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Anholonomies in the parametric dependences of the eigenvalues and the eigenvectors of Floquet operators
that describe unit time evolutions of periodically driven systems, e.g., kicked rotors, are studied. First, an
example of the anholonomies induced by a periodically pulsed rank-1 perturbation is given. As a function of
the strength of the perturbation, the perturbed Floquet operator of the quantum map and its spectrum are shown
to have a period. However, we show examples where each eigenvalue does not obey the periodicity of the
perturbed Floquet operator and exhibits an anholonomy. Furthermore, this induces another anholonomy in the
eigenspaces, i.e., the directions of the eigenvectors, of the Floquet operator. These two anholonomies are
previously observed in a family of Hamiltonians �T. Cheon, Phys. Lett. A 248, 285 �1998�� and are different
from the phase anholonomy known as geometric phases. Second, the stability of Cheon’s anholonomies in
periodically driven systems is established by a geometrical analysis of the family of Floquet operators. Ac-
cordingly, Cheon’s anholonomies are expected to be abundant in systems whose time evolutions are described
by Floquet operators. As an application, a design principle for quantum state manipulations along adiabatic
passages is explained.
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I. INTRODUCTION

The parametric dependence of an eigenvector of an opera-
tor often exhibits anholonomy in its phase �1�. A simple dem-
onstration of the phase anholonomy in an eigenvector of a
Hamiltonian is shown by Berry �2�: Prepare the system to be
in an eigenstate of the Hamiltonian, whose energy spectrum
is assumed to be discrete and nondegenerate. During the
adiabatic change of the parameters of the Hamiltonian,
which is kept to be nondegenerate along the change, the
system continuously remains to be in an eigenstate of the
instantaneous Hamiltonian, according to the adiabatic theo-
rem �3�. When the parameter returns to its initial value, after
the adiabatic change along a closed path in the parameter
space, the difference between the initial and the final state
vectors is only in its phase, which is composed of two ingre-
dients: One is called a dynamical phase that is determined by
the accumulation of the eigenenergy along the adiabatic time
evolution. The other is called a geometric phase, or the phase
anholonomy that reflects the geometric structure of the fam-
ily of eigenvectors in the parameter space. There is a non-
Abelian generalization of the phase anholonomy. This was
pointed out by Wilczek and Zee in the parametric change of
an eigenspace of a Hamiltonian that has a spectral degen-
eracy �4�. The phase anholonomy appears in various fields of
physics, besides quantum mechanics, and brings profound
consequences �1�.

Recently, Cheon found exotic anholonomies, which are
completely different from the conventional phase an-
holonomy, in a family of systems with generalized pointlike

potentials �5�. Cheon’s anholonomies appear, surprisingly,
both in eigenenergies and eigenvectors. The trail of an
eigenenergy along a change of parameters on a closed path
that encircles a singularity does not draw a closed curve but,
instead, a spiral. Since the initial and the final eigenenergies
in the closed path are different eigenvalues of a Hermite
operator, the corresponding eigenvectors must be orthogonal.
Hence the eigenenergy anholonomy induces another an-
holonomy in the direction of eigenvectors. The origin of
Cheon’s anholonomies in the family of systems with the gen-
eralized pointlike potentials is identified with the geometrical
structure of the family’s parameter space �6,7�.

In order to distinguish Cheon’s anholonomy in the direc-
tions of eigenvectors from Wilczek-Zee’s phase anholonomy,
which requires a degenerate spectrum and transports an ei-
genvector into its nonorthogonal direction in general along
adiabatic changes on closed paths, we will call the former an
eigenspace anholonomy: Wilczek-Zee’s phase anholonomy
concerns the change of an eigenvector within a single and
degenerate eigenspace and Cheon’s eigenspace anholonomy,
which do not require spectral degeneracies, concerns the
journey of an eigenvector from one eigenspace into another
eigenspace.

