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The possibility of detecting correlations between two quantum-mechanical systems from only the informa-
tion of a subsystem is investigated. For generic cases, we prove that there exist correlations between two
quantum systems if the time derivative of the reduced purity is not zero. Therefore, an experimentalist can
conclude that correlations between the system and some environment are nonzero if the time derivative of the
reduced purity is found not to be zero. A quantitative estimation of the time derivative of the reduced purity
with respect to correlations is also given. This clarifies the role of correlations in the mechanism of decoher-
ence in open quantum systems.
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I. INTRODUCTION

In many contexts in physics, it is important to know the
existence �or absence� of correlations �1� of a system of in-
terest S and its environment E �an unknown system�. For
example, in order to achieve successful quantum-information
processing, quantum communication, or quantum-
mechanical control, one has to manage system-environment
correlations, which may enhance the decoherence of the
states of the system. However, in many cases, we know nei-
ther the structure of the environment nor the nature of the
interaction with the system. Under these circumstances, one
has to detect possible correlations between S and E only
from the measurements of the system S, not from those of
the total system S+E �Fig. 1�. To do this, if an ensemble of
independently identical systems is available, the following
well-known criterion �2� for quantum systems can be ap-
plied.

�A� If the system S is in a pure state, then S has no cor-
relations with any other environment E.

From this statement, an experimentalist can safely con-
clude that there are no correlations with any environment if
the �reduced� state is found to be a pure state. Indeed, some
of the unconditional security proofs of quantum cryptogra-
phy partially rely on this fact �3�, where an unknown eaves-
dropper is assumed to prepare any environment and do any-
thing that is physically allowed.

Unfortunately, statement A is not applicable when the re-
duced state is in a mixed state. Indeed, in this case no static
properties of a subsystem can provide information on the
correlations, since the same reduced mixed states can be gen-
erated from total states with and without system-environment
correlations �4�. Therefore, in such cases, we need to use
dynamical information as well. Here what we would like to
discuss and try to show is the following statement.

�B� If the time derivative of the purity of S is not zero at
time t= t0, then there exist nonzero correlations with a certain
environment at that time.

If this statement is universally true, then it enables an
experimentalist to confirm nonzero correlations with some
environment if the time derivative of the purity is found not
to be zero �5�. The purpose of this paper is to investigate
statement B for arbitrary quantum-mechanical systems �6�
under the usual postulates for �open� quantum mechanics
�see, for instance, �7–9��, which include the following.

�i� State space. For any quantum-mechanical system S,
there exists a separable Hilbert space HS. Any state of S is
represented by a density operator �S—a positive trace class
operator on HS with unit trace.

The purity PS for �S is defined by

PS = TrS��S
2� . �1�

�ii� Composite system. Let S and E be quantum-
mechanical systems with Hilbert spaces HS and HE. The
composite system S+E is associated with the tensor product
Hilbert space HS � HE.

For a total density operator �tot on HS � HE, the reduced
states �S and �E for S and E are given by �S=TrE��tot� and
�E=TrS��tot�, where TrS and TrE are the partial traces with
respect to S and E, respectively. �In the following, �S and �E
always represent the reduced density operators on S and E
from the total density operator �tot.� No correlations in the
density operator �tot on S+E equivalently means that �tot is
given by a tensor product of the reduced density operators of
the two subsystems:

�tot = �S � �E. �2�

�iii� Evolution. A quantum system S is dynamically iso-
lated or open, and, without or with a certain environment E,
the dynamics of S is eventually described by the von
Neumann equation �Schrödinger equation� on the total sys-
tem. Namely, there exists a self-adjoint Hamiltonian H on
HS � HE with which the von Neumann equation holds:

*gen@ims.is.tohoku.ac.jp
†ohno@math.kyushu-u.ac.jp

PHYSICAL REVIEW A 76, 042123 �2007�

1050-2947/2007/76�4�/042123�6� ©2007 The American Physical Society042123-1

http://dx.doi.org/10.1103/PhysRevA.76.042123


i�
d

dt
�tot�t� = �H,�tot�t�� , �3�

where �tot�t� is a density operator on HS � HE at time t. �In
the following, we set Planck’s constant � to be 1.�

