crystal, we first note the general structure of Hypc. The en-
semble operator RZ is an eigenoperator of H.. as well as
H o, and therefore, apart form an energy shift, the first two
lines of Eq. (20) preserve the coherence of a qubit superpo-
sition |¢,)=a|0,)+pB|1,). The third line of Eq. (20), Hiy,
leads to phonon-assisted transitions from the symmetric qu-
bit state |1,)=|k=0) into orthogonal states |k # 0). This loss
process is the dominant source of decoherence for a qubit
state |¢4,) and in Sec. Il G we calculate the resulting lifetime
T, for the ensemble quantum memory.

F. Molecular dipolar crystals in 1D and 2D

In this section we discuss the exciton dispersion E(k), the
phonon spectrum w,(q), and the coupling matrix elements
M,(q,k) which determine the properties of Hamiltonian
Hype given in Eq. (20). For a lattice spacing a, we express
those quantities in terms of the dipole-dipole energy U,
—,ug/ (47Teoao) and the dimensionless parameters 7, €, and k.
Our focus is placed on the 1D crystal where we derive ana-
Iytic expressions for the relevant quantities. For the 2D crys-
tal we present numerical results and identify the main differ-
ences compared to the 1D case. The derivations of the
following results can be found in Appendix A and the main
results are summarized in Fig. 3 (1D) and Fig. 4 (2D).
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FIG. 4. (Color online) Dipolar crystal in 2D: (a) Dimensionless
band structure J(Kk), [see Eq. (21)]. (b) Dimensionless phonon spec-
trum fy(q) [see Eq. (23)]. Band structure and phonon spectrum are
plotted for k vectors along the symmetry lines of the first Brillouin
zone with symmetry points indicated in the inset of plot (a).

1. Excitons

The energy spectrum of excitons in the dipolar crystal,
E(K), contains three contributions,

E(k) =hw,+ Uyl el(0) + kJ(K)], (21)

where the dimensionless band structure J(K) is defined in
Appendix A in Eq. (A3). While a finite difference in the
dipole moments, €# 0, only causes a shift of the transition
frequency with J(0)=2¢(3) in the 1D case and J(0)
=11.034 in 2D, the resonant exchange processes propor-
tional to « lead to the formation of an exciton band structure
as shown in Figs. 3 and 4. For the 1D crystal the explicit
expression for J(k) is given in Appendix A in Eq. (A4) and
we find that in the long-wavelength limit k— 0 it exhibits a
nonanalytic behavior,

J(k) = J(0) = 3/2[ 1 = 3/2 In(kag)](kay)?, (22)

which is a consequence of the slow decay of dipole-dipole
interactions. For the 2D crystal the long-range character of
dipole-dipole interactions is even more apparent and results
in a linear dispersion E(k)—E(0) ~ |k| for small |k|. The total
width of the energy band is AE=7{[(3)/2]|«|U,, in 1D and
AE=13.37|k|U, in 2D. Note that for rotational states with
k positive, the band structure is “inverted” and the long-
wavelength excitations have the highest energy.
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2. Phonon spectrum

As shown in Appendix A the spectrum of the acoustic
phonon modes in the self-assembled dipolar crystal is of the
general from

1
(@) = \[;Uddfx(qy (23)

In the 1D crystal the dimensionless function f(g) defined in
Eq. (A8) has a long-wavelength limit f(g) = /12{(3)qa,, and
a maximum value of f(m)=+/93{(5)/2=6.94. The phonon
spectrum is therefore characterized by the sound velocity ¢
=412£(3)/ yayU,,/h and the Debye frequency, wp= (),

hop= 93¢5) Uy (24)
2y
The full phonon spectrum is plotted in Fig. 3(b). In the 2D
crystal there are two acoustic phonon branches, A=1,2 and
the corresponding dimensionless spectra f)(q) are plotted in
Fig. 4(b). In 2D the maximum phonon frequency is fiwp
=8.22U,,/ Y.

3. Exciton-phonon interactions

Excitons and phonons interact via H;,, given in the second
line of Eq. (20). We write the coupling matrix element as

U 1
M\(q.k) = y—iﬁ \/ M{%(q) + gk +q) - g\ (K]},
(25)

where we introduced an additional dimensionless function
gx(q) defined in Appendix A in Eq. (A12). For the 1D crystal
the explicit expression of g(g) is given in Eq. (A13) and
plotted in Fig. 3(c). The matrix element M,(q,k) contains
two contributions. The first is proportional € and describes a
phonon-induced (on-site) energy shift of a molecule in state
le) due to a difference in the induced dipole moments. This
type of interaction does only depend on the transferred mo-
mentum ¢ and is familiar from polaron models discussed in
solid state physics [24]. The second contribution proportional
to « describes phonon-induced hopping of excitons. The cou-
pling matrix elements for this process also depend on the
initial exciton state [k). In the long-wavelength limit, |q
—0, both contributions scales as ~\|q|, and scattering
events with low momentum transfer are suppressed.
Without going into the details of M,(q,k) we point out
two properties which are relevant for the discussion below.
First, for long-wavelength excitons the total strength of the
exciton-phonon interaction is in the order of

1 1/4
k| — 0: O(Him)=|e+K|Udd(;/> , (26)

and therefore only weakly suppressed by the parameter 7.
This means that in general the exciton-phonon interaction
has a considerable effect on the dynamics of a molecular
dipolar crystal even deep in the crystalline phase with y
> 1. However, for a specific choice of rotational states and
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values of the electric bias field where e+x=0 is fulfilled,
long-wavelength excitons completely decouple from the
phonon modes. We come back to this point at the end of Sec.
11 G.

G. Lifetime of rotational ensemble qubits

Based on the structure of Hype given in Eq. (20) and the
discussion of its properties in Sec. Il F, we finally return to
the original question of the lifetime of an ensemble qubit
prepared in a state |i,)=a|0,)+B|1,). As already mentioned
above we find that the dominant decoherence mechanism
arises form the decay of the state |1,) due to phonon-assisted
scattering into orthogonal states |k # 0). This means we can
identify the lifetime of the ensemble quantum memory, 7,,
with the lifetime of the state |1,).

1. Ensemble qubit decay

In the following we consider the situation where at some
initial time #=0 the system is prepared in the state p,
=0,){0,| ® p; with p; the equilibrium density operator of the
phonon modes for a temperature 7. At time t=0" we instan-
taneously excite the molecules into the qubit state |1,) and
calculate probability P,(¢) to find the system in state |1,)
after a waiting time 7. As we are only interested in times ¢
where P,(1) is still close to 1, we can use second-order per-
turbation theory and obtain

P(1) =1 —J dlf dTE [M\(a,0)[{[N(w\(@) +1]

Xcos[ Q7 (q) 7] + N(wx(Q))COS[QWI) 7]} (27)

Here N(w)=1/[exp(hw/kgT)—1] is the thermal occupation
number for phonons of frequency @ and Q*(q)=[E(0)
—E(q)]/f£w(q). For very short times Eq. (27) leads to a
quadratic decay of the excited state probability,

P,(t) =1-W1, (28)

with a characteristic rate W defined by
! 2
=22 M@ 0PN (@) + 11 (29)
q.\
For long times the decay of P,(¢) turns into a linear function
of ¢,

P()=1-T1, (30)

with the decay rate I' given by Fermi’s golden rule,
2 )
=3 2 [My(@,0)H[M(oy(@) + 1180 (g) - w,(@)
q.\

+N(w,\(q)) (2(q) + w\(q))}. (31)

The crossover time ¢, between the quadratic and the linear
regime is roughly given by (¢.)"' ~max{AE/%,wp}, with the
exciton bandwidth AE and the phonon Debye frequency wy,
discussed in Sec. III F. As long as the associated decay prob-
ability PC=W2tf is much smaller than 1, the application of
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Fermi’s golden rule is valid and we obtain a lifetime 7,
=1/T". We refer to this case as the weak coupling regime.
Otherwise, for P.~1 or in the strong coupling regime, the
qubit decay is determined by the quadratic formula given in
Eq. (28) and we identify T,=1/W. At low temperatures we
ﬁnd that when the exciton band width AE is larger than fiwp,

=~ (e+K)*/ (kK> 7) while in the opposite case P~ (e+«)>.

2. Quadratic decay: Strong coupling regime

In the strong coupling regime the initial nonenergy con-
serving transitions out of the qubit state |1,) already lead to a
strong quadratic reduction of P,(f). The corresponding rate
W defined in Eq. (29) can be written as

Udd(6+K)2 ( kB )
— d\ T= \'}’U_

W= —F—
h* o \y dd

(32)

with d=1,2 the dimension of the crystal and Z,(7) a numeri-
cal integral

d

Iy = 2

d'q ng(q)lz( 2
sz Vez filg) \eM

In the two limiting cases this integral behaves as Z,(7— )
=0(1) and Z,(7— 0)=0(7). Neglecting numerical constants
arising from the exact evaluation of Z,(7) we can summarize
the estimated qubit lifetime 7, as

n +1). (33)

Udd|€+ K|

(1) = oy max{l,y""Nk,T/U,}.  (34)

3. Fermi’s golden rule: Weak coupling regime

In the weak coupling regime only energy conserved tran-
sitions with a certain transferred momentum ¢ lead to the
decay of P,(f). According to Eq. (31) qq is defined by
QO(qp) £ w\(qy) =0, where the positive (negative) sign applies
for a k<0 (k>0) corresponding to phonon absorption
(emission) processes. Based on the discussion on the exciton
and phonon spectra given in Sec. IIl F we distinguish be-
tween two cases.

