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A formalism for quantum error correction based on operator algebras was introduced by us earlier �Phys.
Rev. Lett. 98, 10052 �2007�� via consideration of the Heisenberg picture for quantum dynamics. The resulting
theory allows for the correction of hybrid quantum-classical information and does not require an encoded state
to be entirely in one of the corresponding subspaces or subsystems. Here, we provide detailed proofs for our
earlier results, derive more results, and elucidate key points with expanded discussions. We also present several
examples and indicate how the theory can be extended to operator spaces and general positive operator-valued
measures.
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I. INTRODUCTION

A new framework for quantum error correction was de-
rived in �1� through a Heisenberg picture reformulation of
the Schrödinger approach to error correction, and an expan-
sion of the notion of a quantum code to allow for codes
determined by algebras generated by observables. As the ap-
proach generalizes standard quantum error correction �QEC�
�2–6� and operator quantum error correction �OQEC� �7,8�,
we called the resulting theory “operator algebra quantum er-
ror correction” �OAQEC�. An important feature of OAQEC
is that it provides a formalism for the correction of hybrid
quantum-classical information �9,10�.

In this paper we provide proofs for the results stated in
�1�, and we establish a number of new results. In addition,
we expose some of the finer points of the theory with dis-
cussions and several examples. We also outline how the
theory can be extended to the case of operator spaces gener-
ated by observables and general positive operator-valued
measures �POVMs�.

We continue below by establishing notation and describ-
ing requisite preliminary notions. In the next section we
present a detailed analysis of passive quantum error correc-
tion within the OAQEC framework. The subsequent section
does the same for active quantum error correction. This is
followed by an expanded discussion of the application to
information flow from �1�, and we conclude with a section
on the operator space and POVM extension.

Preliminaries

Given a �finite-dimensional� Hilbert space H, we let
L�H� be the set of operators on H and let L1�H� be the set
of density operators on H. We shall write � ,� ,� for density
operators and X, Y, etc., for general operators. The identity
operator will be written as 1.

Noise models in quantum computing are described �in the
Schrödinger picture� by completely positive trace-preserving
�CPTP� maps E: L�H�→L�H� �11�. We shall use the term
quantum channel to describe such maps. Every map E has an
operator-sum representation E���=�aEa�Ea

†, where the op-
erators Ea are called the operation elements or noise opera-

tors for E. The Hilbert-Schmidt dual map E† describes the
corresponding evolution of observables in the Heisenberg
picture. A set of operation elements for E† is given by �Ea

†�.
Trace preservation of E is equivalent to the requirement that
E† is unital; that is, E†�1�=1.

A quantum system A �or B� is a subsystem of H if H
decomposes as H= �A � B� � K. Subspaces of H can clearly
be identified as subsystems A with one-dimensional ancilla
�dim B=1�. An algebra A of operators on H that is closed
under Hermitian conjugation is called a �finite-dimensional�
C* algebra, what we will simply refer to as an “algebra.”
Algebras of observables play a key role in quantum mechan-
ics �12� and recently it has been shown that they can be used
to encode hybrid quantum-classical information �9,10�. Be-
low we shall discuss further the physical motivation for con-
sidering algebras in the present setting. Mathematically,
finite-dimensional C* algebras have a tight structure theory
that derives from their associated representation theory �13�.
In particular, there is a decomposition of H into subsystems
H= �k�Ak � Bk� � K such that with respect to this decompo-
sition the algebra is given by

A = ��
k

�L�Ak� � 1Bk
�� � 0K. �1�

The algebras L�Ak� � 1Bk
are referred to as the “simple” sec-

tors of A. We shall write Mn for the set of n�n complex
matrices, and identify Mn with the matrix representations
for elements of L�A� when dim A=n and an orthonormal
basis for A is fixed.

II. PASSIVE ERROR CORRECTION OF ALGEBRAS

As the terminology suggests, the existence of a passive
code for a given noise model implies that no active operation
is required �beyond decoding� to recover quantum informa-
tion encoded therein. Mathematically, it is quite rare for a
generic channel to have passive codes. However, many of the
naturally arising physical noise models include symmetries
that do allow for such codes �14–25�.

The following is the standard definition of a noiseless
subsystem �and decoherence-free subspace when dim B=1�
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in the Schrödinger picture. Suppose we have a decomposi-
tion of the Hilbert space H as H= �A � B� � K. As a nota-
tional convenience, we shall write � � � for the operator on
H defined by �� � �� � 0K.

Definition 1. We say that A is a noiseless �or decoherence-
free� subsystem for E if for all ��L1�A� and ��L1�B� there
exists ��L1�B� such that

E�� � �� = � � � . �2�

The “decoherence-free” terminology is usually reserved for
subspaces �when dim B=1�.

A. Decoherence-free and noiseless subspaces and subsystems
in the Heisenberg picture

The following theorem gives an equivalent formulation of
this definition in the Heisenberg picture, that is in terms of
the evolution of observables, given by the dual channel E†.
We introduce the projector P of H onto the subspace A � B.