Notice, however, that there appears a problem of domain
when H is an unbounded operator �10�. To avoid this prob-
lem, it is generally adopted in the axiomatic approach of
quantum mechanics that the dynamics is governed by a uni-
tary time evolution:

�tot�t� = Ut�totUt
†, �4�

where �tot is the initial density operator at t=0 and Ut is a
unitary operator given by Ut=e−iHt �for a time-independent
Hamiltonian H�. Then, for any density operator �tot, the dy-
namics �4� is applied without any problem. In this paper, we
assume a unitary dynamics �4� for an isolated quantum sys-
tem, from which the von Neumann equation �3� holds under
appropriate conditions.

In a formal analysis, statement B for quantum-mechanical
systems can be proved in the following way. Let the time
derivative of the purity of a quantum system S at t= t0 be
nonzero. Since the purity does not change in an isolated sys-
tem, S should be an open system interacting with some en-
vironment E. Let H be a self-adjoint Hamiltonian on HS
� HE for which the von Neumann equation �3� holds. As-
sume that there are no correlations at t= t0, namely, the initial
density operator takes the product form �tot=�S � �E. Then
from the von Neumann equation we obtain

PS��t0� � � d

dt
PS�t��

t=t0

= 2TrS	��S�t�
d

dt
�S�t��

t=t0



= − 2iTrS��STrE�H,�S � �E��

= − 2iTrSE��S � IE�H,�S � �E��

= 0, �5�

where the cyclic property �11� of the trace TrSE and ��S

� IE ,�S � �E�=0 have been used to estimate the last equality.
Therefore, by contradiction, we conclude that �tot has non-
zero correlations at t= t0. It is worth noticing that, although
use has been made of a Hamiltonian in the proof, experimen-
talists do not have to know anything about environments,
including how they are interacting with the system. The only
things they have to believe are postulates �i�, �ii�, and �iii� of
quantum mechanics.

The above analysis, however, is still rough, without suffi-
cient mathematical rigor, especially for the case of infinite-

dimensional Hilbert spaces. Moreover, if the Hamiltonian is
described by an unbounded operator, we have to deal with
the domain carefully, which makes the statement quite non-
trivial. In the following, we discuss the validity of statement
B, including infinite-dimensional Hilbert spaces, in a careful
manner. In Sec. II, we provide a rigorous version of state-
ment B and show a more general statement �Theorem 1� in
the case of bounded Hamiltonians, which quantitatively gen-
eralizes statement B. This shows how purity changes in the
presence of correlations, and hence clarifies the role of cor-
relations in the mechanism of decoherence in open quantum
systems. In Sec. III, we discuss statement B in the case of
unbounded Hamiltonians and show a certain counterexam-
ple. Finally, we slightly modify statement B to be correct
�Theorem 3� for the case of unbounded Hamiltonians. This is
done by assuming that the total energy has finite variance,
and hence we conclude that statement B is universally valid
for all the generic cases. Section IV closes the paper with
some concluding remarks and discussion.

II. THE CASE OF BOUNDED HAMILTONIANS:
QUANTITATIVE ESTIMATION OF STATEMENT B

In this section, we discuss statement B, including infinite-
dimensional cases with mathematical rigor, but for the case
of Hamiltonians described by bounded operators. We obtain
a useful theorem which generalizes statement B in a quanti-
tative manner �Theorem 1�. As usual when discussing open
quantum systems �8�, we shall divide the total Hamiltonian
H into the sum of free Hamiltonians HS and HE for systems
S and E and an interaction Hamiltonian Hint:

H = HS � IE + Hint + IS � HE. �6�

We assume that HS, HE, and Hint are bounded self-adjoint
operators on HS, HE, and HS � HE, respectively, and hence
H is also a bounded self-adjoint operator on HS � HE.