In the first case the resonant k vector is different from
zero, qo # 0. Such a situation occurs 1D for x/+y>1, when
the exciton bandwidth exceeds the phonon bandwidth, AE
=hwp. In 2D, due to the linear long-wavelength limit of
E(K) this situation occurs only for a negligible parameter
regime where AE="%wp. The decay rate for 1D is

Fip=—" C(C[o)[N(w(éIo)) +0(],  (35)

h

with C(Qo)=2g2(qo)/[f(qo)|1’(qo)+f’(qo)/WKI]58. The
Heaviside function ®(k) takes into account that only for
>0 there is a finite decay rate at 7=0.

In the second case the resonance condition is only ful-
filled for q¢=0. This situation is in general true for a 2D
crystal and in 1D for «/\y< 1. The decay rate then depends
on the |q|—0 limit of the summand in Eq. (31). As
|M(q,0)|>~|q| vanishes in the long-wavelength limit, we
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TABLE 1. Different combinations of rotational states |g) and |e) and the corresponding values of €
=(Me—ptg)/ o and k=D,/ ,uf;. States are specified by the quantum numbers |N,My) and the value of the

external bias field, Ej,.

|N, M) E,, (units of B/ u) e (units of ) K €
(a) lg)=[1,0).|e)=]2,0) 3.05 -0.16 10.5 0
(b) lg)=]1.0).|e)=|3,0) 3.91 0.09 1 0
() lg)=10,0),|e)=|1,0) 8 0.75 0.1 -0.7
(d) lg)=10,0).|e)=|1,1) 5 0.68 -0.24 -0.29
(e) lg)=10,0),|e)=]1,0) 1.44 0.39 1.51 -1.51
(f) le)=1,0),le)=|3,0) 3.44 -0.13 0.39 -0.39

only obtain a finite value for I' in 1D and for a nonzero
temperature. The resulting rate is

3L3) —ksT
_\/! fy— .

5 (36)

FID = (6 + K)z
In 2D, due to the additional factor of |q| in the density of
states, we obtain I',p=0.

4. Discussion: Rotational ensemble qubits

In summary we have found that the lifetime 7, of a rota-
tional ensemble quantum memory in a molecular dipolar
crystal is primarily determined by the dipole-dipole energy
U= ,ué/ (47760618) and depends further on the relation be-
tween the dimensionless parameters v, €, and k.

For low temperatures the dipole-dipole energy U, is lim-
ited from below by the condition U,= yjh6/C§m3, with vy,
the minimum value of y which guarantees the stability of the
crystal. For an upper bound we use the critical value v,
=20 predicted in Refs. [17,21] for the 2D crystal. For the
nominal parameters u,=1 Debye and m=100 amu we obtain
U ;4/h=260 kHz. As this bound scales like ~1/ ,ug choosing
molecular states with larger induced dipole moments g,
~5 D the scale of I" can in principle be reduced below the
kHz regime. However, for a system at finite temperature U,
is also bound from below by kzT. For a 2D crystal the melt-
ing temperature of a dipolar crystal is Ty, =~ 0.09U 3,/ kp [25],
while in 1D we expect a stable crystal for kzT<U,; (see
Sec. V).

For a given U, the lifetime of the ensemble qubit de-
pends further on the dimensionless parameters « and € which
in turn depend on the rotational basis states |g) and |e) and
the value of the applied bias field E;,. In Table I we have
listed a few specific choices of rotational states |g) and |e)
and the corresponding values of « and e. For certain states
we find a “sweet spot” of the electric bias field where the
induced dipole moments of two rotational states are the same
and € vanishes. The value of « can be significantly reduced
by choosing states |g) and |e) with a (to a high degree)
dipole-forbidden transition, e.g., N'=N=+2, with the cost of
also lowering the coupling to the microwave cavity. An ideal
situation occurs when both € and « are large but exactly
cancel each other, e.g., e+ x=0. For such a “magic” configu-
ration the dipole-dipole interactions of the triplet states |gg)
and |ge)+|eg) are exactly the same, which makes a symmet-

ric excitation |1,) insensitive to phonon-induced fluctuations
of dipole-dipole interactions. Examples for such phonon-
decoupled states are given in rows (e) and (f) of Table I. An
additional interesting observation is the absence of energy
conserving transitions in a 2D crystal, which in the weak
coupling regime implies I';p=0. A detailed investigation of
this case and corrections due to higher order terms in the
interactions Hamiltonian H;, are the subject of future re-
search.

In conclusion we find that the phonon-induced decay of
rotational ensemble qubits can cover a wide range of values
and is in the end to a large extent determined by the specific
experimental implementation of this system. When trapping
of molecules can be achieved independent of the rotational
state, e.g., in optical or magnetic traps, we can find certain
magic configurations in which rotational ensemble qubits are
completely decoupled from the phonon bath. In other cases,
e.g., for electrostatic traps, we are limited to a certain set of
trapped rotational states and typically we are not able to ful-
fill the decoupling condition €+ «=0. In such a situation it is
not a good choice to encode quantum information in the
rotational degree of freedom.

IV. SPIN-ENSEMBLE QUBITS

In this section we extend our discussion of molecular en-
semble qubits to molecules with spin or hyperfine states.
This additional internal degree of freedom which is not di-
rectly affected by electric dipole-dipole interactions allows
us to overcome some of the limitations of purely rotational
qubits. In particular, it is then possible to use the rotational
degree of freedom to trap molecules in electrostatic poten-
tials and encode quantum information in different spin states,
or in contrast to use spin states for magnetic trapping and
encode quantum information in rotational degrees of free-
dom.

A. Rotational spectroscopy of 23, molecules

In general the rotational spectroscopy of polar molecules
involves spin-rotation interactions between the rotation of
the nuclei N and the spin of unpaired electrons S as well as
hyperfine interactions between S and the nuclear spin I [22].
However, to keep the following discussion on a basic level
we consider in this paper only the case of a 23 molecules
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FIG. 5. Spectrum of a %S molecule for a bias field E,
=3.05B/ . Eigenstates which are approximately of the form
N, M N>E,,®|M s are individually labeled by (My,Ms) while the
quantum number N is indicated only for the corresponding
manifold.

with a single unpaired electron with spin S=1/2 and no
nuclear spin /=0 for which hyperfine interactions are absent.
As, to our knowledge, none of the polar molecules studied in
current experiments falls into this category [26], we explain
below how the arguments presented for the 23 molecule can
be applied for more complicated molecules with />0 as long
as the hyperfine interactions are small compared to the rota-
tional constant B.

In the presence of a bias field E,=FE,e, the Hamiltonian
for a 23 molecule in the vibrational ground state is

Hy= BN® + YN S — w.Ep, (37)

with 1y, the spin-rotation coupling constant, typically in the
order of 100 MHz. For a vanishing bias field the spin-
rotation coupling lifts the degeneracy of [N, M), states and
new eigenstates of H,, are given by |N,S;J,M,), with J
=N+S the total angular momentum. For moderate and
strong electric fields E, = B/ u the dipole coupling typically
exceeds the spin-rotation coupling and eigenstates of H,, are
approximately given by product states |[N,M WE,® |M,).
Therefore, to a good approximation energy splitting and in-
duced dipole moments are determined by the rotational com-
ponent only and we refer to the discussion given in Sec.
IIT B. Especially, for states with My=0 different spin com-
ponents are degenerate and have exactly the same induced
dipole moments. For other values of My+#0 different spin
components are split by the spin-rotation coupling, ~ vy, but
still have to a good approximation the same induced dipole
moments. As an example we plot in Fig. 5 the spectrum of
H,, at the “sweet spot” of the bias field, E,=Es=3.05B/ w,.

For molecules with a finite nuclear spin />0 the physical
picture is quite similar although the resulting spectrum is
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more involved. In the limit of v, — 0 the hyperfine interac-
tion Hamiltonian Hy; couples the electron spin and the
nuclear spin to a combined angular momentum F;=S+1I and
eigenstates are of the form |N,MN)Eb® |F3,MF3). For a
strong electric bias field and for My=0 this factorized form
is approximately conserved even for finite 7y, as the spin-
rotation coupling is too weak to mix different rotational
states. For nonzero M the diagonal part of the spin-rotation
coupling, y,N,S,, does in addition lead to a mixing of dif-
ferent states |F5, My ). This general picture of the spectrum
holds as long as |Hyy| , ¥ << B < uoE), while details depend on
the exact relation between hyperfine and spin-rotation cou-

pling.

B. Spin-ensemble qubits in MDC:
A protected quantum memory

The additional spin degree of freedom allows us to en-
code quantum information in ensemble qubits |0,) and |1,),
where the corresponding molecular basis states |g) and |e)
have different spin components. In the following we explain
in two examples how the additional spin degree of freedom
can, compared to purely rotational states, improve the life-
time of molecular ensemble qubits in a dipolar crystal.

1. Long-lived ensemble quantum memory

We first consider molecular basis states |g)= 1’0>Eb
®|Ms=-1/2) and |e)=[2,0)z, ® [Mg=1/2) for the bias field
E,=Es. As we discuss in Sec. V this is an example for two
states which can be both trapped in electrostatic fields. The
states |g) and |e) have different rotational components and
different spin components. At this point it is important to
note that the factorization of eigenstates of H, in a rotational
and a spin component is only approximate. The spin-rotation
coupling still admixes a small fraction of the other spin com-
ponent which results in a finite transition dipole matrix ele-
ment [(e|u|g)|, which actually allows us to couple states |g)
and |e) to the microwave cavity. The dimensionless transition
matrix element O ,=[(e|u,|g)|/ wo which determines the cou-
pling to the cavity as well as the parameter « depends on the
ratio 7,/ B. For the typical case of y,<B we find in numeri-
cal calculations ©,=2.5(y,/B). For molecules, such as
CaBr with 7,/B=0.03, the spin-forbidden transition is
roughly a factor 7 smaller than the corresponding spin-
allowed transition. In contrast, the dimensionless parameter
k~®? is reduced by a factor (y,/B)? and exciton-phonon
interactions are strongly suppressed. For our specific ex-
ample we obtain k=250(y,/B)>< 1, which should be com-
pared to k=10 for spin-conserving transitions [see row (a)
in Table I]. Therefore, the spin degree of freedom provides
an additional knob to change the interaction parameters
and € independently and tune the crystal into the weak cou-
pling regime where decay rates are highly reduced (see dis-
cussion given in Sec. III G).