We can easily expect that Cheon’s anholonomies would
bring profound consequences in various fields of physics, as
is done by the phase anholonomy. For example, in the adia-
batic �sometimes referred to as Born-Oppenheimer �8�� ap-
proximation �9�, it has been considered to be legitimate to
assume that an adiabatic potential surface, which is an eigen-
value of an electronic Hamiltonian with a frozen nuclear
configuration, is a single-valued function of the nuclear con-
figuration. The single-valuedness would be broken if
Cheon’s eigenenergy anholonomy emerged. A similar ques-
tion may be raised in the Bloch theory in solid state physics
�10�. At the same time, Cheon’s anholonomies may be ap-
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plied to manipulate quantum systems to transfer a quantum
state adiabatically into another state, as is suggested by
Cheon �5�. The last point will be discussed more precisely in
this paper. However, all known examples of the eigenenergy
anholonomy, up to now, require an exotic connection condi-
tion around a singular potential �11�. Hence it is still worth
while to find systems that exhibit Cheon’s anholonomies.

The purpose of the present paper is to show Cheon’s an-
holonomies in periodically driven systems. More precisely,
we will discuss quasienergy and eigenspace anholonomies
with respect to Floquet operators that describe unit time evo-
lutions of the periodically driven systems. First, we provide
an instance of a quantum map, i.e., a quantum system under
a periodically pulsed perturbation �12�. The simplicity of the
Floquet operators of quantum maps allows us a thorough
analysis. In order to prepare it, the parametric dependence,
induced by the change of the strength of the perturbation, of
eigenvectors of the Floquet operators of quantum maps is
reviewed in Sec. II. In Sec. III, a quantum map that is per-
turbed by a rank-1 operator is introduced. The details of its
properties are explained in Appendixes A and B. In Sec. IV,
it is shown that the rank-1 perturbation, with respect to the
original Floquet operator, enables us to introduce a family of
Floquet operators to realize Cheon’s anholonomies. Several
examples are shown in Sec. V. Second, the stability of the
anholonomies is examined. A geometrical analysis, which is
shown in Sec. VI, of the family of Floquet operators eluci-
dates that the appearance of Cheon’s anholonomies is not
restricted in the periodically pulsed systems and is also pos-
sible in periodically driven systems in general. Furthermore,
we may claim that Cheon’s anholonomies are abundant in
systems whose time evolutions are described by Floquet op-
erators. Among possible consequences and applications of
our result, Sec. VII provides a discussion of a design prin-
ciple of quantum state manipulations along adiabatic pas-
sages. Section VIII provides a discussion and a summary. A
part of the present result was briefly announced in Ref. �13�.

II. ADIABATIC TRANSPORT OF EIGENVECTORS
IN A QUANTUM MAP

To prepare our analysis of quantum maps, we review the
parametric motions of eigenvectors and eigenvalues of Flo-
quet operators and the adiabatic theorem for periodically
driven systems. Let us consider a periodically pulsed driven
system �with a period T� described by the “kicked” Hamil-
tonian:

Ĥ�t� = Ĥ0 + �V̂ �
n�Z

��t − nT� , �1�

where Ĥ0 and V̂ describe the “free” motion and the pulsed
perturbation, respectively, and � is the strength of the pertur-
bation. In the following, we focus on the stroboscopic de-
scription of the state vector ��n� at t=nT−0. The time evo-
lution of ��n� is described by the quantum map ��n+1�
= Û� ��n�, where

Û� = e−iĤ0T/�e−i�V̂/� �2�

is a Floquet operator �12�. In the following, we set �=1. In
order to show a simple example of the parametric motions of
eigenvalues and eigenvectors, we assume that the spectrum

of Û� contains only discrete components and has no degen-
eracy. At the same time, in order to avoid subtle issues that
are brought from the infinite dimensionality of the Hilbert
space H �14�, we assume that N�dim H is finite. This as-
sumption does no harm to the descriptions of many systems
where an appropriate introduction of the truncation of the
Hilbert space is feasible.