Theorem 2. A is a noiseless subsystem for E if and only if

PE†�X � 1�P = X � 1 �3�

for all operators X�L�A�.
Proof. If A is a noiseless subsystem for E, then for all X

�L�A� we have

Tr�PE†�X � 1�P�� � ���

= Tr�E†�X � 1��� � ���

= Tr��X � 1�E�� � ���

= Tr�X� � ��

= Tr�X��Tr���

= Tr�X��

= Tr��X � 1��� � ��� .

This is true for all ��L1�A� and all ��L1�B�. By linearity
it follows that PE†�X � 1�P=X � 1 for all X�L�A�.

Reciprocally, if we assume Eq. �3� to be true for all X
�L�A�, then for all ��L1�A � B� we have

Tr�X TrB„PE���P…� = Tr��X � 1�PE���P�

= Tr�PE†�X � 1�P��

= Tr��X � 1���

= Tr„X TrB���… ,

where we have freely used the facts P�X � 1�P=X � 1 and
P�P=�. Since the above equation is true for all X, we have
TrB(PE���P)=TrB��� for all ��L1�A � B�, which was
shown in �8� to be equivalent to the definition of A being a
noiseless subsystem for E. �

Note that Eq. �3� can be satisfied even if part of an ob-
servable X � 1 spills outside of the subspace PH under the
action of E†. The projectors P in Eq. �3� show that the noise-
less subsystem condition in the Heisenberg picture is only
concerned with the “matrix corner” of E†�X � 1� partitioned
by P.

In some cases the equivalence of Eqs. �2� and �3� can be
seen from a different perspective. For a bistochastic or unital
channel �those for which E�1�=1�, the dual E† is also a chan-
nel. Then structural results for unital channels from �27� can
be used to give an alternate realization of this equivalence,
and passive codes may be computed directly from the com-
mutant of the operation elements for E. The simplest case
would be for “self-dual” channels, those for which E†=E.
Clearly, any E with Hermitian operation elements is self-
dual. In particular, self-dual channels include all Pauli noise
models, which are channels with operation elements belong-
ing to the Pauli group, the group generated by tensor prod-
ucts of unitary Pauli operators X ,Y ,Z.

As a further illustrative �nonunital� example, consider the
single-qubit spontaneous emission channel �11� given by
E���=Tr����0	
0�. Here P= �0	
0�. This channel is imple-
mented by operation elements E0= P and E1= �0	
1�. Hence
the dual channel is given by E†���= P�P+E1

†�E1. The sub-
space A spanned by the ground state �0	 is a decoherence-free
subspace for E �though it cannot be used to encode quantum
information since dim A=1�. In this case, Eq. �3� is equiva-
lent to the statement PE†�P�P= P, which may be readily
verified.

One can consider more general spontaneous emission
channels with nontrivial decoherence-free subspaces. For in-
stance, consider a qutrit noise model that describes sponta-
neous emission from the second excited state to the ground
state. The corresponding channel is defined by E���= P�P
+E�E†, where P= �0	
0�+ �1	
1� and E= �0	
2�. The subspace
PC3=span��0	 , �1	� is a single-qubit decoherence-free sub-
space for E since E���=� for all �= P�P. It is also easy to
see in this case that Eq. �3� is satisfied since PE†�X�P=X for
all X�L�PC3�. Notice also in this example that E† can in-
duce “spillage” from P to P�. Indeed, this can be seen im-
mediately from the operator-sum representation for E†; spe-
cifically, for all X�L�PC3� we have

E†�X� = PXP + E†XE = X + ��2	
2� , �4�

where �= 
0�X�0	.

B. Conserved algebras of observables

A POVM determined by a set of operators X= �Xa�
evolves via the unital CP map E† in the Heisenberg picture. If
for all a we have Xa=E†�Xa�, then all the statistical informa-
tion about X= �Xa� has been conserved. Indeed, for any initial
state �, we have Tr��Xa�=Tr(�E†�Xa�)=Tr(E���Xa). More-
over, if we have control on the initial states, an expected
feature in quantum computing, we can ask which elements
are conserved if the state starts in a certain subspace PH;
that is, which elements satisfy PE†�Xa�P= PXaP, or equiva-
lently, Tr(XaE�P�P�)=Tr�XaP�P� for all ��L1�H�. This,
together with the Heisenberg characterization of Eq. �3�, mo-
tivates the following definition.

Definition 3. We shall say that a set S of operators on H is
conserved by E for states in PH if every element of S is
conserved; that is, if

PE†�X�P = PXP ∀ X � S . �5�
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The focus of the present work is error correction for al-
gebras generated by observables. Let us consider in more
detail the physical motivation for considering algebras. In the
Heisenberg picture a set of operators �Xa� evolves according
to the unital CP map E† with elements Ea

† instead of Ea. If for
all values of the label a we have Xa=E†�Xa� then all the
statistical information about X has been conserved by E as
noted above. In such a scenario we say that Xa is conserved
by E. In particular, if X defines a standard projective mea-
surement, X=�apaXa with Xa

2=Xa for all a, then the projec-
tors Xa linearly span the algebra they generate. Hence, in this
case E conserves an entire commutative algebra. Therefore,
focusing on the conservation �and more generally, correction
defined later� of sets of operators that have the structure of an
algebra, apart from allowing a complete characterization, is
also sufficient for the study of all the correctable projective
observables.