2. Protected spin-ensemble quantum memory

To improve the lifetime of the ensemble quantum memory
even further we consider in a next step the states |g)
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l,O)Eb®|MS=—l/2) and |s)= l,O)Eb®|MS=1/2). As |g)
and |s) have the same rotational component we have intro-
duced the new notation |s) to distinguish this state from the
rotationally excited state |e) discussed above. While the
states |g) and |s) cannot directly be coupled with a single
microwave photon, we can still achieve a coupling to the
microwave cavity by a two-photon process involving an ad-
ditional classical microwave field.

As explained above the two spin states |g) and |s) have
the same induced dipole moment, €=0, and in addition there
are no resonant dipolar exchange processes between mol-
ecules in states |g) and |s) which implies that also x=0.
Therefore, quantum information encoded in spin-ensemble
qubits 10,)=10,) and [1)=S7|0)=(1/\N)Z/|g,...5;:...gx) is
naturally protected from dipole-dipole interactions and the
resulting phonon-induced decay. Higher order spin-flip pro-
cesses due to virtual excitations into higher rotational states
[27,28], which are not included in our model scale as
~[ug/ (1672 €al)1¥2 /B and even for ay=50 nm, this rate is
only in the order of a few Hz. Therefore, the lifetime of
spin-ensemble qubits is mainly limited by the dephasing rate
of the spin (or hyperfine states) of a single molecule. Similar
to the case of cold atoms [29,30] or trapped ions [31,32]
dephasing rates of molecular hyperfine states of below 1 Hz
should be achievable.

While highly protected from dipolar interactions spin-
ensemble qubits are not directly coupled to microwave pho-
tons and the storage and retrieve operations require a two-
step process

(0. + Bl1.)) < (a]0,) + BI1.) < (af0g) + BI1)).

which involves the rotationally excited ensemble state |1,).
During this process the rotational ensemble qubit is affected
by interactions with phonons which cause a decay into or-
thogonal states |lk) as discussed in Sec. III G. Therefore, the
overall fidelity of an ensemble quantum memory in a MDC
is still affected by exciton-phonon interactions. However, by
employing a Raman process as discussed in Ref. [2] rota-
tional states are only virtually populated and interactions
with phonons are suppressed by the detuning A=w,~ w,,. As
we have not yet analyzed the details of the cavity-ensemble
coupling we postpone the discussion of gate fidelities to Sec.
V D where we study swap operations between microwave
photons and spin-ensemble qubits for a specific setup.

V. DIPOLAR CRYSTALS IN A TRAP: INTERFACING
MOLECULAR ENSEMBLES AND CIRCUIT QED

In Secs. III and IV we have studied an idealized homoge-
neous MDC and identified the exciton-phonon interaction as
the main source of decoherence for ensemble qubits. We
have shown that for certain choices of molecular states, in
particular states with a different spin component, phonon-
induced decay processes are suppressed and a highly pro-
tected ensemble quantum memory can be realized with this
system. However, so far we have ignored questions related to
the experimental implementation of a MDC, especially ques-
tions of transverse and longitudinal trapping potentials. In
this section we study the properties of molecular dipolar
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crystals under realistic experimental conditions, especially in
the presence of an additional longitudinal trapping potential.

For a coherent integration of MDCs with a circuit QED
system as shown in Fig. 1, trapping of polar molecules close
to above the chip surface must not affect coherence proper-
ties of the superconducting device. In particular trapping
techniques which require the application of strong magnetic
fields or intense laser fields raises compatibility questions
with high Q-values of superconducting strip line cavities
[15]. Therefore, to achieve a strong transverse confinement
which is compatible with long coherence times of the micro-
wave cavity, we focus in this paper on a scenario where
molecules are trapped by an electrostatic potential as recently
proposed in Ref. [1]. In Sec. V A we briefly outline the basic
idea of electrostatic trapping of polar molecules and show
that this specific trap design will restrict our choice of mo-
lecular basis states to a very limited set of rotational states. In
Sec. VB we then study the properties of excitons and
phonons in a quasi-1D trapping configuration with an addi-
tional harmonic confinement potential along the crystal axis.
As the confining potential removes the translational symme-
try of the crystal, symmetric excitations |1,) are no longer
eigenstates of H.,. which opens a new decay channel for
rotational ensemble qubits. In Sec. V C we use the spectra of
longitudinal and transverse phonon modes to discuss the sta-
bility of a 1D crystal in the case of finite temperature and a
finite transverse trapping frequency. Finally, in Sec. VD we
use these results to discuss state transfer fidelities between a
microwave cavity and spin-ensemble qubits under realistic
experimental conditions.

A. Electrostatic confinement of polar molecules

In the following we consider a 23, molecule as discussed
in Sec. IV A, in the presence of a bias field E,(r) which now
depends on the position of the molecule. The Hamiltonian is

Hy(r) = BN’ + Y N - S — uE,(r). (38)

To achieve trapping we consider an electric field of the form
E,(r)=[Es+E(r)]e,, with a large offset field E, and a
small trapping field E,(r) with 0<E,(r) <E s and E,(r)=0 at
the center of the trap. Without going into the details of the
actual trap design we here envision an elongated version of
the electric z-trap proposed in Ref. [1] which would produce
an electric field configuration of approximately this from.
As long as the position-dependent trapping field E,(r) is
small compared to the offset field E; we can use a Born-
Oppenheimer argument and write Hamiltonian (38) as

Hy(r) = 2 [E, + V,,(t)]|n)nl, (39)

with |n) (E,) denoting eigenstates (eigenvalues) of H,, for
the bias field E,=E e, and V,,(r)=—(n|u.|n)E,(r). As the
electric field has a local minimum at the trap center only
weak field seekers with w,=(n|u.|n) <0 are trapped in this
potential. From the discussion in Sec. III B we find that this
restriction limits our choice of molecular basis states to states
with My=0 and moderate electric fields.
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As indicated by the index n the trapping potential V,,
depends in general on the internal eigenstate |n). In the fol-
lowing we avoid this dependence by tuning the offset field to
the “sweet spot,” E =Eg. We choose the two spin states in
the N=1 manifold, |g)= (®|Mg==1/2) and [s)
®|MS—+1/2> as our smgle molecule basis states
for spln ensemble qubits. Employing a two-photon process
the two spin states can be coupled to the microwave cavity
via a third, rotationally excited state |e)= L ® Mg
=-1/2). Restricted to those three basis states we can write
the molecular Hamiltonian as

Hy/(r) =

with V,(r) a state independent trapping potential for the mol-
ecule. Below we consider a quasi-1D trapping configuration
with

hw,gle)e| + Vi(r), (40)

Vi(r)= lmwc +12 (2 +22). (41)
Here v, is the trapping frequency for the strong transversal
confinement and v<<wv, the trapping frequency for an addi-
tional weak confinement along the crystal axis. In this elec-
trostatic trap the transverse trapping frequencies can be as
high as v, /27r=~1-10 MHz [1].

B. MDC under quasi-1D trapping conditions

In this section we study the properties of a MDC in a
quasi-1D trapping configuration where compared to the dis-
cussion given for a homogeneous system in Sec. IIl we add a
finite longitudinal and transverse trapping potential V,(r) as
given in Eq. (41). Restricted to the basis states |
le) identified in Sec. V A we extend the crystal Hamiltonian
Hype given in Eq. (5) by the trapping potential V,(r) and
write the total Hamiltonian for the inhomogeneous MDC as

Hae=3 (22

m + V(I‘ ) + hwegle ><e |> + Vdd({r })

(42)

with the dipole-dipole interaction V,,({r;}) given in Eq. (6).
We proceed as in Sec. III and describe dipole-dipole interac-
tion by the induced dipole moment u, and the dimensionless

operator IA(,»j. At the “sweet spot” with e=0 the latter is given
by

f(ij = K(lgi’ejxei’gjl + |€i’8j><gi7€j|)~ (43)

For our specific choice of rotational states |g) and |e) we find
k=10.5 [see Table I, example (a)]. Note that we can omit
resonant dipolar interaction between states |s) and |e) as long
as most molecules remain in state |g).