In order to quantify correlations between S and E in a
state �tot, we use the quantum mutual information �12,13�:

I��tot� � TrSE��tot log �tot − �tot log �S � �E� ,

where �S and �E are the reduced density operators on S and
E, respectively, and log denotes a logarithm with base two.
Notice that I��tot��0, and I��tot�=0 if and only if �tot has no
correlations. Notice also that �15�

��tot − �S � �E�1
2 � 2I��tot� , �7�

where � · �1 is the trace norm �W�1�TrSE��W†W� �11�.
For any density operator �tot on HS � HE, we define the

correlation operator �cor �16� by

�cor � �tot − �S � �E, �8�

which is a trace class operator on HS � HE. By definition, it
holds that �cor=0 if and only if �tot has no correlations. Since
TrE��S � �E�=�S, it follows that

TrE��cor� = 0. �9�

We have the following quantitative estimation of the time
derivative of the reduced purity.

FIG. 1. How to detect possible correlations between your quan-
tum system S and its environment E.
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Theorem 1. Let S and E be quantum-mechanical systems
with total Hamiltonian H of the form �6�, and let �tot be the
density operator at t= t0. Assume that the total system S+E is
closed and H is bounded. Then the reduced purity PS�t� is
time differentiable at t= t0 and

PS��t0� = − 2iTrSE��S � IE�Hint,�cor�� . �10�

The absolute value of the time derivative is bounded from
above by


PS��t0�
 � 2��S� ��Hint,�cor��1, �11a�

�4�Hint� ��cor�1, �11b�

�4�2I��tot��Hint� �11c�

where �·� denotes the operator norm �11�.
Proof. We shall use the notations B�H� and T�H� to de-

note the sets of all the bounded operators and trace class
operators on the Hilbert space H, respectively. Since H
�B�HS � HE� and �tot�t��T�HS � HE�, it follows that
�H ,�tot�t���T�HS � HE� due to the ideal property of trace
class operators �17�. In this case, the von Neumann equation
�3� holds �9� for any density operator, where the time deriva-
tive is defined with respect to the trace norm. Therefore, by
observing the inequalities �11�


Tr�A��
 � �A��1 � �A� ���1 �∀ A � B�H�, � � T�H��

�12�

and ��S�t� � IE��1 �18�, we get that PS�t� is differentiable
for any time t and

PS��t0� = − 2iTrSE��S � IE�H,�tot�� .

By the cyclic property of the trace �19�, it follows that
TrSE��S � IE�H ,�S � �E��=TrSE���S � �E ,�S � IE�H�=0, and
therefore we have

PS��t0� = − 2iTrSE��S � IE�H,�cor�� .

Moreover, since TrSE��S � IE�HS � IE ,�cor��
=TrS��S�HS ,TrE�cor��=0 from �9�, and TrSE��S � IE�IS

� HE ,�cor��=TrSE���S � IE , IS � HE��cor�=0 again by the cy-
clic property of the trace, we obtain �10�. From �12�,
�Hint ,�tot��T�HS � HE� and ��S � IE�= ��S�, we have


PS��t0�
 � 2��S� ��Hint,�cor��1.

The second inequality �11b� follows from the triangle in-
equality for the trace norm, ��S��1, and again �12�. The
third inequality �11c� follows from �7�. �

Theorem 1 provides a quantitative estimation of the time
derivative of the reduced purity in terms of the amount of
correlations I��tot� and the strength of interaction �Hint� �20�.
It is worth noticing that the inequalities �11a�–�11c� include
the following well-known fact �5�: the purity of a system
does not change without interaction with an environment.
Indeed, experimentalists usually confirm the existence of an
interaction between the system and some environment if they
find that the reduced purity is not constant. However, not
only that, Eqs. �11� imply that correlations play an essential

role in changing the purity even with the existence of an
interaction. Moreover, Eq. �10� implies that the commutator
between the interaction Hamiltonian and the correlation op-
erator is essential for changes of purity, or decoherence.

From Theorem 1, we obtain a rigorous version of state-
ment B.