Further observe that Eq. �5� applied to a set of observ-
ables that generate an �arbitrary� algebra gives a generaliza-
tion of noiseless subsystems. Indeed, by Theorem 2 any sub-
algebra A of L�PH� for which all elements X�A satisfy
Eq. �5� is a direct sum of simple algebras, each of which
encodes a noiseless subsystem �when dim Ak�1 as in Eq.
�1��. It is also important to note that given an algebra A
conserved for states in PH �or more generally, correctable as
we shall see� quantum information cannot, in general, be
encoded into the entire subspace PH for safe recovery, but
rather into subsystems of PH determined by the splitting
induced from the algebra structure of A. These points will be
further expanded upon in the discussion of Sec. III B.

We now establish concrete testable conditions for passive
error correction. Namely, these conditions are stated strictly
in terms of the operation elements for a channel. This result
was stated without proof in �1�. The special case of simple
algebras in the Schrödinger picture was obtained in �7,8�.
Techniques of �24� are used in the analysis. We first present
a simple lemma that will be used below.

Lemma 4. Let F be a CP map with elements Fa. If A
�0 is such that F�A�=0 then it follows that AFa=0 for
every element Fa.

Proof. If �aFa
†AFa=0 then for any state �		,

�a
	 �Fa
†AFa �		=0. Since each operator Fa

†AFa is positive,
this is a sum of non-negative terms. Therefore each indi-
vidual term must equal zero; 
	 �Fa

†AFa �		=0 for all a. This
means that the vector �AFa�		 is of norm zero, and therefore
is the zero vector. This being true for all states �		, we must
have that �AFa=0, from which it follows that AFa=0. �

Theorem 5. Let A be a subalgebra of L�PH�. The follow-
ing statements are equivalent:

�1� A is conserved by E for states in PH.
�2� �EaP ,X�=0 for all X�A and all a.
Proof. If �EaP ,X�= �EaP , PXP�=0 for all a, then

PE†�X�P = �
a

PEa
†XEaP

= �
a

PEa
†PXPEaP

= �
a

PEa
†EaPXP = PE†�1�PXP = PXP = X .

Reciprocally, we assume that each X�A satisfies
PE†�X�P= PXP=X. Consider a projector Q�A. We have
PE†�Q�P=Q and hence PE†�Q��P= PQ�. Therefore

Q�PE†�Q�PQ� = Q�QQ� = 0,

and similarly QPE†�Q��PQ=0. By Lemma 4, this implies,
respectively, QEaPQ�=0 and Q�EaPQ=0 for all a. To-
gether these conditions imply

QEaP = QEaPQ = EaPQ ,

and thus �EaP ,Q�=0 for all a. Finally, note that since A is an
algebra, then a generic element Y �A can be written as a
linear combination of projectors in A. Therefore we also
have �EaP ,Y�=0 for all Y �A, and this completes the
proof. �

This theorem allows us to identify the largest conserved
subalgebra of L�PH� conserved on the subspace PH.
Namely, a direct consequence of Theorem 5 is that the �nec-
essarily †-closed� commutant inside L�PH� of the operators
�EaP , PEa

†� is the largest such algebra.
Corollary 6. The algebra A= �X�L�PH� : ∀ a�X ,EaP�

= �X† ,EaP�=0� is conserved on states in PH and contains all
subalgebras of L�PH� conserved on states PH.

Note that P itself may not belong to this algebra, unless it
satisfies EaP= PEaP. This special case was the case consid-
ered in �24�. With other motivations in mind, the special case
P=1 was also derived in �26� where it was shown that the
full commutant of �Ea ,Ea

†� is the largest algebra inside the
fixed point set of a unital CP map. �This in turn may be
regarded as a weaker form of the fixed point theorem for
unital channels �27�.�

Likely the most prevalent class of decoherence-free sub-
spaces are the stabilizer subspaces for abelian Pauli groups,
which give the starting point for the stabilizer formalism �6�.
On the n-qubit Hilbert space, let s
n and consider the group
S generated by the Pauli phase flip operators Z1 , . . . ,Zs,
where we have written Z1=Z � 1 � ¯ � 1, etc. The joint
eigenvalue-1 space for S is a 2n−s-dimensional decoherence-
free subspace for �Zj :1� j�s�, called the “stabilizer sub-
space” for S. In the stabilizer formalism, any of the 2s �nec-
essarily 2n−s-dimensional� mutually orthogonal joint
eigenspaces for elements of S could be used individually to
build codes, but the eigenvalue-1 space is used as a conve-
nience. Each of these eigenspaces supports a full matrix al-
gebra Mk, where k=2n−s. In the present setting these
decoherence-free subspaces may be considered together, as
they are defined by the structure of the commutant S�

�Mk
�2s�. In particular, this entire algebra is conserved by any

channel defined with operation elements given by linear
combinations of elements taken from S.