Assuming a crystalline phase we replace the molecular
position operators by r;=r’+x;, with r¥=(x?,0,0) and x! the
classical equilibrium position along the crystal axis. As mol—
ecules are confined by an additional longitudinal trapping
potential the positions x? are no longer equidistant. In con-
trast to the discussion given in Sec. III we here also include
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fluctuations along the transverse directions, e.g., X;
=(x;,v;,2;), to study the effect of a strong but finite transverse
confinement. Expanding Hypc up to the lowest relevant or-
der in x; and decompose the crystal Hamiltonian into an
exciton part, a phonon part, and exciton-phonon interactions,

Hyipc=Hexe + H

phon + Hint‘ (44)

In terms of equilibrium positions x? the exciton Hamiltonian
is given by

Hey. = ﬁwegz |€ ><€ | + _g_z TIT3 (45)
8 01#] | |

The phonon Hamiltonian contains now both longitudinal as
well as transversal phonons, Hpyon= =H' hOn+Hlj1}0n. Primarily
we are interested in the longitudinal part which is of the form

P; 6up < (xi—x)°
H| Pui 1, Vg — . (46
phon = 2 2m 2 87760,#1 |x - Q|5 (46)

Although our focus is placed on the quasi-one-dimensional
regime with transverse motion frozen out we include for the
moment the Hamiltonian for the transverse phonons, thm,
to study the validity of the quasi-1D approximation. It is

given by

2

2
p.; 1
thon E _Li ;ni+ ZmVL(yJ +2j )

~ 3pp < 0i—y)?+3(z—z)? 47)
167€);Z; ) = X9

Note that for fluctuations in the z direction we have included
the anisotropy of the dipole-dipole interactions an obtained
an additional factor of 3 [see second line of Eq. (47)] which
lifts the degeneracy of the two transverse phonon branches.

The leading contribution of H,, is linear in the position
operators x; and is given by

3 X — .,
Hint = - s 0 S(X .xj) & Klj (48)
87750[#1 |xi - |

Transverse phonons couple to excitons only in second order
of y; and z; and can be omitted in a first approximation.

Our goal in the following is, to study the properties of
excitons and phonons in a MDC in the presence of an addi-
tional harmonic confinement potential and compare it with
the homogeneous crystal studied in Sec. III. Since for an
inhomogeneous system momentum is no longer a good
quantum number we introduce a general set of exciton eigen-
states,

L) =R}J0) =2 CuDlgi e gids (49)

where for n=1,...,N the C,(i) are the normalized coeffi-
cients of the eigenstates of H,,. and RZ the corresponding set
of (approximate) bosonic creation operators. In analogy, we
express longitudinal displacement operators x; in terms of
phonon annihilation (creation) operators a,, (a,ll),
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N
4= 3\ gy a. (50)

with ¢, (i) the mode function for phonons of frequency w(n).
Ignoring transverse phonons for the moment, the total
Hamiltonian for the inhomogeneous dipolar crystal is then of
the form

Hyipe = E E(n)RZR,Z + E ﬁw(m)a};am + E M(m,n,n")

!
m,n,n

X(a,, + aL)RZRn/ , (51)

and we are left with the evaluation of the exciton spectrum
E(n), the phonon spectrum w(m), and the coupling matrix
elements M(m,n,n’). Although in the inhomogeneous case
we cannot derive exact analytic expressions for those quan-
tities, good approximate solutions can be found in the limit
of large N. The derivations of the following results which are
summarized in Appendixes B and C are based on a similar
calculation by Morigi et al. [33] for the phonon spectrum of
a harmonically confined ion crystal.

1. Density profile

In a first step we need to determine the equilibrium posi-
tions of N dipoles confined by the harmonic trapping poten-
tial, V,(x)=m1?x*/2. To do so we define the density n(x)
=1/]x?.,—x?| which in the limit of large N and a slow varia-
tion of the trapping potential becomes a continuous function
n(x). In this limit the total potential energy of the crystal is

1
Epo = f dx(Eszxz - 5C)n(x) +13)Cynt(x),  (52)
with C3=,u.§/ (47€y) and &, the chemical potential to fix the
particle number. The energy E, is minimized for the density
n(x) = n(0)31 — 4x/L2, (53)

where the density at the center of the trap n(0) and the length
of the crystal, L, are given by

_ AP s 5, /@
n(0) = 2§(3)1/5N o, (54)
L=ANay, ay=n(0)". (55)

Here we introduced the numerical constant A=5I'(5/6)/
[[(1/3)yw]=1.19. In Fig. 6 we compare the analytic result
for n(x) with a numerical evaluation of the equilibrium po-
sitions x) for molecule numbers up to N=1000. We find ex-
cellent agreement between numerical and analytic results
even for a small number of molecules.

Equations (54) and (55) express the dependence of the
center density and the length of the crystal as a function of
the molecule number N and a given trapping frequency w.
For comparison with the case of a homogeneous crystal dis-
cussed in Sec. III it is more convenient to fix the density at
the trap center, n(0), and adjust the trapping frequency v
accordingly. In the following we express quantities in units
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FIG. 6. (Color online) (a) Density profile n(x) for a harmoni-
cally confined dipolar crystal for N=100 plotted in units of a
=(m1?/C3)'3 and i=1/a. (b) Length L (solid line) and center den-
sity n(0) (dashed line) are plotted as a function of the particle
number N. In both figures analytic solutions (/ines) derived in Sec.
V B 1 are compared with numerical calculations (crosses).

of ag=1/n(0) and the corresponding energy scale U= ,ué/

(47eyay). The dimensionless parameter y=U,,/(h*/mad)
then gives the ratio between potential and kinetic energy at
the center of the trap. Note that for a fixed number of mol-
ecules we can use the relation

272\ yA*¢{(3)hv=U,IN, (56)

to switch between the energy scales of the trapping fre-
quency and the dipole-dipole interaction.

2. Exciton spectrum

Based on a set of equilibrium positions x? given by the
density profile n(x) derived above we now evaluate the en-
ergy spectrum of the exciton Hamiltonian H.,. (45). As we
show in Appendix B in the long-wavelength limit and omit-
ting the energy offset w,, the exciton spectrum has the form

M~[2 (3)-AA/B 1<—N )n_m}
Uy, | ANBv T TN

(57)

with numerical constants A=4\/@/ A and By=3
+In[A+In(N/2)/32{(3)].-->--> Similar as for a homoge-
neous crystal the long-range character of the dipole-dipole
interactions leads to logarithmic corrections compared to a
harmonic spectrum which would result from nearest-
neighbor interactions. The corresponding exciton mode func-
tions C,(x) are a good approximation given by C,(x)
~®,(x,0,) with ®,(x,0,) the standard harmonic oscillator
eigenfunctions defined in Eq. (B9) and o, a mode-dependent
width

, A [ ( N )}1/2
O'nsz By+1n 1 . (58)

In the short-wavelength limit the exciton energies decrease
linearly with increasing n down to a minimum energy E,;,
=[-3¢(3)/2]xU,;. The corresponding, rapidly oscillating
modefunctions can be written as Cn(x?):(—l)én(x?) with
En(x?) ~®y_,,1(x,0) a slowly varying envelope function of
width o=0.61\N. Since the fast oscillations in the short-

042308-13



P. RABL AND P. ZOLLER

[E(n) — hwegl /kUda

“o 100 200 300 400 500 600 700 n

FIG. 7. (Color online) Exciton spectrum E(n) for a harmonically
confined MDC for N=800 molecules. Numerical results (solid line)
are compared with analytic approximations derived in Appendix B
for the long-wavelength (LW) and short-wavelength (SW) limit
(dashed lines). The dotted line indicates the LW result for the sim-
ply harmonic approximation given in Eq. (B10) in Appendix B.

wavelength limit wash out the effect of long-range interac-
tions the spectrum is purely harmonic. The analytic results
are compared with a numerical diagonalization of H.,. in
Fig. 7. Note that the total width of the exciton spectrum,
AE=7{(3)xU,,/4 is exactly the same as in the homogeneous
case. This is due to the fact that both long- and short-
wavelength excitons are located at the center of the trap
where the density is almost constant.

3. Phonon spectrum

The phonon spectrum of a quasi-1D MDC with a strong
transverse trapping frequency v, and a weak longitudinal
trapping frequency v consists of one longitudinal (“acous-
tic”) and two transverse (“optical”) phonon branches which
are plotted in Fig. 8. In Appendix C we derive approximate
analytic expressions for the long- and short-wavelength lim-
its of the individual branches. For the moment we restrict our
discussion to the longitudinal modes and come back to some
properties of transverse phonons in Sec. V C.

In the long-wavelength limit the spectrum of longitudinal
phonons determined by H!) defined in Eq. (46) is of the
form

hon

w(m) = w1+ Bm>=m=2)/12. (59)

We recover the exact results for the center of mass mode
w(1)=v and the breathing mode w(2)=\"gv and obtain a
roughly linear phonon spectrum w(m) = v1.22m for larger m.
The corresponding mode functions c,,(i) describe collective
oscillations extended over the whole crystal.

In the short-wavelength limit the spectrum of longitudinal
phonons is given by

) [ 40¢3) (7i+1/2)
“’(m)"“’D<1_ 315A2 N ) (60)

with  m=N-m and a Debye frequency wp
=vNA\93{(5)/64{(3). When we reexpress the Debye fre-
quency in units of U, using Eq. (56) we find that wj, exactly
matches the Debye frequency of a homogeneous crystal
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FIG. 8. (Color online) Phonon spectrum of a harmonically con-
fined MDC under quasi-1D trapping conditions for N
=800 molecules. The solid lines show the numerically evaluated
spectrum for longitudinal (w) and transverse (wy%z) phonons in units
of Uy, and for y=30 and v, /U,=1.2. The dashed lines show the
analytic results derived in Appendix C for the long-wavelength
(LW) and short-wavelength (SW) limits of the three different
branches.

given in Eq. (24). This apparent coincident is based on the
fact that in the short-wavelength limit phonon mode func-
tions are of the form c,,(i) =~ (~1)/C;(i), with an envelope
function ¢(i) that is localized at the center of the trap [see
Eq. (C9) in Appendix C], and is therefore not sensitive to the
variation of the density at the edges of the crystal.

