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Most approximation algorithms for #P-complete problems �e.g., evaluating the partition function of a
monomer-dimer or ferromagnetic Ising system� work by reduction to the problem of approximate sampling
from a distribution � over a large set S. This problem is solved using the Markov chain Monte Carlo method:
a sparse, reversible Markov chain P on S with stationary distribution � is run to near equilibrium. The running
time of this random walk algorithm, the so-called mixing time of P, is O��−1 log 1/��� as shown by Aldous,
where � is the spectral gap of P and �� is the minimum value of �. A natural question is whether a speedup
of this classical method to O���−1 log 1/��� is possible using quantum walks. We provide evidence for this
possibility using quantum walks that decohere under repeated randomized measurements. We show that �i�
decoherent quantum walks always mix, just like their classical counterparts, �ii� the mixing time is a robust
quantity, essentially invariant under any smooth form of decoherence, and �iii� the mixing time of the deco-
herent quantum walk on a periodic lattice Zn

d is O�nd log d�, which is indeed O���−1 log 1/��� and is asymp-
totically no worse than the diameter of Zn

d �the obvious lower bound� up to at most a logarithmic factor.
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I. INTRODUCTION

A. Markov chain Monte Carlo and quantum walks

A rich theory has been developed for computing approxi-
mate solutions to problems in combinatorial enumeration and
statistical physics which are #P-complete and therefore un-
likely to have efficiently computable exact solutions. Among
the highlights are randomized polynomial-time algorithms
for approximating the permanent of a non-negative matrix
�1�, the volume of a convex polytope �2�, and the partition
functions of monomer-dimer and ferromagnetic Ising sys-
tems �3,4�. At the heart of these algorithms, and consuming
much of the running time, is a subroutine for approximate
sampling from a distribution � over a large set S of states.
This problem is solved using the Markov chain Monte Carlo
�MCMC� method: a random walk �xt�t=0,1,2,. . . on S �i.e., a
random sequence of state transitions� is simulated from an
arbitrary initial state x0 to a random state xT distributed close
to �. The random walk is generated by a Markov chain P on
S �i.e., an �S�� �S� column-stochastic matrix of state transi-
tion probabilities� whose stationary �fixed-point� distribution
is �. The time required to guarantee closeness to �, or mix-
ing, is the so-called mixing time �mix. Bounding �mix reduces
to estimating the spectral gap � : =1− ���, where � is the
second-largest eigenvalue of P in magnitude, by Aldous’ in-
equality �5�,

�−1 � �mix � �−1�ln 1/��� , �1�

where �� : =minx��x��0.
Example 1: Monomer-dimer systems. Suppose we are

given as input a graph G, consisting of vertices V and edges
E, and a positive value �. Let Sk be the set of all k-matchings
in G, where a k-matching is a k-subset of edges which are
vertex-disjoint. A pair of vertices connected by an edge in the

matching is a dimer; an isolated vertex is a monomer. Define
the Gibbs distribution

��x�: =
1

Z���
��x� �2�

on the set x�S : =�kSk, where Z���=�x�S��x�=�k�Sk��k is
the partition function. Our computational task is to evaluate
Z��� as accurately as possible.

We cannot hope to compute Z��� exactly, because this
problem is #P-complete for any ��0. However, consider
that we can write Z��� as a telescoping product,

Z��� =
Z��r�

Z��r−1�
�

Z��r−1�
Z��r−2�

� ¯ �
Z��1�
Z��0�

� Z��0� �3�

for some sequence �=�r��r−1� ¯ ��1��0=0, where
Z��0�=1 is trivial to compute and the ratios Z��i+1� /Z��i� are
easily seen to equal the expectation values
Ex←�i

���i+1 /�i��x��. �Here �i is the Gibbs distribution for �i.�
It can be shown that r need not be very large to guarantee
that the expectation values Ex←�i

���i+1 /�i��x�� are bounded
and well-estimated using relatively few samples from the
distributions �i.

Thus we have reduced the problem of approximating Z���
efficiently to the problem of sampling efficiently from the
Gibbs distribution �. The sampling problem can be solved
by running a random walk �xt�t=0,1,2,. . . on the Markov chain
P with the following transition rule: at state xt�Sk, choose
an edge e= �u ,v��E uniformly at random. If e is not in xt