Theorem 2. With the same assumptions as in Theorem 1,
if there are no correlations at t= t0 �i.e., �tot=�S � �E at t= t0�
then PS�t� is time differentiable at t= t0 and PS��t0�=0. In
other words, if the time derivative of the reduced purity is
not zero, then there exist nonzero correlations between S and
E at that time.

Proof. Since �tot=�S � �E implies �cor=0, we have PS��t0�
=0 from inequality �11a�. �

Note that the opposite statement is not generally true. �For
instance, if Hint=0, we have PS��t0�=0 even in the presence
of correlations.� Therefore, it is incorrect to infer that there
are no correlations when the time derivative of the reduced
purity is zero. Notice also that the above theorems do not
contradict the results in Ref. �21�, where we showed that the
effect of an initial correlation does not appear in van Hove’s
limit �the weak-coupling limit� and therefore system S be-
haves as if the total system started from the factorized initial
state. Indeed, this is true only for the van Hove time scale
�=�2t, where ��1 is the coupling constant, and on much
shorter time scales than � we can find a difference between
the cases of no correlations and nonzero correlations, as we
have seen in the above theorems. �See also �16� for the effect
of an initial correlation.�

III. THE CASE OF UNBOUNDED HAMILTONIANS: A
COUNTEREXAMPLE TO STATEMENT B

In the previous section, we confirmed that statement B is
universally true for any bounded Hamiltonian. However,
Hamiltonians are generally unbounded, especially from
above, like that of the harmonic oscillator. Although the
quantitative estimation �11� in Theorem 1 turns out to be
trivial when �Hint�=�, we may still expect the validity of
Theorem 2, i.e., statement B. In this section, we discuss
statement B in the case of unbounded Hamiltonians, and pro-
vide an explicit counterexample to show that statement B
itself may fail to hold in certain cases. Finally, we slightly
modify statement B to be universally correct for all of the
generic cases, by assuming that the total energy has a finite
variance �theorem 3�.

Counterexample to statement B

Let our system be described by HS=HS1
� HS2

where HS1
is an infinite-dimensional separable Hilbert space, and HS2

is
a two-dimensional Hilbert space; HS2

�C2. �For instance, S
can be a system of a nonrelativistic electron with spin 1/2.�
In order to provide a counterexample to statement B, it is
enough to consider the simplest possible environment with a
two-dimensional Hilbert space HE�C2. Assume that initially
the total system is in a state �tot=�S � �E which has no cor-
relations, where
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�S = �
n=1

�

pn
	n��	n
 � 
s1��s1
, �E = 
e1��e1
 , �13�

with pn�0, �n=1
� pn=1, and �
	n��n=1

� , �
sn��n=1
2 , and �
en��n=1

2

are the orthonormal bases of HS1
, HS2

, and HE, respectively.
We use the Hamiltonian H, given by the spectral decom-

position

H = �
n=1

�

�
k=1

4

hnk
	n � 
k��	n � 
k
 ,

with eigenvalues �point spectra� hn1=0, hn2=hn3=hn, hn4
=2hn with hn�0 �n�N�, where �

k��k=1

4 is an orthonormal
basis of HS2

� HE given by



1� �
1
�2

�
s1 � e1� + i
s2 � e2�� ,



2� � 
s2 � e1�, 

3� � 
s1 � e2� ,



4� �
1
�2

�
s1 � e1� − i
s2 � e2�� .

Obviously H is a positive self-adjoint operator on HS � HE
and it is unbounded whenever the sequence �hn� is not
bounded from above. The time evolution map Ut
=exp�−iHt� is given by

Ut = �
n=1

�


	n��	n
 � Xt
n,

where Xt
n�

1��
1
+e−ihnt�

2��
2
+ 

3��
3
�+e−i2hnt

4��
4
.

From �13� we have

�tot�t� = Ut�totUt
† = �

n=1

�

pn
	n��	n
 � 
Xt
ns1 � e1��Xt

ns1 � e1
 ,

where 
Xt
ns1 � e1�=e−ihnt�cos�hnt�
s1 � e1�−sin�hnt�
s2 � e2��.