In summary we find that the longitudinal phonon spec-
trum of a harmonically confined MDC is to good approxi-
mation linear and it is hardly affected by the long-range char-
acter of dipole-dipole interactions. The numerical results
plotted in Fig. 8 agree well with our analytic expressions
given in Egs. (59) and (60) and show that for most purposes
we can simply approximate the spectrum by w(m)
= wpm/N where the Debye frequency wp, is the same as in a
homogeneous crystal of density n=n(0).

4. Exciton-phonon interaction

The exciton-phonon interaction Hamiltonian H,,, defined
in Eq. (48) describes transitions between excitons in mode
C,(i) and C,/(i) by simultaneously emitting or absorbing
phonons in mode c¢,,(i). Due to the absence of momentum
conservation for a dipolar crystal in a trap, the transition
matrix element M(m,n,n') for this process depends on all
three indices and has a more complicated structure as in the
homogeneous case. Using the approximate phonon spectrum
w(m) = wpm/N with wp given in Eq. (24) we can write tran-
sition matrix elements as

U
M(m,n,n') = - %M(m,n,n'), (61)
Y

where in terms of normalized equilibrium positions )_c?
=x?/a, the dimensionless matrix element is
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, 27 N1 .
M(m,n,n") = \/&w E|x_40|5[c() cn(i)]

Hﬁ/
X[Cn’(l) Cn(.]) + Cn’(.])cn(l)] (62)

By replacing the coefficients C,(i) [c,,(i)] by the continuous
mode functions C,(x) [c,,(x)] derived in Appendixes B and C
it is possible to study some general properties for the matrix
elements M(m,n,n’). For example, for long-wavelength
phonons (m/N<1) we find ¢,,(i)—c,,(j) ~ c,'n(x?) ~m/N and
recover the scaling M(m,n,n')~\m/N in analogy to the
homogeneous crystal. We here do not go further into analytic
details of M(m,n,n’) and instead we use in our calculations
below numerically evaluated values for M (m,n,n’).

C. Stability of the crystalline phase

Our analysis so far has been based on the assumption that
the molecules form a linear crystal with small fluctuations
around equilibrium positions. This assumption is valid in the
limit of y> 1, low temperatures, k,7<< U ;;, and strong trans-
verse confinement fiv, >U,,. Since in a real experiment
none of these conditions is strictly satisfied we now study the
stability of our system for finite values of vy, T, v, . We iden-
tify three processes which destabilize the dipolar crystal.
First, longitudinal fluctuations of the molecules eventually
lead to a melting of the crystalline structure. For 7=0 and a
homogeneous system this crossover has been studied nu-
merically in Refs. [19,20], but we are not aware of similar
studies for finite 7 or for finite trapping potential. Second, for
a weak transverse confinement there is a regime where the
linear chain is no longer the correct ground state and mol-
ecules order in a zig-zag configuration. This so-called “zig-
zag instability” is well known for a linear chain of trapped
ions where it has been analyzed theoretically [33-35] and
verified experimentally [36]. A third process which has been
studied in Refs. [17,18] is quantum tunneling of molecules
into regions where dipole-dipole interactions are attractive.

1. Longitudinal stability of a dipolar crystal

We first study the melting of a dipolar crystal due to lon-
gitudinal quantum and thermal fluctuations of the molecules.
A rigorous treatment of this problem would in principle re-
quire to take into account the full quantum many-body
theory for our 1D dipolar system which is beyond the scope
of the present work. Instead we here present a much simpler
calculation assuming the validity of the phonon Hamiltonian
H'lE',hon and determine the parameter regime where our model
is self-consistent, i.e., where fluctuations are small compared
to the mean separation of the molecules.

To study local fluctuations of the molecules in the pres-
ence of a longitudinal trapping potential we introduce the
position-dependent Lindemann parameter

I (1) =n(x)A(x,7), (63)

with (Ax)z(x?,T)=<(xi+1—xi)2> and the average is taken with
respect to the phonon equilibrium density operator at tem-
perature 7. By employing the sound wave approximation
w(m)=wpm/N we can write I';(x,T) as
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(&)

FIG. 9. Numerical results for the function F(£,7) introduced in
Eq. (64) for N=800. (a) F(¢&,7) is plotted as a function of §
=2x/L for different values of 7=\ykzT/Uy. (b) Fu(1)=F(&
=0, 7) is plotted as a function of 7 (solid line). The two dashed lines
indicate the two limits F,(7<<1)=0.42 and F,(7>1)=0.287. See
text for more details.

1 1/4 2 —koT
FL(X’T)=<;/) (S—zx T—WULd) (64)

with a universal function F(&,7) defined in Appendix D in
Eq. (D4). In Fig. 9 we plot the dependence of F(&,7) on
temperature and position. For the homogeneous crystal we
obtain an analogous result with F(&,7) in Eq. (64) replaced
by F,(7). Due to the nearly constant density at the center of
the trap we identify F,(7)=F(¢=0,7). From Eq. (64) we
find that fluctuations are only weakly suppressed with in-
creasing 7y which is already reflected in the y~'/* dependence
of the exciton-phonon interaction [see Eq. (26)].

The minimal criterion for the local stability of the crystal-
line phase and therefore the self-consistency of our model is
I';(x,T)<1. To improve this criterion we argue as follows.
By quantum Monte Carlo simulations it has been predicted
[19,20] that at T=0 a crystalline phase appears for y>y,
~1, or in terms of our Lindemann parameter I';(0,0)
<F(0,0)/y"*=0.42. It is reasonable to assume that a gen-
eralization of this criterion, I';(x,7) <0.42, should also pro-
vide a good estimate for the local existence of a crystalline
phase for a finite temperature and for an inhomogeneous
density profile. Note that for the parameter regime v
~10-100 this criterion translates into F(&,7)<0.42y"4~1.
From Fig. 9(a) we find that for 7=0 fluctuations in the crystal
are roughly constant and almost the whole crystal is in a
crystalline phase. For 7>0 fluctuations at the edges of the
chain quickly start to increase and at around 7=5-10 al-
ready a significant fraction of the system does not fulfill
stability criterion. Therefore for the inhomogeneous crystal
we deduce the temperature limit kzT<5U 4,/ 7. For the ho-
mogenous crystal we find F,(7>1)=0.2817 (see Appendix
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D) which leads to a similar limit for the temperature of k,T
<24U,.

2. Transverse stability of a dipolar crystal

Position fluctuations of the molecules in transverse direc-
tions are described by the Hamiltonian H phon given in Eq.
(47). The resulting phonon spectrum of the two transverse
phonon branches is plotted in Fig. 8 and approximate ana-
lytic expressions for the long- and short-wavelength limit
can be found in Appendix C in Egs. (CI1) and (C12). As
transverse phonons are hardly influenced by the longitudinal
trapping potential we use in the following discussion the
exact spectrum of transverse phonons in a homogeneous
crystal, which can be written in a closed form as

w,(q) = \/ Vi - 4y(U‘“) q). (65)

Here a,=1, a.=3 and f(g) is given in Eq. (A8). From Eq.
(65) we see that transversal phonons are “optical” phonons
with a offset frequency v, and in the quasi-1D limit, Av
> U,, they form a flat band, wiz(q)x v,. However, when
fiv, and the dipole-dipole interaction U,, are of the same
order we find a significant reduction of wxl’y(q) for short-
wavelength phonons (see Fig. 8). In particular the transverse
phonons along the z direction reach a minimum frequency of

279¢(5)( Uy, \?
2 dd
w$1n=\/vl— 8y \ 1) (66)
The meaning of w.-. — 0 is that the linear chain of molecules
becomes a metastable configuration and a new ground state
appears where molecules are ordered in a “zig-zag” configu-

ration. To avoid this “zig-zag” instability the minimum re-
quirement for the transverse confinement frequency is

v, > 6.08U 4N y. (67)

While the “zig-zag” instability is a purely classical effect
there is also a quantum mechanical instability of a quasi-1D
dipolar crystal due to tunneling events into the region of
attractive dipole-dipole interactions. For a detailed descrip-
tion of this process the reader is referred to Ref. [18] where
this tunneling rate has been analyzed for the case of two
molecules approaching each other under 1D or 2D trapping
conditions. When we adopt the result derived in Ref. [18],
Sec. IIT A 4, and use wp as the attempt frequency we obtain
tunneling rate

T = wp expl— X ¥'hv /(8U4)], (68)

with a numerical constant c~5.8. When we assume that the
inequality (67) is satisfied we find that the tunneling rate is
bound from above by I, < wp exp(—cV y) We conclude that
when the system is in a crystalline regime, y> 1, and condi-
tion (67) is fulfilled, the crystal is also stable with respect to
tunneling events.

3. Summary

In summary we find that apart from y>1 the stability of
a homogeneous quasi-1D dipolar crystal requires the follow-
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ing relation between the relevant energy scales:

( h? ) ~hv,
max ,0.42kT | < Uyy < \, . (69)
mao 6 08

In the inhomogeneous case the bound on the temperature
should be replaced by kzT<5U,,/\y to guarantee a crystal-
line structure over a large fraction of the system. Finally we
emphasize that numerical values for the bound on the tem-
perature should not be considered as precise numbers. On the
one hand, this is due to our simplified model that we used to
calculate these numbers. On the other hand, in a 1D configu-
ration we expect a smooth crossover from a crystalline to a
liquid regime with no precisely defined transition point. In
that sense Eq. (69) determines the parameter regime where
our model Hamiltonian Hypc (51) is valid. Outside this re-
gime we do not expect a complete breakdown of our model
but higher order corrections should be taken into account.