Allowing other Pauli operators into the error group can
result in nonconserved scenarios. For instance, consider the
case n=3 and s=2. The algebra S��M2

�4� is conserved by
channels determined by elements of S as above. However, it
is not conserved by channels determined by elements of G
= �Z1 ,Z2 ,X1X2�, even though the individual eigenvalue-1 sta-
bilizer space is still a correctable code for G. This follows
from Theorem 5 since G properly contains S, and hence G�
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is properly contained in S�. �In this case P=1, and the largest
conserved algebra is the full commutant G� of the error
group.� Interestingly, there are still algebras conserved by
channels determined by elements of G, since its commutant
has the structure G�=Alg�G����I2 � M2� � �I2 � M2�.

Let us reconsider the special case in which the projector P
itself is one of the correctable observables. Most importantly,
this guarantees that after evolution all states are back into the
code PH. Indeed, the probability that a state � initially in the
code is still in the code after evolution is then given by

p = Tr„E���P… = Tr„�PE†�P�P… = Tr��P� = 1. �6�

We note that this also guarantees a repetition of the noise
map will be conserved.

A refinement of the proof of Theorem 5 yields the follow-
ing result when the projector P is conserved and belongs to
the algebra of observables in question.

Theorem 7. Let A be an algebra containing the projector
P. The following statements are equivalent:

�1� A is conserved by E for states in PH.
�2� �EaP ,X�=0 for all X� PAP and all a.
Proof. If �EaP ,X�= �EaP , PXP�=0 for all a, then

PE†�X�P= PXP follows as above. On the other hand, if each
X�A satisfies PE†�X�P= PXP, then note that for X= P this
yields PE†�P�P= P, which implies PE†�P��P=0. Therefore,
by Lemma 4, P�EaP=0; that is, EaP= PEaP for all a. Hence
for all X�A we also have PE†�PXP�P= PXP. But the set
PAP is itself an algebra, since P belongs to A, and hence is
spanned by its projectors. The rest of the proof proceeds as
above. �

III. ACTIVE ERROR CORRECTION OF ALGEBRAS

More generally, active intervention into a quantum system
may be required for error correction. In particular, we should
be able to protect a set of operators �Xa� �which could define
a POVM for instance� by acting with a channel R such that
each Xa is mapped by R† to one of the operators Ya
=E†�Xa�. That is, R†�Xa�=Ya, and thus �R �E�†�Xa�=Xa.
This, together with the previous discussions, motivates the
following definition.

Definition 8. We say that a set S of operators on H is
correctable for E on states in the subspace PH if there exists
a channel R such that S is conserved by R �E on states in
PH; in other words,

P�R � E�†�X�P = PXP ∀ X � S . �7�

This equation is the same as the one we used to define
passive error correction, except that we now allow for an
arbitrary “correction operation” R after the channel has
acted. In particular, as in other settings, the passive case may
be regarded as the special case of active error correction for
which the correction operation is trivial, R= id.

This notion of correctability is more general than the one
addressed by the framework of OQEC, and extends the one
introduced in �1� from algebras to arbitrary sets of observ-
ables. Here we shall continue to focus on algebras, and in
Sec. V we consider an extension of the notion to general

operator spaces. Whereas OQEC focuses on simple algebras
L�A� � 1B, here correctability is defined for any set, and in
particular, for any finite-dimensional algebra. See Sec. III B
for an expanded discussion on the form of OAQEC codes.

A. Testable conditions for OAQEC codes

A set of operation elements for a given channel are the
fundamental building blocks for the associated physical
noise model. Thus, a characterization of a correctable
OAQEC code strictly in terms of the operation elements for
a given channel is of immediate interest. The following result
was stated without proof in �1�. It generalizes the central
result for both QEC �3� and OQEC �7,8,29�.

Theorem 9. Let A be a subalgebra of L�PH�. The follow-
ing statements are equivalent:

�1� A is correctable for E on states in PH.
�2� �PEa

†EbP ,X�=0 for all X�A and all a ,b.
Proof. We write Ra for the elements of R. According to

Theorem 5, the conservation of A by R �E implies RaEbX
=XRaEbP for all X�A and all a ,b. But we also have
RaEbX†=X†RaEbP, so that XEb

†Ra
†= PEb

†Ra
†X. Therefore

PEc
†EbX=�aPEc

†Ra
†RaEbX=�aPEc

†Ra
†XRaEbP=XEc

†EbP.
We will prove the sufficiency of this condition by explic-

itly constructing a correction channel. For k�1, let Pk be the
projector onto the kth simple sector of the algebra A. Also let
P0= P−1A, where 1A is the unit element of the algebra A.
We have PkEb

†EcPk=1 � Abc for some operators Abc and all
k�0. Hence the theory of operator error correction guaran-
tees that each subspace can be individually corrected. Here,
however, we have the additional property PkEb

†EcPk�=0
whenever k�k�, which allows the correction of the state
even if it is in a superposition between several of the sub-
spaces Pk. Explicitly, we have �1 � 
l � �Pk�Eb

†Ec�Pk��1 � �l�	�
=�kk�
bc

kll�1 for some 
bc
kll��C, where we denote 1=1mk

.
According to the standard theory of error correction this
condition guarantees the existence of channels Rk correcting
the error operators Fckl=EcPk�1 � �l	� for all l and all c, or
any linear combination of them. In particular, we will con-

sider linear combinations of the form F̃ck=�n
n �		Fckn

=EcPk�1 � �		� for any normalized vector �		. Furthermore,
from the standard theory we know the elements of the cor-
rection channels Rk can be assumed to have the form Rcl

�k�

=�bj�clbj
�k� �1 � 
j��PkEb

† for some complex numbers �clbj
�k� .