and x� : =xt� �e	 is a valid matching, set xt+1 : =x��Sk+1; if e
is in xt, set xt+1 : =x \ �e	�Sk−1 with probability 1 /�. Other-
wise, either move to a “nearby” state xt+1�Sk �i.e., set xt+1
so that �xt+1�xt�=k−1� or simply stay put �i.e., set xt+1=xt�.
It is not too hard to see that P has � as its stationary distri-
bution; moreover, its spectral gap is ���V��E�� �3,6�. An up-
per bound on the mixing time follows from Aldous’ inequal-
ity �1�.*richterp@cs.rutgers.edu
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Notice that Aldous’ inequality �1� is tight with respect to
the spectral gap. However, it is also somewhat unsatisfactory
in that although the diameter �i.e., the maximum distance
between any two vertices� of the graph underlying P—the
obvious lower bound for sampling from its stationary
distribution—scales like ��−1, the dependence is �−1 in Al-
dous’ inequality due to the Gaussian-like spreading behavior
of random walks. In MCMC algorithms like the monomer-
dimer example above, the additional factor of ��−1 can in-
crease the running time significantly. Removing this factor
would imply considerable improvement of such algorithms
in both the known upper bounds �since existing estimates of
� could be used in conjunction with a sharper inequality than
Aldous’� and the true upper bounds �since Aldous’ inequality
is tight, and thus a sharper inequality could only come from
a faster approximate sampling method�. Thus a natural ques-
tion is whether there is a way to modify the standard MCMC
method to obtain a speedup to O���−1 log 1/���. This seems
unlikely using classical randomized methods: Chen, Lovasz,
and Pak �7� have shown that we can sometimes speed up
mixing by lifting �essentially, by locally “re-routing”� a Mar-
kov chain, but this requires both knowledge of the chain’s
global structure and its use in solving an NP-hard flow prob-
lem to find good routes. However, although lifting the chain
seems unlikely to be practical, an idea that might work is
quantizing the chain.

Why might a quantized Markov chain, or quantum walk,
help us reach � more quickly? Two reasons are �i� a quantum
walk is as simple to realize as its classical counterpart �i.e., it
is computable locally and online at each step of the walk,
unlike a classical lifting of the chain�, and �ii� there is em-
pirical �and some theoretical� evidence that quantum walks
tend to propagate and “spread” probability mass across S in
time on the order of the diameter on precisely the same low-
dimensional graphs that trip up their classical counterparts.
Based on these observations, the possibility of obtaining a
quantum speedup for the mixing problem has been pursued
by Nayak et al. �8,9�, Aharonov et al. �10�, Moore and Rus-
sell �11�, Gerhardt and Watrous �12�, and Richter �13�.

We remark that a quantum speedup theorem of the sort we
seek has already been proven for the hitting problem, in
which we search �rather than sample from� the states of a
Markov chain: Szegedy �14� proved a quadratic quantum
speedup for the hitting time �i.e., the time to detect the pres-
ence of a “marked” state� of any symmetric Markov chain,
generalizing considerably the celebrated search algorithm of
Grover �15� and implying quantum speedups for structured
search problems such as element distinctness �16�, triangle
finding �17�, matrix product verification �18�, and group
commutativity testing �19�. It is this success which inspires
us to investigate the possibility of a quantum speedup for the
mixing problem with the goal of transferring the speedup to
MCMC algorithms.

B. Our contributions

We present evidence of a possible quantum MCMC
speedup to O���−1 log 1/��� using quantum walks that de-
cohere under repeated randomized measurements. Decoher-

ence �in small amounts� was first identified as a way to im-
prove spreading and mixing properties in numerical
experiments performed by Kendon and Tregenna �20� and in
analytical estimates by Fedichkin et al. �21–23�. On the other
hand, high rates of decoherence in quantum walks have been
shown to degrade mixing properties substantially by the
quantum Zeno effect �24�. For an excellent survey of these
and other aspects of decoherent quantum walks, see Kendon
�25�.

Our technical contributions are as follows: First, we show
that for any symmetric Markov chain P, we can generate an
arbitrarily good approximation to the uniform stationary dis-
tribution � of P by subjecting the continuous-time quantum
walk Uct�P�=exp�iP� to reasonably “smooth” decoherence.
Thus decoherent quantum walks �which are nonunitary� offer
a way of circumventing an obstacle first identified by Aha-
ronov et al. �10�, who observed that unitary quantum walks
often converge �in the time-averaged sense� to highly non-
uniform distributions.

Second, we show that the optimal mixing time of a deco-
herent quantum walk is a robust quantity, in that it remains
essentially invariant under any sufficiently smooth form of
decoherence. In particular, decoherent quantum walks under-
going repeated Cesaro-averaged �10–12� and Bernoulli-
Poisson-averaged �20,24� measurements are nearly equiva-
lent in mixing efficiency. The proof applies more generally to
a game involving time-dependent Markov chains �not neces-
sarily describing quantum phenomena� and may be of inde-
pendent interest.