D. State transfer fidelities for spin-ensemble qubits

So far in Sec. V we have discussed several aspects of a
MDC in the presence of a finite longitudinal and transverse
confinement potential and we have identified the stability
criteria for such a system. In particular we have focused on a
specific scenario where molecules are trapped in electrostatic
potentials which provides a convenient way to achieve
strong transverse confinement and the possibility to bring
molecules close to the surface of the cavity electrode to en-
hance the coupling strength. However, the severe restriction
on trapping rotational states limits the induced dipole mo-
ments to u,~0.2up=1 D while at the same time resonant
dipole-dipole interaction and therefore exciton-phonon inter-
actions are quite large (k=10). In this section we finally
show that even under those unfavorable conditions we may
still achieve high-fidelity state transfer operations between
the cavity and ensemble qubits encoded in collective spin
excitations.

1. Ensemble-cavity coupling

In order to couple the two spin states |g) and |s) defined in
Sec. V A we consider a Raman type setup where |g) and the
rotational state |e) are coupled to the cavity field and |e) is in
turn coupled to state |s) by a classical microwave field of
orthogonal polarization. For this configuration the cavity-
molecule interaction is

Q
Hcav-mol(t) = E g(x)|gi><ei|c-]- + %|si><ei| +H.c. B

(70)

with (z) the controllable Rabi frequency of the external
microwave field. In Eq. (70) we have generalized our model
to a nonuniform cavity mode function by introducing the
position-dependent single molecule coupling g(x)=gu(x).
Here g is the maximum coupling constant at the center of the
trap and 0<u(x)<1. Note that u(x) varies at least on the
scale of the cavity wavelength \., but may in principle be
designed to have an arbitrary shape. Under the two-photon
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.. . /_
resonance condition and a detuning A=w.~w,,>gVN, (1)
we can eliminate the excited state and obtain

Hcav-mol(t) = gR(t) (SZC + CTSe) s (7])

with a Raman coupling strength gx(2)=gn(7)/2A. Note that
due to the nonuniform cavity-molecule coupling we obtain a
modified ensemble coupling gy= g\f‘@ with an effective
number of molecules Ng=[|u(x)|’n(x)dx. Similarly, en-
semble qubit states are defined as

1

|15>Esj|os>=’ DuDgy...sie g (72)

NAVeff i

Assuming for simplicity ((7)/2 = gy the Raman coupling
Hamiltonian (71) provides the basic ingredient for a swap
operation between the state of the cavity and the spin-
ensemble qubit in a time Tg=7A/ 2812\/~ 1/gy. For a realistic
estimate of gy we consider the predictions for the single
molecule coupling strength g which are given in Ref. [1] for
CaBr with uy=4.3 D. With d the distance between the mol-
ecules and the cavity electrode we obtain

gn/(27) = 40 kHz X N,g/d um. (73)

As in the crystalline phase we do not have to care about
motional diffusion of molecules the length of the crystal can
in principle be as large as L=\./2 meaning that even for a
1D crystal the number of molecules can be as high as N
~\./(2Aap)=10°. Using a moderate trap distance d
=0.5 um we end up with a collective coupling strength in
the order of gy/(27)=25 MHz, which can in principle be
pushed into the 100 MHz regime by going to trap-surface
distances of d=0.1 um.

2. Decay of rotational ensemble qubits

As decoherence processes for spin-ensemble qubits dur-
ing gate operations are due to a finite population of the rota-
tionally excited state |e) we study in a first step the decay of
a rotational ensemble qubit state |1,). Following the calcula-
tions of Sec. III G the initial decay of the excited state prob-
ability is P,(f)=1-W?#?, where compared to the homoge-
neous case the decay rate W now contains two contributions,

Uy \? 7,
W2 = (—Kﬁdd> (Iexc + [.‘ty%(jn) . (74)
!

The first term in Eq. (74) is the exciton dispersion which
arises in an inhomogeneous system from the mismatch be-
tween cavity modefunction and exciton eigenfunctions. In
terms of the normalized exciton spectrum E(n)=[E(n)
—hw,,]/(kUyy) and the overlap 2,=2C,(Du(xY) it is given
by

Toe=S Bn)e - (2 E<n>z5)2. (75)

For a cavity mode function u(x)=cos(mx/\,) and L<\_/2
we obtain numerical values of Z.,.=0.40—0.11, where the
lower value corresponds to L=\./2. Of course, a more so-
phisticated trap or cavity design would reduce this value
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even further toward 7., =0, e.g., in the limit of a flat bottom
trap.

The second term in Eq. (74) describes the decay due to
exciton-phonon interactions and is defined as

Tohon= 2 Znzw|M(mn,n")P[2N(w(m)) + 1], (76)

!
m,n,n

with normalized coupling matrix elements M (m,n,n’) de-
fined in Eq. (62). A numerical evaluation of Z,, for the case
L <\, shows that in the zero temperature limit 7o, ~ 1.38
while for high temperatures we obtain Zy,,~11.37, with 7
=\'vkgT/ Uy, The crossover point between the two regimes
is 7= 1.

3. State transfer fidelities for spin-ensemble qubits

For a simplified discussion of the state transfer fidelity
between the microwave cavity and spin-ensemble qubits we
identify the gate fidelity F with the probability to convert a
single cavity photon, |1,), into a spin excitation |1,). The
fidelity is degraded by two processes. First, the spin state |1,)
decays due to the finite admixture of the rotational ensemble
state |1,). For a detuning A>|Hypc| and the fast gate times
T considered in this paper this decay is quadratic and the
corresponding rate W,~ (gy/A)?W is proportional to W de-
fined in Eq. (74), but suppressed by (gy/A)?. Second, the
photon state |1,.) decays linearly with the cavity decay rate
I'.. Assuming that each of the two processes acts for approxi-
mately one-half of the gate time T;, we obtain a total gate

fidelity
F=1 (ﬂv)z A (77)
0 \4A agr

We optimize the gate fidelity for a detuning A.-
=(mgiW?/T )" which results in a maximal fidelity of

3( 4/3 r'w 2/3
Fo = 1——<—) <L—2) . (78)
4\2 gy

Discussion. We now consider a specific example using the
molecule CaBr with uy=4.3 D, m=120 amu, and B/2m
=2.8 GHz. From (a) in Table I, we find that at the sweet spot
the induced dipole moment is w,~0.7 D and «=10.5. To
achieve a stable crystal we choose a lattice spacing of a
=70 nm which corresponds to y=13 and Ug/(2m)
=215 kHz. From our estimates on the stability of the crystal
in Sec. V C we obtain the conditions kzT=2U, ;~20 uK
and v, /27m>360 kHz. Both requirements seem feasible
with on-chip cooling and trapping techniques proposed in
Ref. [1]. Trapping a moderate number of molecules N~ 10*
at a distance d=0.5 um above the cavity electrode we ob-
tain a collective coupling strength of gy/27=~8 MHz. Using
a superconducting microwave cavity with a quality factor
0=~10° as demonstrated in Ref. [15] the decay rate of the
cavity is as low as I'.=w,/Q=2m7X 10 kHz. Without any
mode matching but assuming temperatures of kgT
<Uy/\Vy=3 uK we obtain W/(2m)~2 MHz. Inserting
these values into Eq. (78) we obtain a gate fidelity of F
=0.994 and a gate time of T;=0.14 us. For a more opti-
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mistic choice of parameters with gy/27=25 MHz and q
=100 nm (which corresponds to y=9, U,/27=75 kHz
and a temperature requirement kz7<1 uK) we immediately
obtain gate errors of below 1073 at even shorter gate times.

In conclusion we find that while in an electrostatic trap-
ping configuration exciton-phonon interactions are quite
high, it can be overcome by the high collective coupling
strength due to the high densities in the crystalline phase and
the low trap surface distance. However, for further improve-
ments it might be necessary to consider magnetic trapping
techniques where exciton-phonon interactions can be highly
reduced while at the same time temperature requirements
would be less stringent. A second interesting alternative is
the choice of rotational states |g) and |e) which are given in
Table I, example (e). Both states are weak field seekers and
at the same time they satisfy the decoupling condition k+ €
=0. However, as molecules in state |g) and |e) have a differ-
ent induced dipole moment and feel a different trapping po-
tential, this configuration would require a flat bottom trap in
longitudinal direction and ground state cooling in transverse
directions.

VI. SUMMARY AND CONCLUSION

In this paper we have investigated the storage of quantum
information encoded in collective excitations (ensemble qu-
bits) of long-lived rotational or spin degrees of freedom in a
self-assembled dipolar crystal of polar molecules. This pro-
vides a high-fidelity quantum memory which can be coupled
to a superconducting strip line cavity which in the spirit of
cavity QED provides a coupling to a solid state quantum
processor. The main results are summarized as follows.

In the first part of this work we have studied the dynamics
of rotational excitations (=excitons) in a self-assembled mo-
lecular dipolar crystal (MDC) which maps to a polaron-type
model with excitons interacting with the phonon modes of
the crystal. While in general the exciton-phonon interactions
plays the dominant role as a decoherence mechanism in this
system, leading to a decay of rotational ensemble qubits, we
have identified certain “magic” configurations where long-
wavelength excitons—which includes the ensemble qubit
state—decouple from the phonon modes. Furthermore, quan-
tum information encoded in spin-ensemble qubits is naturally
protected from dipole-dipole interactions, and the exciton-
phonon interactions affects the ensemble quantum memory
only during gate operations.