By taking the partial trace over E, we have �S�t�
=�n=1

� pn
	n��	n
�cos2�hnt�
s1��s1
+sin2�hnt�
s2��s2
�. From
this, we obtain an analytical form for the reduced purity:

PS�t� = �
n=1

�

pn
2�cos4�hnt� + sin4�hnt��

= PS�0� −
1

2�
n=1

�

�pn sin�2hnt��2

=
3

4
PS�0� +

1

4�
n=1

�

pn
2 cos�4hnt� , �14�

where PS�0�=�n=1
� pn

2. Therefore, if the time derivative in the
infinite sum in �14� is the sum of the derivatives of the indi-
vidual terms, we obtain PS��0�=0 and statement B holds. For
instance, let pn=1/2n and hn=nE0 /4 with the unit of energy
E0. Then, since 
�d /dt�pn

2 cos�4hnt�
= 
�nE0 sin�nE0t�� /4n

�nE0 /4n and �n=1

� �nE0 /4n���, it follows that
�n=1

� pn
2 cos�4hnt� is differentiable with respect to t, and we

have �d /dt��n=1
� pn

2 cos�4hnt�=�n=1
� 4pn

2hn sin�4hnt�. Hence,
this example satisfies statement B even though the Hamil-
tonian is unbounded �see Fig. 2�a��. �In the following, we set
E0 to be 1.�

However, we can construct a counterexample to statement
B in the sense that PS�t� is not differentiable with respect to
t at t=0 even though the initial state is given in a product
form. We provide an interesting example where PS�t� is con-
tinuous but not differentiable at any time t by connecting the
reduced purity to the so-called Weierstrass function f�t ;a ,b�
�22�, defined by

f�t;a,b� = �
n=0

�

an cos�bn�t� ,

with two parameters 0�a�1 and positive odd integer b
satisfying ab
1+3� /2. It is known that the function is con-
tinuous everywhere but differentiable nowhere with respect
to t. From the form of �14�, a proper choice of pn and hn, for
instance, pn=1/2n, hn=25n� /4, makes PS�t� an essentially
Weierstrass function:

PS�t� =
1

4
�1 − cos��t� + f�t;

1

4
,25�� �15�

�see Fig. 2�b��. This provides a counterexample to statement
B; namely, even with a product initial state, the time deriva-

FIG. 2. Time evolution of the reduced purity �14� for �a� pn

=1/2n, hn=n /4 and �b� pn=1/2n, hn=25n� /4, with the unit of time
�0�� /E0. Notice that in both cases the Hamiltonians are un-
bounded from above. One sees the flat time derivative at t=0 in �a�,
which makes statement B true, while one sees nondifferentiability
in �b�, which breaks down statement B.
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tive of the purity is not necessarily zero; though this case just
provides a case of nonexistence of the time derivative.

Therefore, in the case of unbounded Hamiltonians, we
need to modify our statement B. Indeed, the following
weaker statement can be proved to be true.

Theorem 3. Let H be a self-adjoint Hamiltonian bounded
from below, but not necessarily bounded from above, and let
�tot be the density operator at t= t0. If the variance of H with
respect to �tot is finite then

�tot = �S � �B ⇒ PS��t0� = 0.

The assumption that the Hamiltonian is bounded from below
is physically required for the system to be stable. Hence,
even when the Hamiltonian H is unbounded, statement B is
correct provided that H has a finite variance with respect to
the total state. In fact, it is easy to see that the variance of H
is infinite for the initial state used in the above counterexam-
ple leading to �15�.

To avoid technical difficulties when dealing with un-
bounded Hamiltonians, in the present paper we do not give a
proof of Theorem 3. Instead, we just notice the following.
First, finiteness of the variance of H with respect to a pure
state �tot= 
����
 is equivalent to the statement that 
�� is in
the domain of H. Therefore, from the mathematical point of
view, the assumption of finiteness of the variance of H al-
lows us to avoid domain problems for unbounded operators.
Second, the von Neumann equation holds when the variance
of H is finite, which is the essential reason for Theorem 3 to
be correct �23�. We plan to discuss and provide a systematic
investigation for the case of unbounded Hamiltonians in a
forthcoming presentation, including a complete proof of
Theorem 3.