We now show that the trace-decreasing channel R with
elements Rkcl= Pk�1 � �l	�Rcl

�k� corrects the algebra A on states
PH for the channel E. First note that Rcl

�k�EaP=�bj�clbj
�k� �1

� 
j��PkEb
†EaPk=Rcl

�k�EaPk. Hence, for a general operator X
=�kAk � 1 in the algebra we have P�E† �R†��X�P
=�akclPkEc

†Ral
�k�†AkRal

�k�EcPk. Considering each term k sepa-
rately, for any state �		 we have

�
acl

�1 � 
	��PkEc
†Ral

�k�†AkRal
�k�EcPk�1 � �		�

= Ak = �1 � 
	���Ak � 1��1 � �		� ,

where we have used the dual of the fact that Rk corrects the

error operators F̃ck. Therefore �aclPkEc
†Ral

�k�†AkRal
�k�EcPk
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= �Ak � 1� and summing those terms over k yields P�E†

�R†��X�P=�k�Ak � 1�=X. �

As an immediate consequence of Theorem 9 we have the
following.

Corollary 10. The algebra A= �X
�L�PH� : ∀a ,b�X , PEa

†EbP�=0� is correctable on states in
PH and contains all subalgebras of L�PH� correctable on
states in PH.

To further explain the structure of the correction channel
in Theorem 9 let us show how it is constructed from OQEC
correction channels. This will also give an alternative proof
of the sufficiency of the correctability condition.

For simplicity, we will in fact build a channel which cor-
rects the larger algebra BªA � C�1A− P�. Remember that
Pk is the projector onto the kth simple sector of the algebra
A, assuming a decomposition as in Eq. �1�. Also we include
P0=1A− P which projects onto the additional sector in B.
Our correctability condition guarantees that each of those
sectors is an OQEC code. Let Rk be a OQEC correction
channel for the kth simple sector. We use the “raw” subunital
version of the subsystem correction channels whose elements
are all linear combinations of the operators PkEa

†. They have
the property that QkªRk

†�1�=Rk
†�Pk� is a projector. Since

the elements of the channel Rk are linear combinations of the
operators PkEa

†, we have QkQl=Rk
†�Pk�Rl

†�Pl�=0 if k� l, be-
cause all the terms contain a factor of the form PkEa

†EbPl
=0. This means the the projectors Qk are mutually orthogo-
nal and sum to a projector Qª�kQk. The channels Rk also
have the property that Rk���=Rk�Qk�Qk� for any state �.
From these “local” channels we can construct a trace-
preserving correction channel for the full algebra as follows:

R†�X� ª �
k

Rk
†�X� +

Tr�PX�
Tr�P�

Q�. �8�

This CP map is a channel because R†�1�=�kQk+Q�=1. We
have to check that it corrects the algebra B. First, concerning
the effect of E† on the last term of the correction channel,
note that

PE†�Q�P = �
k

PE†
„Rk

†�Pk�…P = �
k

PkE†
„Rk

†�Pk�…Pk

= �
k

Pk = P .

Hence PE†�Q��P=0. It follows that for any X�B we have,
keeping in mind that the channel elements of Rk are linear
combinations of the operators PkEa

†,

PE†
„R†�X�…P = �

kl

PlE†
„Rk

†�X�…Pl

= �
k

PkE†
„Rk

†�X�…Pk = �
k

PkXPk = X ,

which is the desired property for the correction channel R.
As in the passive case, we can consider the situation in

which the projector is correctable and belongs to the algebra.
In this case, the observables and states do not spill out from

PH under the action of R �E, and so the channel followed by
the correction operation is repeatable. The previous proof
can be readily refined for this purpose.

Theorem 11. Let A be an algebra containing the projector
P. The following statements are equivalent:

�1� A is correctable for E on states in PH.
�2� �PEa

†EbP ,X�=0 for all X� PAP and all a ,b.
Proof. Since P�A then PAP is a subalgebra of A.

Therefore correctability of A implies correctability of PAP
which from Theorem 9 implies that �PEa

†EbP ,X�=0 for all
X� PAP. Reciprocally, if this condition is satisfied then by
Theorem 9 there exists a channel R correcting the algebra
PAP. In fact this channel corrects all of A. Indeed, remem-
ber that the channel R built in the proof is such that
R†�X�=R†�PXP� for all X. Therefore for all X�A, P�R
�E�†�X�P= P�R �E�†�PXP�P= PXP �.

In practice, the operation elements for a channel are usu-
ally not known precisely; often it is just the linear space they
span that is known �28�. Thus, for the explicit construction of
correction operations in Theorems 9 and 11 to be of practical
value, one has to show that the correction channel R also
corrects any channel whose elements are linear combinations
of the elements Ea. This is indeed the case. A simple way to
see this is to note that if the testable conditions for conserved
algebras of Theorems 5 and 7 are satisfied for R �E, then
they are also satisfied for R �E� where the operation elements
of E� are linear combinations of those for E.