In the second part of this paper we have studied in detail
a specific scenario with molecules trapped in electrostatic
potentials (e.g., an on-chip electric trap) and quantum infor-
mation encoded in collective spin excitations. We have dis-
cussed modification of the exciton and phonon spectrum due
to the presence of a longitudinal trapping potential and ana-
lyzed the stability of a MDC in a quasi-1D geometry. An
estimate of the expected state transfer fidelities between the
microwave cavity and spin-ensemble qubit for this setup
shows that under reasonable experimental conditions fideli-
ties of 7=0.99 can be achieved for a total gate time well
below 1 us. Optimized conditions would result in gate errors
of ~107* which would allow fault tolerant quantum comput-
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ing [37]. This specific example demonstrates the potential of
MDCs in the context of hybrid quantum computing since
high gate fidelities and long storage times are combined with
gate times that are compatible with decoherence times scales
in solid state based quantum computing.
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APPENDIX A: HOMOGENEOUS DIPOLAR CRYSTAL

In this appendix we briefly summarize the derivation of
the exciton spectrum E(K), the phonon spectrum w,(k), and
the coupling matrix elements M,(q,k) for a homogeneous
dipolar crystal in 1D and 2D. All results in this appendix are
expressed in units of the lattice spacing ag and the corre-
sponding dipole-dipole energy U,= ,ug/ (47760a0) In these
units the parameter y=U,,/(h>/maj) plays the role of the
dimensionless mass of the molecules.

Excitons. We start with the exciton Hamiltonian H,,_ as
defined in Eq. (15). In dimensionless units it is given by

K!
EX(. 2 €g|e ><€|+ 2 | 0 03’
i Hﬁj j

(A1)

with Eeg:ﬁweg/Udd and IA(,»J- defined in Eq. (13). In the limit

of a low number of rotational excitations we can express H
— )

in terms of the exciton operators R} =(1/\VN)Z,e™i|e;)}{g/ by

making the substitutions

A 1 . .0
Kij = ]T]E Rler[G(e_l(k_k )ri +e ik’ )r )
kk'

+ik' r —zkr

0 .0
; +e+zk’rje—zkri)]’

+ k(e (A2)

and 3 /|e;)(e] = RiRy. Evaluating the resulting expressions
we end up with a diagonal Hamiltonian of the form H,
=S E(K)R{R,, where the energy spectrum E(k)zEeg
+¢eJ(0)+kJ(k) is given in terms of the dimensionless func-
tion

k
JW=3 °°|S(0|§ )

i#0

(A3)

For the 1D crystal with r;=i we can evaluate J(k) and obtain

J(k) = 22 C°|S(|fj )

j=1

=Lis(e™) + Lis(e™), (A4)
with Li,(z) the polylogarithm function. In 2D the equilibrium

positions r? form a triangular lattice with basic lattice vectors
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a,;=(1,0) and a2=(l,v§)/2 and we evaluate the function
J(k) numerically (see Fig. 4). By replacing the summation in
Eq. (A3) by an integral we obtain the linear behavior, J(|k]|

detailed study of the spectrum of (rotational) excitons in 2D
analytical tools developed in the field of 2D Wigner crystals
[38] or 2D spin waves [39] can be applied to handle the
slowly convergent sums in Eq. (A3). This analysis will be
the subject of future work.

Phonons. In a next step we consider the Hamiltonian of
longitudinal phonons, H,,,, which is given by

P, - Xj) : n?/- S [x;— Xj]2
phon E _2 0|5
2y 455 Ir; _rj|
(AS)

As Hphon is quadratic in position and momentum operators
we can rewrite it terms of phonon annihilation and creation
operators, thonzEq,)ﬁw)\(q)ai(q)ax(q). To find the phonon
spectrum w, (q) we change into the Heisenberg picture and
make the ansatz

ro 0
S e [ax(q)e’[‘l'ri —o)(q)1]

x;(1) = 2 2

N ¢ r=1 27’>\()

+ai<q>e-f[q-rf-w»<q>ﬂ], (A6)

where in the 2D case the vectors e, (q) are the two orthonor-
mal polarization vectors of the two phonon branches. This
ansatz in combination with the Heisenberg equations X;(r)
=~[H yhon,P;]/ v leads to the eigenvalue equation

— wi(q)ey(q) = A(q)e,(q). (A7)
Here A(q) is a single valued function in 1D and a 2X?2
matrix in 2D. For the 1D case we rewrite it as A(g)

=/*(q)/y with

©
flg) =482 Smi—éﬂ/z) =12[24(5) - Lis(¢'?) — Lis(e7)].

j=1
(A8)
For the 2D crystal the matrix A(q) is defined as
A@=13 {1 ((X?V X)) )] (1-e47))
qQ) =" : .
Yj#0 |r0|2 x})y? ()’0)2 |r0|5
(A9)

By numerically solving the eigenvalue problem for the ma-
trix A(q) for each value of q we obtain the two phonon
branches w,(q) and the corresponding polarization vectors
e,. In analogy to the 1D case we express the resulting pho-
non spectrum in terms of the two rescaled functions AHla)
=w,(q)\'y (see Fig. 4).

Exciton-phonon interactions. Finally, we consider the
first-order exciton-phonon interaction, H;,, given by
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3 r)—r? A
Hi==32 5= x) @ K. (A10)
25z |1'i - |
Using Egs. (A2) and (A6) we reexpress the interaction
Hamiltonian in terms of exciton and phonon operators which
leads us to the form of H;, given in Eq. (19) with a coupling
matrix element

3 1 r0 e\(q) .0
My(q. k)=~ 1 - el
\(q.k) = 2N'yw>\(q)§) |r0|5 (1 —e'97%)

X [e(1+ eiq'rj) + K(e‘i(k+q)’.f + eik'r.(z'))]. (Al1)
By introducing the function
r;-e\(q)
E | "TS sin(ar)),  (A12)

j#:()

we can bring M,(q,k) into the form given in Eq. (25). For
1D we can evaluate the sum analytically,

i ] 3 ) ,
Sm.(f” )2 3 Ly ~ Ligte ),
J V2

glg)=
12] 1

(A13)

In 2D the evaluation of the functions g,(q) requires a nu-
merical summation of the right-hand side of Eq. (A12).

APPENDIX B: EXCITON SPECTRUM OF A
HARMONICALLY CONFINED MDC

In this appendix we derive approximate analytic expres-
sions for the exciton spectrum in a harmonically confined
dipolar crystal in 1D. All quantities in this appendix are ex-
pressed in units of the mean molecule separation at the center
of the trap a(0)=1/n(0) and the corresponding dipole-dipole
energy U, (see Sec. VB 1).

We start with the exciton Hamiltonian H,,. given in Sec.
VB in Eq. (45) and look at the eigenvalue equation
E(n)R'=[H,,R!] for exciton operators R/ =%,C,(i)|e{gi|
with n=1,...,N. In the limit of low number rotational exci-
tons the resulting eigenvalue equation is of the form

(200 = £,10,0)= 3 15 Goli)_

ﬂﬁl j

(B1)

with Eeg=ﬁweg/ U, For convenience we omit this constant
energy offset in the following calculations. Our goal is to
derive approximate analytic solutions of Eq. (B1) in the
long- and short-wavelength limit.

Long-wavelength limit. For a large number of molecules
N the density n(x) varies slowly over the extension of the
crystal and we make the approximation

1
> m =2,(3)n3(xY), (B2)

J#Fi

to convert Eq. (B1) into the form
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Cn(.]) _ Cn(l)

[E(n) = 2£(3)kn*(x)]C, () = k2 TP (B3)

j#i
In the long-wavelength limit C,(x?)=C,(i) can be approxi-
mated by a slowly varying continuous function C,(x) and

o) = Culi) = CLN ) = 1) + CLD () - x) 2.
(B4)

Inserting this expansion into the right-hand side of Eq. (B3)
we obtain two contributions. The first one proportional to the
first derivative C,;(x) vanishes due to the summation over an
equal number of terms with positive and negative sign. In
contrast, the second contribution proportional to C)(x) di-
verges as ~In(N). This divergence is a consequence of the
long-range character of dipole-dipole interactions and means
that Eq. (B3) is sensitive to the spatial extension of the wave
function C,(x) and the expansion in Eq. (B4) will fail to
predict accurate results. To handle this difficulty we proceed
as follows. In a first step we approximate the divergent sum
by

1
> 5 = 25n(x)), (B5)
J#i i — j|
where in a zeroth-order approximation we set 2,=In(N/2).
Under this approximation we find that (see below) wave
functions C,(x) are harmonic oscillator eigenfunctions. In a
second step we use the spatial dependence of these zeroth-
order eigenfunctions for a more accurate reevaluation of the
right-hand side of Eq. (B3).