Third, we prove a theorem on threshold mixing of quan-
tum walks on �Cartesian� graph powers in order to show that
the decoherent continuous-time quantum walk Uct(P�G�) on
a periodic lattice G=Zn

d �where P�G� denotes the standard
“simple random walk” Markov chain on G� can be used to
generate a good approximation to the uniform stationary dis-
tribution � of P in time O�nd log d�. This upper bound is
asymptotically no worse than the diameter of Zn

d �the obvious
lower bound� up to at most a logarithmic factor and is
O���−1 log 1/��� for both high-dimensional and low-
dimensional lattices �unlike its classical counterpart�. For d
=1, this proves a conjecture of Kendon and Tregenna �20�
based on numerical experiments �26�. For d	1, it extends
the results of Fedichkin et al. �21–23� by confirming O�n�
and O�d log d� scaling �suggested by their analytical esti-
mates and numerical experiments in regimes of both high
and low decoherence� of the fastest-mixing walk, which they
conjectured to be decoherent rather than unitary. We briefly
discuss the prospects for extending this result to the discrete-
time Grover walk Udt(P�Zn

d�) �27–29�.
Previously, mixing speedups had been proven only for the

unitary quantum walks of Nayak et al. �8,9� and Aharonov et
al. �10� �on the cycle� and of Moore and Russell �11� �on the
hypercube�. Thus our work shows that introducing a small
amount of decoherence to a quantum walk can simulta-
neously force convergence to the uniform distribution while
preserving a quantum mixing speedup, an advantageous
combination for algorithmic applications �30�.
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II. PRELIMINARIES

A. Markov chains

Let P be a Markov chain �column-stochastic matrix� on
the set S ��S�=N� which is irreducible �strongly connected�;
then it has a unique distribution � which is stationary
�i.e., satisfies P�=��. Moreover, � is strictly positive: �� :
=minx ��x� satisfies ���0. In particular, if P is symmetric,
then � is the uniform distribution u �the N-dimensional col-
umn vector with each component equal to 1/N�. If G is an
undirected graph, we denote the standard �“simple random
walk”� Markov chain on G by P�G�.

A Markov chain P which is both irreducible and aperiodic
�nonbipartite� is by definition ergodic and satisfies

Pt → �1† = �� ¯ �� as t → 
 , �4�

where 1† is the N-dimensional row vector with each compo-
nent equal to 1. We can thus define the (threshold) mixing
time

�mix: = min
T:
1

2
�Pt − �1†�1 �

1

2e
∀ t 	 T� , �5�

where � · �1 is the matrix 1-norm. The mixing is perfect if
Pt=�1†. Let � : =1− ��� be the spectral gap of P, where � is
the second-largest eigenvalue of P in magnitude. We say that
P is reversible if the matrix DPD−1 is symmetric, where D is
the diagonal matrix D�x ,x�=���x�. A precise statement of
Aldous’ inequality �1� is as follows.

Theorem 2 (Aldous �5�). Let P be a reversible, ergodic
Markov chain with stationary distribution � and spectral gap
�. Then its mixing time satisfies

�−1 � �mix � �−1�ln 1/��� .

We will also use the maximum pairwise column distance
d�P� : =maxx,x�

1
2
�P�· ,x�− P�· ,x���1 to estimate the mixing

time. It is related to the matrix 1-norm distance by the in-
equality:

1

2
�P − �1†�1 � d�P� � �P − �1†�1. �6�

The following propositions �see �13� for proofs� can be used
to estimate the mixing time of P given a common lower
bound on most of the entries in each column.

Proposition 3. If d�P���, then �mix� �log1/� 2e�.
Proposition 4. If at least �N entries in each column of P

are bounded below by 
 /N, where ��
1
2 and 
�0, then

d�P��1−
�1−2�1−���.

B. Quantum walks

Henceforth, a quantum walk is a pair 
U ,�T� where the
transition rule U is a unitary operator acting on a finite-
dimensional Hilbert space and the measurement rule �T is a
T-parametrized family of probability density functions on
�0,
� characterizing the �random� time at which a total mea-
surement is performed on the Hilbert space �31�.