B. Schrödinger picture

In order to illustrate how OAQEC generalizes OQEC we
restate a special case of the above results in the Schrödinger
picture: Suppose we have a decomposition

H = ��
k

�Ak � Bk�� � K , �9�

with P the projector of H onto K�= �kAk � Bk. The algebra
in question includes P as its unit and is given by A
= ��k�L�Ak� � 1Bk

�� � 0K. Observe that the hypotheses of
both results Theorems 9 and 11 are satisfied. It follows that
A is correctable for E for states in PH if and only if there
exists a channel R such that for any density operator �
=�k�k��k � �k� with �k�L1�Ak�, �k�L1�Bk�, and non-
negative scalars �k�k=1, there are operators �k��L1�Bk� for
which

�R � E���� = �
k

�kR�E��k � �k�� = �
k

�k��k � �k�� .

�10�

Experimentally, each of the subsystems Ak can be used indi-
vidually to encode quantum information. An extra feature of
this OAQEC code is the fact that an arbitrary mixture of
encoded states, one for each subsystem, can be simulta-
neously corrected by the same correction operation.

By Theorem 9 �or Theorem 11�, there is a correction op-
eration R for which Eq. �10� is satisfied if and only if for all
a ,b there are operators Xabk�L�Bk� such that

PEa
†EbP = �

k

1Ak
� Xabk. �11�
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Note that contrary to the Heisenberg formulation of Eq.
�7�, the formulation of Eq. �10� implicitly relies on the rep-
resentation theory for finite-dimensional C* algebras. As the
representation theory for arbitrary C* algebras is intractable,
this suggests the Heisenberg picture may be more appropri-
ate for an infinite-dimensional generalization of this frame-
work.

Let us consider a qubit-based class of examples to illus-
trate the equivalence established in Theorem 9. A specific
case was discussed in �1�. Suppose we have a hybrid quan-
tum code wherein d qubit codes �	 j	, 1� j�d, are each la-
beled by a classical “address” �j	, 1� j�d. In this case P
=� j=1

d 12 � �j	
j�=12 � 1d and the algebra is A= � j=1
d L�C2�

� �j	
j�. A generic density operator for this code is of the
form �=� j=1

d � j� j � �j	
j�, where � j = �	 j	
	 j�, � j �0, and
� j=1

d � j =1. This hybrid code determined by A and P is cor-
rectable for E if and only if for all a ,b , j there are scalars 
abj
such that

PEa
†EbP = �

j=1

d


abj�12 � �j	
j�� .

As the ancilla for each individual qubit �	 j	 is one dimen-
sional, in this case the correction operation will correct the
code precisely, �R �E����=�.

In the Schrödinger picture, the correction channel built in
the proofs of Theorems 9 and 11 is equal to

R��� = �
k

Rk�Qk�Qk� +
Tr�Q���

Tr P
P .

In words, one first measures the observable defined by the
complete set of orthogonal projectors Qk and Q�. If the state
is found to be in one of the subspaces Qk then the OQEC
correction channel Rk is applied to correct the corresponding
subsystem of the algebra. Otherwise, if the state happens to
be in the subspace Q�, this means that the initial state of the
system was not in the code. Therefore what we do in this
case does not matter. In the channel R defined above, we
chose for simplicity to set the state to P /Tr P.

IV. APPLICATION TO INFORMATION FLOW

Consider the interaction between a “system” S and an
“apparatus” A where the initial state of the apparatus is
known. For any state �	S	�HS, we define V�	S	�U��	S	
� �	A	� for a unitary U acting on HS � HA and a fixed initial
state �	A	�HA. The operator V is an isometry between the
space HS and the space HS � HA. Tracing over the final state
of the apparatus gives us a channel from B�HS� to B�HS�:
ESS���=TrA�V�V†� whose dual is

ESS
† �X� = V†�X � 1�V .

We can also trace out the final state of the system to get a
channel from L�HS� to L�HA�: ESA���=TrS�V�V†� where �
�B�HS� �see Fig. 1�. The channel ESA is uniquely defined by
ESS, up to an arbitrary unitary operation on the apparatus, and
is usually called the complementary channel of ESS. Its dual
is simply

ESA
† �Y� = V†�1 � Y�V .

Using Theorem 9, we can determine which observables
have been preserved by either ESS or ESA, irrespectively of
the system’s initial state. The answers are given by two sub-
algebras of L�HS�: respectively, ASS and ASA. The algebra
ASS characterizes the information about the system’s initial
state, which has been preserved by the system’s evolution,
and ASA characterizes the information about the system’s
initial state, which has been transferred to the environment.

Those algebras can be expressed in terms of the elements
of one of the channels. For instance, if Ea are elements for
ESS, then V can be expressed as V=�bEb � ��b

A	 for some
orthonormal set of vectors ��b

A	 of HA. Hence for any choice
of a basis �a	 of HS we obtain a family of elements for the
channel ESA, namely,

Fa = �
b

��b
A	
a�Eb.