IV. CONCLUDING REMARKS AND DISCUSSION

We have discussed the problem of how to detect possible
correlations between a system of interest S and some envi-
ronment, from knowledge of observations on the system S
only. We conjectured statement B, from which one can con-
clude that there are nonzero correlations with some environ-
ment when the time derivative of the reduced purity is not
zero. In some sense, it is a counterpart of statement A; one
can conclude that there are no correlations when the reduced
purity is 1 using statement A, while one can conclude that
there are correlations when the time derivative of the reduced
purity is not zero. For instance, an experimentalist can first
use statement A, and, if the state is pure, can conclude that
there are no correlations. If the state is mixed, then statement

B can be used. If the time derivative of the purity is not zero,
correlations exist, provided that statement B is universally
true. In this paper, we have investigated the validity of state-
ment B for arbitrary quantum-mechanical systems. When the
total Hamiltonian is bounded, we proved it to be universally
correct �Theorem 2�, by giving a more general statement
�Theorem 1� that quantitatively implies statement B. Theo-
rem 1 also clarifies the cause of purity change �decoherence
or purification� due to interaction and correlations. However,
when the total Hamiltonian is unbounded, we have also
shown a counterexample to statement B. In the example, the
reduced purity evolves essentially as a Weierstrass function
even with a product initial state, whence the reduced purity
fails to be differentiable. Therefore, a certain modification is
necessary in statement B. If one considers a state with a finite
variance of energy as a natural realization in nature, one can
conclude that statement B is universal for all generic states in
that sense. However, considering our original goal of esti-
mating possible correlations, especially for the situation
where we do not know anything about the environment
�other than our theoretical knowledge of quantum theory�, it
is preferable to assume nothing additional about the environ-
ment �24�. In order to do this, another plausible conjecture is
the following.

Conjecture 1. ∃PS��0� and PS��0��0⇒�tot��S � �B. If
this is correct, it turns out that one can conclude that the
correlations are nonzero if one finds a nonzero time deriva-
tive �including differentiability� of the reduced purity. In this
direction, in a forthcoming presentation, we will discuss
statement B including a complete proof of Theorem 3 and an
investigation of the above conjecture. The case of a quantum
field will also be presented elsewhere, using an algebraic
formalism of quantum fields �25�.
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�1� In this paper, by correlations we mean statistical correlations in
the state of the composite physical system S+E; i.e., we say
there are no correlations between S and E �statistical indepen-
dence� if the joint probability distribution of any two observ-
ables OS from S and OE from E is the product of the probabil-

ity distributions for OS and OE. Otherwise, we say that there
exist nonzero correlations.

�2� See, for instance, B. d’Espagnat, Conceptual Foundations of
Quantum Mechanics �Benjamin, Reading, MA, 1976�; S. C.
Italo, Lett. Nuovo Cimento Soc. Ital. Fis. 2, 823 �1971�. Al-
though the proof there is given only for finite-dimensional
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cases, we notice that statement A is true even for quantum
fields, where quantum states are treated as positive linear func-
tionals on the algebras of observables.
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�4� Some researchers might take the stance that all the mixedness
originates from correlations with some environment, and even-
tually the total system should always be described by a pure
state. If this is universally true, then statement A is enough to
conclude the existence of correlations when system S is in a
mixed state. However, the scope of this paper includes more
general situations, and statement B is still useful even if there
exists mixedness not originating from correlations.

�5� Notice that an experimentalist would usually conclude that
nonzero interaction exists with some environment when the
time derivative of the purity of S is not zero, since the purity of
system S does not change if S is isolated. Compared to this,
statement B allows experimentalists to confirm nonzero corre-
lations with some environment. �See Theorem 1 below.�
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