The unitary transition rule determines the orbit of a pure
quantum state, or wave function �l2-normalized complex vec-

tor�, just as a Markov chain �or stochastic transition rule�
determines the orbit of a classical distribution �l1-normalized
non-negative vector�. Let P be the Markov chain used in an
MCMC algorithm; in particular, P is reversible. Two natural
quantizations of P are �i� the S�S unitary continuous-time
walk given by Uct�P�=exp�iDPD−1� �32,33�, where H
=DPD−1 is the time-independent Hamiltonian, and �ii� the
S2�S2 unitary discrete-time Grover-Szegedy walk given by
Udt�P�= �RS�2 �14�, where S is the involution
�x,y�S�x ,y�� �y ,x�, R is the reflection �x�S�x�
x� � �2�px�
�
px�− I�, and �px� is the vector �y�S�P�y ,x��y�. The
quantization Uct�P� was used by Childs et al. �34� to solve in
polynomial time a natural oracle problem for which no clas-
sical polynomial-time algorithm exists. The quantization
Udt�P� was used by Szegedy �14� to prove a quadratic quan-
tum speedup for the hitting time of any symmetric Markov
chain.

Measurement collapses the wave function to a classical
distribution according to the map �����x�x��
x ����2. For a
quantum walk 
U ,�T�, the Markov chain generated by the

quantum walk is given by P̂T�y ,x� : =Et←�T
��
y�Ut�x��2�,

where E denotes expected value. We say that the quantum
walk threshold mixes if the Markov chain it generates mixes
in time O�1�. Examples of measurement rules from the lit-
erature include the point distribution �T�t� : =��t−T� where �
is the delta function �8,9�, the uniform distribution �̄T :
= 1

T��0,T� and its discrete-time counterpart �̄T : = 1
T��0,T−1�

where � is the characteristic function �10�, the exponential
distribution �̃T�t� : = 1

Texp�−t /T�, and the geometric distribu-
tion �̃T�t� : = 1

T
�1− 1

T
�t. The exponential and geometric distri-

butions are memoryless and describe the interarrival time be-
tween measurements in a Poisson process with
measurements occurring at rate �=1/T and a Bernoulli pro-
cess with measurements occurring with probability p=1/T at
each time step, respectively. These processes coincide with
the decoherence models of Alagic and Russell �24� and
Kendon and Tregenna �20�, respectively.

Nayak et al. �8,9� and Aharonov et al. �10� showed that
the so-called Hadamard walks 
UHad ,�T� and 
UHad , �̄T� on
the cycle Zn threshold-mix quadratically faster than the clas-
sical random walk, although their definitions of threshold
mixing are slightly different than ours. Moore and Russell
�11� showed that the continuous-time walk 
Uct(P�G�) ,�T�
and the Grover walk 
Udt(P�G�) ,�T� on the hypercube G
=Z2

d mix perfectly and almost perfectly, respectively, in time
T=O�d�. They also showed that the continuous-time quan-
tum walk on the hypercube with measurement �̄T does not
mix to the uniform stationary distribution � of P�Z2

d� in the
limit T→
. Gerhardt and Watrous �12� showed the same for
a continuous-time quantum walk on the symmetric group
with measurement �̄T. See the survey by Kempe �35� for
further results on quantum walks.

We remark that there is a nice way to use the quantization
Udt�P� to solve the mixing problem in time O�1/�����
which, although prohibitively costly in ��, exhibits the de-
sired dependence on �. Consider the stationary eigenstate
��̃� : =�x�S���x��x��px� of Udt�P�. It is clear that we can re-
trieve a good approximation to the classical distribution � by
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generating and then measuring a good approximation to ��̃�
�36�. Magniez et al. �37� observe that O�1/��� steps of phase
estimation on Udt�P� enable us to reflect about ��̃�. By alter-
nating this reflection with a reflection about �z̃� : = �z��pz�
where z is the initial walk state �in particular, 
z̃ � �̃�	����,
we can generate ��̃� from �z̃� in time O�1/�����. In fact, this
algorithm is described by Magniez et al. �37� as a hitting
algorithm �i.e., generate the unknown state �z̃� from the fixed
initial state ��̃��; the idea of running a quantum hitting algo-
rithm in reverse as a mixing algorithm was suggested by
Childs �38�.

III. MIXING PROPERTIES OF DECOHERENT QUANTUM
WALKS

A. Two types of convergence

Let P̂T be the Markov chain generated by a quantum walk

U ,�T�. Then repeating the quantum walk T� times in suc-

cession generates the Markov chain �P̂T�T�. The following
lemma �a variant of Theorem 3.4 in Aharonov et al. �10��
and theorem describe the asymptotic behavior of P̂T and

�P̂T�T� in the limits T→
 and T�→
, respectively. For con-
creteness we will take U=Uct in this subsection and the next;
it is a simple exercise to extend the results to discrete-time
walk variants. Although stated explicitly for quantum walks,
the results apply to any time-independent quantum dynamics
on a finite-dimensional Hilbert space subjected to random
destructive measurements.