This means that the relevant operators entering Theorem 9
for the second channel are

Fa
†Fb = �

c

Ec
†�a	
b�Ec = ESS

† ��a	
b�� .

Note that the operators �a	
b� form a basis for the whole
operator algebra L�HS�. Hence the observables correctable
for the apparatus form the algebra ASA=Alg�Ran ESS

† ��: the
algebra of operators commuting with all operators in the
range of ESS

† . Hence we see that a direct consequence of
Theorem 9 is that in an open dynamics defined by a channel
E, full information about a projective observable can escape
the system if and only if it commutes with the range of the
dual map E†, which is the set of observables with first mo-
ment information conserved by E. This generalizes results in
�26�.

We can characterize the observables representing infor-
mation which has been “duplicated” between the system and
the apparatus. They form the intersection

C ª ASS � ASA.

From the correctability of ASS �Eq. �7�� we have that
ASS�Ran ESS

† , from which it follows that ASA
=Alg�Ran ESS

† ���ASS� . Hence, the algebra of duplicated ob-

FIG. 1. Interaction between a system S and an apparatus A of
known initial state. Tracing over one of the two final systems gives
us one of two channels ESS or ESA.

BÉNY, KEMPF, AND KRIBS PHYSICAL REVIEW A 76, 042303 �2007�

042303-6



servables is C�ASS� �ASS, where ASS� �ASS is the center of
ASS: those elements of the algebra which commute with all
other elements. In particular, the duplicated algebra C is com-
mutative. Note that the contrary would have violated the no-
cloning theorem after correction of both channels. Since the
algebra C is commutative, it is generated by a single projec-
tive observable which can be represented by a self-adjoint
operator C.

Given that, after the interaction, both the system and the
apparatus contain information about the same observable C
on the initial state of the system, we may expect that they are
correlated. Let Pi�C be the projectors on the eigenspaces of
C. There exists a POVM with elements Xi on the system as
well as a POVM Yi on the apparatus such that

ESS
† �Xi� = ESA

† �Yi� = Pi.

Note that if RSS and RSA are correction channels for ESS and,
respectively, ESA, then Xi=RSS

† �Pi� and Yi=RSA
† �Pi�.

We will show that the observables Xi and Yi are corre-
lated. First note that Tr�PiPk�=�ki, which we can also write
as

Tr�PiPk� = Tr„PiESS
† �Xk�… = Tr�PiV

†�Xk � 1�V� = �ki.

This means that when k� i, �Xk � 1�VPi=0, which can be
seen by expending Pi in terms of eigenvectors. Also since
�kXk=1, then VPi= �Xi � 1�VPi. The same argument is true
also for Yk. Therefore �Xk � 1�VPi= �1 � Yk�VPi=�ikVPi.
Hence

V†�Xi � Y j�V = �
kl

PkV
†�Xi � Y j�VPl = �

kl

�ik� jlPiPj = �ijPk,

which means that for any state � of the system

Tr�V�V†�Xi � Y j�� = �ij Tr��Pi� .

Hence the probability that the outcome of a measurement of
X differs from that of Y is zero. This means that the infor-
mation that the apparatus “learns” about the system and
which is characterized by the observable C is correlated with
a property of the system after the interaction. Therefore C
represents the only information that the apparatus acquires
about the system and which stays pertinent through the in-
teraction.

This analysis has implications for the theory of decoher-
ence �30,31� as well as for the theory of measurements. We
have shown that any interaction between a system and its
environment �which took the role of the apparatus� automati-
cally selects a unique observable C as being the only predic-
tive information about the system acquired by the environ-
ment. Even though an observer who has access to the
environment could learn about any observable contained in
the algebra ASA, only the information encoded by C bears
any information about the future state of the system. This
suggests that the pointer states, which characterize decoher-
ence, should not be selected only for their stability under the
interaction with the environment: One should also add the
requirement that they encode information that the environ-
ment learns about the system. Indeed, any one of those re-
quirements taken separately does not select a single observ-

able unambiguously, but together they do. This is a new way
of solving the basis ambiguity problem �32�.

V. ERROR CORRECTION OF OPERATOR SPACES

In this section we discuss an extension of OAQEC theory
to the setting of operator spaces generated by observables.
We shall leave a deeper analysis of this extension for inves-
tigation elsewhere. An operator space �33� is a linear mani-
fold �a subspace� of operators inside L�H�. Operator spaces,
and their Hermitian closed counterpart “operator systems,”
have arisen recently in the study of channel capacity prob-
lems in quantum information �34�. Observe that �by design�
Definitions 3 and 8 include the case of operator spaces and
systems generated by observables, and hence these cases fit
into the mathematical framework for error correction intro-
duced here. Let us describe how operator spaces physically
arise in the present setting.

In Sec. III A we showed how to build the correction chan-
nel for active error correction. We were free to choose what
to do to the system in the case that the syndrome measure-
ment revealed the state had not initially been in the code
prior to the action of the error channel. In fact, there is an
advantage in choosing to send that state back in the code,
meaning that we choose the correction channel such that
R†�X�=R†�PXP� for any operator X, which is indeed the
case for the correction channel defined in Theorem 11. Con-
sider the set of operators defined by

V ª E†
„R†�A�… .