Using the ansatz in Eq. (B5) we can convert the eigen-
value equation (B3) into the differential equation,

[E(n) = 2¢(3)kn*(x)]C,(x) = kZgn(x)C;(x).  (B6)

For the density profile n(x) given in Eq. (53) and with a
rescaled variable y=2x/L we obtain

2
Ch(y) +b2( a- z)m>c (»=0, (B7)

with a,=1-E(n)/[2{(3)k] and b>=(3)L*/(23). In a final
approximation we expand Eq. (B7) to lowest order in y* and
€, and end up with the differential equation

Ch(y) +b*(a, - y»)C,(y) =0. (B8)

Solutions of this equation are C,(x)~®,(x,5) with &>
=13,/8¢(3) and ®,(x,5) the well-known harmonic oscil-
lator functions

, (x,0) = H,y(x/0)e™ 7, (B9)
with H,(x) Hermite polynomials. Using L=AN the corre-
sponding harmonic energy spectrum is
V32¢(3)2y (n—1/2)

A N

E(n) = K<2§(3) - ) (B10)

At this point the energy spectrum E(n) given in Eq. (B10)
still depends on an inaccurately defined constant 2
~In(N/2) and its shape only poorly approximates the exact
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spectrum plotted in Fig. 7. As mentioned above this discrep-
ancy is due to the fact that the cutoff radius for the sum given
in Eq. (B5) is not determined by the size of the system, i.e.,
r.=N/2, but rather by the shape of the wave function C,(x).
To take into account this mode-dependent cutoff we use the
following trick. First, for each mode function C,(x) we re-
place the constant X, in Eq. (B5) by 2(n), which has a dif-
ferent value for each mode n. Second, to derive an accurate
expression for %(n) we invert the expansion of Cn(x;’) out-
lined in Egs. (B3)—(B5) and express X(n) in terms of the full
wave function C,(x) as

1 3 C,(x) = C,(x))

0 0 0_ 0
n(x; )CZ(xi )js&i |x |3

S(n)=

(B11)

To evaluate Eq. (B11) we focus on the region x?~0 and
neglect small variations of the density. For the mode func-
tions C,(x) we insert the harmonic oscillator functions,
C,(x) ~®,(x,0), derived above. Around the center of the
trap we can further approximate these wave functions by
C,(x) ~cos(k,x) [or C,(x)~sin(k,x) for odd n] with a wave
vector ki=(2n—1)/ a°. For even modes this approximation
results in

S(n) = (zg(z) E“’S(k"’)), (B12)

Jj#0 |]|

which can now be evaluated in a closed form in terms of
polylogarithm functions [see Appendix A, Eq. (A4)]. Ex-
panding the result to lowest order in &, we finally obtain

S(n) = %{3+1n<2n6i1>}

By replacing 3 with 3 (n) in Eq. (B10) we end up with the
improved exciton spectrum

/ n—1/2
E(n)= K|:2§(3) -A BN+ln<n_N1/2)¥] ,

(B14)

with By=3+In[A\In(N/2)/32{(3)] and A=4/{(3)/A. The
corresponding improved mode functions are given by C,(x)
~®,(x,0,) with a n-dependent width

A N 172
Uﬁ=Nm|:BN+ln<m>] . (B15)

Although our derivation was based on several rather crude
approximations we find in comparison with numerics that
our analytic solutions for E(n) and C,(x) provide an accurate
description of the long-wavelength behavior of the exciton
spectrum and the shape of the eigenfunctions. Due to the
similarity of the underlying equations this approach should
also be applicable to improve the linear phonon spectrum
obtained in Ref. [33] for a harmonically confined ion crystal.

Short-wavelength limit. For the short-wavelength limit of
the exciton spectrum we make the ansatz Cn(x?)ECn(i)

=(-1)! E‘n(x?) such that C,(x) represents a slowly varying en-
velope function for the rapidly oscillating mode function

(B13)
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C,(x). Inserting this ansatz into the eigenvalue equation (B1)

we can proceed in the derivation of En(x) as explained above
for the long-wavelength limit. However, in the short-
wavelength limit the fast oscillating eigenmodes cancel the
effect of long-range interactions and in contrast to the diver-
gent sum in Eq. (B5) the corresponding term in the short-
wavelength limit has a well-defined value,

2 (GRS

j#l 'xj|

= —In(2)n(x?). (B16)

Therefore, the resulting spectrum in the short-wavelength
limit is purely harmonic and has the form

( 3¢(3)  \24L03)In(2) (- 1/2)
E(n)=«| - +
2 A N

with 7=N—-n+1. The envelop functions C,(x) ~
harmonic oscillator eigenfunctions with a width

), (B17)

b;(x,0) are

o =NAVIn(2)/6£(3). (B18)

APPENDIX C: PHONON SPECTRUM OF A
HARMONICALLY CONFINED MDC

In this appendix we derive approximate analytic expres-
sions for the spectrum of longitudinal and transverse
phonons in a harmonically confined MDC. Our calculations
are based on a similar approach used in Ref. [33] for the
phonon spectrum of a 1D ion crystal. However, in contrast to
the ion crystal or the exciton spectrum derived in Appendix
B, the long-range character of dipole-dipole interactions has
no severe effect on the phonon spectrum of a dipolar crystal
which simplifies calculations. Here we outline only the deri-
vation of the spectrum of longitudinal phonons. The spec-
trum of transverse phonons can be derived along the same
lines and we give the results at the end of this appendix. Note
that throughout this appendix we express results in units of
a(0)=1/n(0) and U, as defined in Sec. VB 1.

To derive the eigenspectrum w(m) with m=1, ... ,N of the
Hamiltonian H”hon given in Eq. (46) we change into the
Heisenberg picture where position operators x,(r) obey the
equatlon of motion,

(t) x,(1)
O|5 ’

%) = - Px(0) - 2

j:#l l

(C1)

with p=#v/U,; the normalized trapping frequency. Using
the normal mode decomposition given in Eq. (50), Eq. (C1)
translates into the eigenvalue equation,

(i) = ¢,(f)
TP

W = 0 m)]e, (i) = — 122 25—

J#i

(C2)

for the normal modes c,,(i). In the long-wavelength limit we
can replace the discrete set of coefficients c,,(x") =c,,(i) by a
continuous function c,,(x) and make the approximation
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() = i) + ¢ () () = xD) + " () () = D)2
(C3)
As the mode functions of long-wavelength phonons extend

over the whole length of the crystal we include variations of
the density n(x) given in Eq. (53), i.e.,
0_ 0

G- _G=7n'()

Xj =X =T = VRO

n(x;) 2 n(x;)

Keeping terms up to second order in the derivatives ¢, (x)
and n’(x), Eq. (C2) transforms into the differential equation

n}(y)ch () +4n*(y)n' (v)e,,(y) = a,c,,(v) =0, (CS)

with y=2x/L and a,,=2[1-w*(m)/7*]/3. Here we made use
of the identity ’)/V2L2 325(3) [see Sec. V B 1, Eq. (56)]. For
the density n(y)= -2 —y? we find n*(y)n'(y)=-2/3y and the
differential equation (C5) can be solved by the ansatz
c,n(y)=2a,y*. The coefficients obey the recursion rule

(C4)

Qrin = ag[k(k = 1) + 8k/3 + a,, )/ (k + 1)(k +2).

The quantization condition for mode m, a;,,=0, V k>m
—1, follows from the normalizability of the resulting polyno-
mials and translates into the spectrum

om) =1+ Bm>=m=2)12. (C6)

The corresponding mode functions ¢,,(x) are polynomials ex-
tended over the whole length of the crystal.

In the short-wavelength limit we make the ansatz c,,(i)
=(—l)i5m(x?) and repeat the calculations from above for the
slowly varying envelope function ¢,,(x). For y=2x/L we ob-
tain

4n'(y) 2 () + [BN*1°(y) +

1.
() " oy =

an(y) +
(C7)

with B=31£(5)A%/24{(3) and a,,=8[1-w?*(m)/7*]/9. We
can simplify Eq. (C7) by neglecting the term proportional to
n'(y) and by expanding the remaining equation up to second
order in y. This approximation is valid, since we will find
below, that the mode functions of short-wavelength phonons
are located at the center of the chain. We end up with

&) +[N°B+ e, = @N°BI3 = ,,)y%],,(y) = 0. (C8)
Solutions of this equation are of the form
Cp(x) (C9)

with m=N-m and o>=N\%\3/(8083). The corresponding
spectrum is given by

N [5 (m+172)
w(m) = wD<1 - 3,3—N )

with a Debye frequency wp=7N943/8.

Transverse phonons. Along the same lines as shown for
the longitudinal phonons we calculate analytic expressions
for the spectrum of transverse phonons determined by the

~ Hm(x/a)e_xz/z”z,

(C10)
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Hamiltonian H ohon given in Eq. (47). In the long-wavelength
limit the resultlng spectrum is

_ 443) B3m*-m-2)
wfz(m) = \/1/2l -a,, y N ,

with a,=1, @=3, and ¥ =hv,/U,. For the short-
wavelength limit we obtain a spectrum of the form

Wl (m) = \/52l —Agu<l _plmr12) 1/2)) (C12)
RETY ,-y N

with numerical constants A=93{(5)/8=12.05 and B
=45£(3)32/31¢(5) =2.055.

(C11)

APPENDIX D: LINDEMANN PARAMETER

In this appendix we calculate the local Lindemann param-
eter I';(x,T) as defined in Eq. (63) both for the homogeneous
and the inhomogeneous crystal. Note that in the following
we express all quantities in units of ay and U,,. Using the
normal mode decomposition of operators x; given in Eq.
(A6) for the homogeneous system and in Eq. (50) for the
inhomogeneous case we obtain

0.7) = E"(

Ick(z +1) = ¢, ()|"[2N(w(k)) + 11,

(D1)

with N(w(k)) the thermal occupation number of mode k. For
a homogenous system k is the quasimomentum, c(i) are
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plane waves, and w(k)=f(k)/\y. In the homogeneous system
we replace k by the index m=1,...,N and the normal modes
¢, (i) with the corresponding spectrum w(m) are discussed in
Sec. V B and Appendix C. For 51mp1101ty we adopt the sound
wave approximation w(m)=[ap/\ylm/N with a,=~6.95.
The Lindemann parameter then has the general form

1
[u(eT) = G F(g=2xL. 7= ). (D2)
For the homogeneous crystal F(&, 7)=F,(7) with
2 (" dk 2
= 2 -
Fi(n) = f(k) sin (k/Z)( w1t 1). (D3)

In the two limits of interest the numerical values of this
function are F),(7—0)=0.424 and F,(7>1)=0.278\r. In
the inhomogeneous case we obtain

(e, (&)]2< 2 )
DA2Z n(f)m apm/(1l N)_l-’-l ’

FAé7) =

(D4)

Numerical values of this function are plotted in Fig. 9.
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