Lemma 5 (The limit T→
). Let P be a symmetric Mar-
kov chain and �T be a family of distributions satisfying
Et←�T

�ei�t�→0 as T→
 for any ��0. In the limit T→
,

the Markov chain P̂T generated by the quantum walk

Uct�P� ,�T� approaches the Markov chain � with entries

��y,x�: = �
j
� �

k�Cj


y��k�
�k�x��2
, �7�

where ��k , ��k�	 is the spectrum of P and �Cj	 is the partition
of these indices k obtained by grouping together the k with
identical �k.

Proof. Decomposing the quantum walk along spectral
components gives us

P̂T�y,x� = Et←�T���
k


y��k�
�k�x�ei�kt�2� . �8�

Writing � · �2 as a product of complex conjugates, the right
hand side becomes

E�T���
k


y��k�
�k�x����
l


�l�y�
x��l��ei��k−�l�t� . �9�

By linearity of expectation, this is equivalent to

��
k


y��k�
�k�x����
l


�l�y�
x��l��E�T
�ei��k−�l�t� . �10�

Now by assumption, E�T
�ei��k−�l�t� vanishes as T→
 for all

�k��l, so we have

P̂T�y,x� → �
k


y��k�
�k�x�� �
l:�l=�k


�k�y�
x��k��
= �

j
� �

k�Cj


y��k�
�k�x��2

= ��y,x� �11�

in the limit T→
.
It can be inferred from this lemma that most quantum

walks converge to a distribution � other than the uniform
stationary distribution �=u, and that � is not even indepen-
dent of the initial walk state �39�. There are exceptions to this
rule, for example quantum walks with distinct eigenvalues
on Cayley graphs of Abelian groups �as observed by Aha-
ronov et al. �10��, but they are not likely to arise in MCMC
applications where the Markov chains have little structure.
How then are we to sample from u using quantizations of
these Markov chains? Here is where decoherence helps.

Theorem 6 (The limit T�→
 ). Let P be a symmetric,
irreducible Markov chain and �T be a family of distributions
satisfying Et←�T

�ei�t�→0 as T→
 for any ��0. For T suf-
ficiently large �but fixed�, the T�-repeated quantum walk


Uct�P� ,�T� generates a Markov chain �P̂T�T� approaching
u1† in the limit T�→
.

Proof. We need to show that for T sufficiently large, the

Markov chain P̂T is ergodic with uniform stationary distribu-
tion.

That the uniform distribution is stationary is clear: each of
the Pt�y ,x� : = �
y�eiPt�x��2 has uniform stationary distribution
since the uniform classical state is invariant under unitary
quantum operations and under total measurement of the sys-

tem; thus any probabilistic combination P̂T of them has uni-
form stationary distribution.

To show that P̂T is ergodic for all sufficiently large T, it is
sufficient �by Lemma 5� to prove that � is ergodic. �The
latter implies the former because the ergodic matrices form
an open subset of the set of stochastic matrices.� Why is �
ergodic? Because the 1-eigenspace of P is precisely the
space spanned by u, so it follows from Lemma 5 �by consid-
eration of only this nondegenerate eigenspace in the expres-
sion �7�� that ��y ,x�	1/N2 for every x ,y.

In fact, each of the Pt �and so P̂T and � as well� is sym-
metric �40�. To see this, write out the Taylor series for
exp�iPt� and note that every positive integer power Pk is
symmetric �since P2�x ,y�=�zP�x ,z� · P�z ,y�
=�zP�y ,z� · P�z ,x�= P2�y ,x��. This property will be quite
useful in the next subsection: it will allow us to use Theorem

1 to relate the spectral gap and the mixing time of P̂T.

B. Invariance of the mixing time

Consider the quantum walks 
Uct�P� , �̄T� and 
Uct�P� , �̃T�
where P is a symmetric Markov chain. We show that these
two quantum walks mix with essentially the same efficiency.
The result extends beyond �̄ , �̃ to any pair of measurements
� ,�� which are sufficiently smooth or have nontrivial over-

lap as distributions. Let P̄T and P̃T be the Markov chains
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generated by the walks with measurement �̄ and �̃, respec-

tively, and let �̄T and �̃T be their respective spectral gaps.

Lemma 7 (Spectral gap inequality). Let �̄T and �̃T be de-
fined as above. Then for any k	1 we have the inequality:

e−1�̄T � �̃T � k�1 − e−k��̄kT + 2e−k. �12�

Proof. Suppose we want to simulate P̄T by P̃T. Scaling the
distribution �̄T by � : =1/e allows us to “fit it inside” the
distribution �̃T �i.e., e−1�̄T��̃T pointwise�, so we can ex-
press �̃T as the probabilistic combination ��̄T+ �1−��� for
some distribution �, so that

P̃T = Et←�̃T
�Pt� = �E�̄T

�Pt� + �1 − ��E��Pt� = �P̄T + �1 − ��Q ,

�13�

where Q is stochastic with uniform stationary distribution. It
follows that

� P̃T�u��2 � 1/e� P̄T�u��2 + �1 − 1/e��Qu��2 �14�

which implies that �̃T	 �1/e��̄T since �Q � u��2�1.