This set is not an algebra in general. Nevertheless, it is an
operator system by the linearity and positivity of channels. If
X�V then there exists Y � PAP such that X=E†(R†�Y�) and
also PXP=Y. Therefore for all X�V,

E†
„R†�X�… = E†

„R†�Y�… = X .

Hence the observables in V are exactly corrected, and this is
independent of what the initial state was. For instance, if we
“forgot” to make sure that the initial state was in the code,
we can still recover all the information, provided that we
measure the observable with elements Xk=E†(R†�Yk�) when-
ever we would have measured Yk�A. Typically this would
involve measuring general �unsharp� POVMs instead of just
sharp projective observables. This shows that it could be
useful to consider the correction of general POVMs. Since
POVM elements do not always span an algebra, this suggests
that we should consider the correctability �passive or active�
codes associated with operator systems in this way.

Consider the following simple example of a conserved
operator space that is not an algebra. Let H be a single-qutrit
Hilbert space with computational basis ��0	,�1	,�2	�. Consider
the channel E on H defined by its action on observables
represented in this basis as follows:
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E†��aij�3�3� = 

a11 a12 0

a21 a22 0

0 0
a11 + a22

2
� . �12�

Observe that �E†�2=E† �E†=E† and that the range V of E†

coincides with its fixed point set; �Y :Y =E†�X� for some X�
= �X :E†�X�=X�. Thus, the operator system V is conserved by
E. Moreover, V is not an algebra since it is not closed under
multiplication.

Given results from other settings for quantum error cor-
rection, it is of course desirable to find a characterization of
correction for operator spaces independent of any particular
recovery operation. Here we derive a necessary condition,
and we leave the general question as an open problem. Ob-
serve that if there exists a channel R such that
PE†(R†�X�)P= PXP for all X�V then, 0�X�1 implies 0
�R†�X��1, since R† is a contractive map. This in turn
implies that there exists 0�Y �1 such that PXP= PE†�Y�P,
namely, Y =R†�X�.

Proposition 12. A necessary condition for an operator
space V to be correctable on states PH for E is that for all
X�V such that 0�X�1, there exists 0�Y �1 such that
PXP= PE†�Y�P. This condition is also sufficient when V is
an algebra containing P.

Proof. The first part of the statement has been proved. We
show that the condition expressed implies correctability of V
if it is an algebra containing P.

Since P�V, we know that BªPVP is a subalgebra of V.
Note it is sufficient to prove the correctability of B. Indeed, if
B is correctable then, in particular, P is correctable. Let R be
a correction channel for the largest correctable algebra on
PH. Then we have seen in the proof of Theorem 11 that the
correctability of P implies that PE†(R†�X�)P
= PE†(R†�PXP�)P for any X. From this it follows that the
correctability of B on PH implies that of V.

Let Eª �X �0�X�1�. Suppose that P�V�E�P
=B�E� PE†�E�P. Then for all projectors Q�B, there ex-
ists a self-adjoint operator 0�X�1 such that PE†�X�P=Q.
Hence �P−Q�E†�X��P−Q�=0, which implies XEk�P−Q�=0,
or XEkP=XEkQ for all k. Also we have PE†�1−X�P= P−Q,
so that QE†�1−X�Q=0 from which �1−X�EkQ=0, or EkQ
=XEkQ for all k. Therefore

X�EkP� = XEkQ = EkQ = �EkP�Q .

Combining the two results we obtain

QPEk
†EjP = PEk

†XEjP = PEk
†EjPQ

for all k and all j. This result can linearly be extended to the
whole of B, since an algebra is spanned by its projectors.
Hence �X , PEk

†EjP�=0 for all X�B. From Theorem 11 this
implies that B, and therefore the algebra V is correctable on
PH. �

As a final example, consider the noise model correspond-
ing to a single random bit flip on three qubits. The noise
operators are �1 ,X1 ,X2 ,X3� where Xi is a Pauli x matrix on
the ith qubit. One can correct the standard quantum code
with projector P= �000	
000�+ �111	
111� expressed in the
computational basis. It is easy to check that a correction
channel for this code is

R†�A� = PAP + �
i

XiPAPXi.

This channel has the properties that we need in order to “lift”
the code to an operator space code correctable on all states.
Indeed, we have R†�P�=1 and R†�A�=R†�PAP� for all A.
The algebra correctable on the code P is

A = ��
ij

�ij�iii	
j j j�:�ij � C� .

In order to proceed however, we need a specific error chan-
nel, which is given by choosing a probability for the occur-
rence of each error as follows:

E��� = p0� + �
i

piXi�Xi.

Then, writing X0=1, the operator space

V = �R � E�†�A� = ��
i,j=0

1

�ij �
k,l=0

3

pkXkXl�iii	
j j j�XlXk:�ij � C�
is correctable by R on all states. We should have PVP=A.
This can be seen from the fact that �iii	= P�iii	 and PXkXlP
=�klP. Explicitly separating the components, respectively,
inside A and orthogonal to A, we have operators in V which
live in A and outside of A as follows:

V = ��
ij

�ij��iii	
j j j� + �
k�l

pkXkXl�iii	
j j j�XlXk�:�ij � C� .
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