Suppose we want to simulate P̃T by P̄kT. Then the basic
approach is the same, but since the support of �̃T is not
compact we have to be careful. Scaling the distribution �̃T
by � : =1/k allows us to fit it inside the distribution �̄kT up to
the point t=kT, and the probability mass in �̃T past t=kT is
only Prt←�̃T

�t�kT�=e−k. So we can write

�̃T = �1 − e−k� · �̃T
head + e−k · �̃T

tail, �15�

where �̃T
head and �̃T

tail are the conditional distributions of �̃T
such that t�kT and t�kT, respectively; thus

P̃T = �1 − e−k� · P̃T
head + e−k · P̃T

tail, �16�

where P̃T
head and P̃T

tail are the expectations of Pt with respect
to �̃T

head and �̃T
tail, respectively. Since we can fit �̃T

head inside
�̄kT if we scale it by 1/k, we can write

P̄kT =
1

k
P̃T

head + �1 −
1

k
�Q , �17�

where Q is stochastic with uniform stationary distribution.
The above equations yield

P̄kT =
1

k�1 − e−k�
�P̃T − e−kP̃T

tail� + �1 −
1

k
�Q . �18�

From the triangle inequality, ��P̄kT�u��2 is at most

� P̃T�u��2 + e−k� P̃T
tail�u��2

k�1 − e−k�
+ �1 −

1

k
��Q�u��2. �19�

Rearranging terms and simplifying, we have

�1 − � P̃T�u��2� − 2e−k

k�1 − e−k�
� 1 − � P̄kT�u��2. �20�

Theorem 8 (Equivalence of measurements). Let P be a
symmetric Markov chain. Then �i� if the T�-repeated quan-

tum walk 
Uct�P� , �̄T� threshold-mixes, then the
T� ·O�log N�-repeated quantum walk 
Uct�P� , �̃T� threshold-
mixes; �ii� if the T�-repeated quantum walk 
Uct�P� , �̃T�
threshold-mixes, then the T� ·O�log T� log N�-repeated quan-
tum walk 
Uct�P� , �̄T·O�log T��� threshold-mixes.

Proof. To see �i�, note that our assumption implies that P̄T

mixes in time T�. Therefore �̄T=��1/T�� by Theorem 2, and

from Lemma 7 it follows that �̃T=��1/T��. Applying Theo-

rem 2 again, we obtain for P̃T a mixing time of O�T� log N�.
The proof of �ii� is almost as straightforward. Our as-

sumption implies that P̃T mixes in time T�, so �̃T=��1/T��
by Theorem 2. Set k to be the smallest integer for which

�̃T	3e−k; in particular, k=��log �̃T
−1�=O�log T��. By

Lemma 7,

�̄kT 	
1

k�1 − e−k�
��̃T − 2e−k� 	

1

k�1 − e−k�
�e−k� . �21�

Asymptotically, the right hand side is

�� �̃T

log �̃T
−1� = �� 1

T� log T�
� . �22�

Applying Theorem 2 again, we obtain for P̄kT a mixing time
of O�T� log T� log N�.

It should be readily apparent that this equivalence holds
for any two measurement rules with finite expectation and
significant overlap for most T. We also remark that although
the above lemma and theorem are stated in terms of quantum
walks, the proofs indicate that they are merely statements
about an abstract game involving a collection of symmetric
Markov chains �Pt	t	0 and a T-parametrized family of prob-
ability measures ��T	, where we seek to minimize the “cost
function” T ·T�.

IV. QUANTUM SPEEDUP FOR PERIODIC LATTICES

A. A near-diameter upper bound

The classical random walk on the periodic lattice Zn
d �with

N=nd vertices and diameter �n /2�d� has uniform stationary
distribution �=u and spectral gap �=�� 1

dn2 �. It threshold-

mixes in time ��n2d log d�, which is O���−1 log 1/��� only
when Zn

d is quite high-dimensional: in particular, when d is
roughly of order n2 or larger. We show that a few repetitions
of the continuous-time quantum walk can bring this down to
O�nd log d�, which is O���−1 log 1/��� for any d	1 and
n	2 and asymptotically no worse than the diameter of Zn

d up
to at most a logarithmic factor. First we prove a lemma gov-
erning mixing of various decoherent quantum walks on the
cycle Zn.

Lemma 9 (Mixing on cycles). Let Zn be the cycle on n
	2 vertices. The continuous-time walks 
Uct(P�Zn�) ,�T�
with measurement �� �� , �̄ , �̃	 threshold-mix for any
T�I : =� 2

3
n
2 , n

2
�, and the Hadamard walks 
UHad�Zn� ,�T�

with measurement �� ��̄ , �̃	 threshold-mix for any T�J :
=� 2

3
n
�2

, n
�2

�.
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Proof. Consider first the continuous-time walk. To prove
that it threshold-mixes with any of the measurements
�� �� , �̄ , �̃	 for any T�I, it suffices by Proposition 3 to
show that for every t�I� : =� 3

5
n
2 , 4

5
n
2
�, d�Pt� is bounded be-

low 1 by a positive constant, where Pt is the Markov chain
generated with measurement �=�. �Indeed, this easily im-

plies that d�P̄T� and d�P̃T� are bounded below 1 by a smaller

positive constant, where P̄T and P̃T are the Markov chains
generated with measurement �= �̄ and �= �̃, respectively.�

Let ��t� and ��t� be the wave functions at time t for the
continuous-time walks on Z and Zn, respectively, starting
from the origin �without loss of generality, since Z and Zn are
vertex-transitive�. Then for each ȳ�Zn we have


ȳ��t� = �
y�ȳ mod n


y��t� . �23�

Childs �38� shows that 
y ��t�= �−i�yJy�t�, where Jy is a
Bessel function of the first kind. In particular, for �y��1 the
quantity �Jy�t�� is �i� exponentially small in �y� for
t� �1−�� · �y� and �ii� of order �y�−1/2 for t� �1+�� · �y�. For
every t�

4
5

n
2 , property �i� implies that the only term in the

above summand that is non-negligible is the 
y ��t� with �y�
�

n
2 �call it ŷ and note that ȳ↔ ŷ is a 1–1 correspondence�, so

we can use property �ii� to conclude that up to a negligible
correction

�
ȳ��t�� � �
ŷ��t�� = ��1/�n� �24�

for every �ŷ��1 and t� �1+�� · �ŷ�. In particular, the nearly
3
5n different ȳ with 1� �ŷ�� 3

5
n
2 satisfy �
ȳ ��t��=��1/�n�,

and therefore Pt�ȳ , 0̄�=��1/n�, for every t�I�. So by
Proposition 4, d�Pt� is bounded below 1 by a positive con-
stant.

For the Hadamard walk, the wave function is no longer
characterized by Bessel functions, but it retains the same
essential asymptotic spreading behavior as its continuous-
time counterpart �see Nayak et al. �8,9��, and the argument
above works with little modification. A caveat is the emer-
gence of a parity problem: if n is even, then Zn is bipartite
and the wave function is supported only on vertices of the
same parity at each integer time step. Hence the Hadamard
walk with �=� threshold-mixes only on vertices of the same
parity, but with time-averaged measurement �= �̄ or �= �̃
parity is broken and threshold-mixing occurs on the entire
vertex set.

Although the argument above relies on the asymptotic
behavior of the wave function as n→
, this is clearly the
difficult case: if n is bounded, then it suffices to show only
that there exists a time �or a pair of consecutive time steps, in
the case of the Hadamard walk� in which the wave function
is supported on at least 2/3 of the vertices.

For the Hadamard walk with measurement �= �̃, Lemma
9 resolves a conjecture of Kendon and Tregenna �20� based
on numerical experiments. Let Gd denote the dth �Cartesian�
power of a graph G. Examples are the d-dimensional stan-
dard lattice �the dth power of a line� and the d-dimensional

periodic lattice �the dth power of a cycle�. The following
theorem shows how to extend a threshold-mixing result from
G to Gd.

Theorem 10 (Mixing on graph powers). Suppose the
continuous-time quantum walk 
Uct(P�G�) ,�T� threshold-
mixes. Then the O�log d�-repeated walk 
Uct(P�Gd�) ,�Td�
threshold-mixes.

Proof. The Hamiltonian H�= P�Gd� is related to the
Hamiltonian H= P�G� by the identity

H� =
1

d
�
j=1

d

I��j−1�
� H � I��d−j�. �25�

Since H� commutes with the identity I, which can introduce
at most a global phase factor to the system, the Markov chain
Pt� generated by the walk 
Uct(P�Gd�) ,�t� is the dth tensor
power of the Markov chain Pt/d generated by the walk

Uct(P�G�) ,�t/d�. By assumption, d�PT��� for some con-
stant ��1. By Proposition 3, we can choose T�=O�log d� to
ensure that

1

2
��PT�T� − u1†�1 � d„�PT�T�

… �
1

6d2 . �26�

Then at least n�d2/3 entries in each column of �PT�T� are
bounded below by 1−1/2d

n , otherwise we would have the con-
tradiction

1

2
��PT�T� − u1†�1 = 1 − �

y

min
�PT�T��y,x�,
1

n
�

�� �1 − �d 2/3�
1

2d
	

1

6d2 , �27�

where the first equation uses the identity 1
2
�p−q�1=1

−�kmin�pk ,qk	 for distributions p ,q and the last inequality
uses simple algebra along with the fact that for any d	1

�1 −
1/3

d
�d

	
2

3
. �28�

Since �PTd� �T�= (�PT�T�)�d, at least �n�d2/3�d= 2
3nd of the en-

tries in each column of �PTd� �T� are bounded below by
� 1−1/2d

n
�d

	
1

2nd . It follows from Proposition 4 that �PTd� �T�

threshold-mixes in time O�1�. We have the following corol-
lary for the dth power Zn

d of the cycle Zn.
Corollary 11 (Mixing on periodic lattices). Let Zn

d be the
d-dimensional periodic lattice with n	2 vertices per side.
The O�log d�-repeated continuous-time quantum walk

Uct(P�Zn

d�) ,�nd/2� with measurement �� �� , �̄ , �̃	
threshold-mixes.

Proof. Combining Lemma 9 with Theorem 10, we con-
clude that 
Uct(P�Zn

d�) ,�T� threshold-mixes for any
T�� 2

3
nd
2 , nd

2
�. It is easy to see �cf. Lemma 9� that this is

sufficient to imply the stated corollary not only for the mea-
surement �=�, but also for the time-averaged measurements
�̄ and �̃.

For d	1, this extends the results of Fedichkin et al.
�21–23� by confirming O�n� and O�d log d� scaling �sug-
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gested by their analytical estimates and numerical experi-
ments in regimes of both high and low decoherence� of the
fastest-mixing walk, which they conjectured to be decoher-
ent rather than unitary.

B. The Grover walk

An important question is whether there is a T�-repeated
Grover walk 
Udt(P�Zn

d�) ,�T� that threshold-mixes for T
=O�nd� and T�=O�log d�. Szegedy �14� showed that the
phase gap �minimum nonzero eigenvalue phase from
�−� ,�� in absolute value� of Udt�P� is ����� and exploited
this property to prove a quadratic quantum speedup for the
hitting time of any symmetric Markov chain P. A natural
adaptation of his argument to the mixing time setting would
be something like the following: since the phase gap of
Udt�P� is �=�����, we expect to see by decomposing the
action of Udt�P� along spectral components that roughly
O�1/��=O���−1� time steps suffice for the orbit of any initial
basis state to “cover” the entire state space with sufficient
amplitude.

Unfortunately, this argument is incorrect: in fact, the orbit
may remain quite localized around the initial basis state. This
happens with dramatic effect to the Grover walk on the com-
plete graph G=KN, which mixes in time T�=��N� �cf �13��
even though the classical random walk on KN mixes in a
single time step. It also happens to the Grover walk on Zn

d for
d=2, albeit less dramatically �27–29�. �41� The probability
distribution pt induced on the vertices of Zn

2 at time t�n /2 is
primarily localized at the initial basis state �28� but has sub-
stantial secondary spikes which propagate across the lattice
in orthogonal directions �27�. In particular, the standard de-
viation of pt appears to grow linearly with t �27� and the

mixing time of the Grover walk on Zn
2 with measurement �

= �̄ appears to be T=O�n�. In the high-dimensional regime,
Moore and Russell �11� proved that the Grover walk on Z2

d

with measurement �=� mixes almost perfectly in time T
=O�d�. It seems plausible that the decoherent Grover walk
on Zn

d with measurement �= �̄ mixes as fast asymptotically
as the continuous-time walk.

V. CONCLUSION AND OPEN PROBLEMS

We have shown that decoherent quantum walks have the
potential to speed up a large class of classical MCMC mixing
processes. Exactly how large this class is, and whether a
generic quantum mixing speedup to O���−1 log 1/��� is
possible, remain important open questions. Since it seems
that quantum walks can outperform classical random walks
in low-dimensional examples and underperform in very
high-dimensional examples �such as the complete graph�, a
hybrid method may work best for generic Markov chains
consisting of both low- and high-dimensional substructures.
Also worth investigating is whether by randomizing the
“coin” used in discrete-time quantum walks we can improve
mixing on the complete graph and other adversarial ex-
amples.
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