Since Û� �Eq. �2�� is unitary, its eigenvalues 	zn���
n=0
N−1 are

complex and on the unit circle, i.e., �zn��� � =1. The phase of
zn��� indicates the increment of the dynamical phase during
the unit time evolution whose initial state is the correspond-
ing eigenstate ��n����. The time average of the dynamical
phase determines a quasienergy En���=−T−1 Im�ln zn���� �or
zn���=e−iEn���T�. Note that the value of quasienergy has an
ambiguity because of the period 2� /T in the quasienergy
space. We remark that the eigenvalue equation

Û���n���� = zn�����n���� �3�

determines the eigenvalue and the eigenvector only point-
wise in �. By assuming the continuity about �, we obtain the
derivatives of En��� and ��n���� �16�:

�

��
En��� =

1

T
��n����V̂��n���� , �4�

�

��
��n���� = − iAn�����n����

+ i �
m�n

zm�����m����V̂��n����
zm��� − zn���

��m���� , �5�

where ��n���� is assumed to be normalized and An���
� i��n��� ����n���� /�� is a geometric gauge potential �17�.
These derivatives compose a set of equations of motion for a
virtual time � �18�. With a given “initial condition” of
	En��� , ��n����
n, at �=�0, we may integrate the equations of
motion �4� and �5�. Note that, under the presence of an-
holonomy �1�, the single-valuedness of the solution
	En��� , ��n����
n generally holds only locally in the param-
eter space of �.

The adiabatic theorem �3� for periodically driven systems
�19� provides a physical significance of the geometry �i.e.,
�-dependence� of ��n����. Note that the parameter �, which is
supposed to be slowly changed, is the strength of the pertur-
bation that is applied periodically: � will be changed from �i
to �f, during the M steps, where the corresponding time in-
terval is TM. Let � j be the value of � at the jth step �0� j
�M�. In particular �0=�i and �M =�f. The slowness of the
change of the parameter is expressed by the condition � j+1
−� j =O�M−1� as M→�. We start with an initial condition

that, at �=�i, the system is in an eigenstate ��n��i�� of Û�i
.

The final state �	f� is
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�	f� � T
←
�

j=1

M

Û�j���n��i�� , �6�

where T
←

represents a time-orderd �or, equivalently, path-

orderd� product. According to the adiabatic theorem, the final
state will converge to ��n��f�� as M→�, except its phase. In
the following, we will evaluate the phase of the final state.
From the equation of motion �5�, we have

Û���n�� − ��� = exp	− iEn���T + iAn����
��n����

− �
m�n

izm���2��m����V̂��n�����
zm��� − zn���

��m����

+ O��2� �7�

as �→0. According to the adiabatic theorem �19�, we need
only the first term above for the evaluation of the phase.
Hence we have

�	f� � exp�− i�
j=1

M

En�� j�T + i�
�i

�f

An���d����n��f�� ,

�8�

as M→�. The first and the second terms in the phase factor
correspond to the dynamical and geometric phases, respec-
tively �2�.

III. QUANTUM MAP UNDER A RANK-1 PERTURBATION

In order to demonstrate the simplest example of Cheon’s
anholonomies in quantum maps, we employ a rank-1 pertur-

bation V̂= �v��v� in Eq. �2� with a normalized vector �v� �15�.
Since V̂ satisfies V̂2= V̂, the quantum map �2� has a period-

icity about �. This is shown by an expansion of Û� in V̂,

Û� = Û0	1 − �1 − e−i��V̂
 , �9�

which has a 2� periodicity in �. Hence the parameter space
of � is identified with a circle S1. We will discuss the para-

metric motion of quasienergies and eigenvectors of Û�, along
the changes of � on S1.

Two kinds of “trivial” eigenvectors of Û� are shown in
order to simplify the later analysis on Cheon’s anholonomies.

For the first kind, we suppose that an eigenvector ��� of Û�0
is orthogonal to �v� and the corresponding eigenvalue is z0.

Then, this implies that ��� is also an eigenvector of Û� for all
� and the corresponding eigenvalue z0 does not depend on �.
In fact, we have

Û���� = Û�0
e−i��−�0�V̂/���� = Û�0

��� = z0��� , �10�

where we used V̂ ���= �v��v ���=0 and Û�0
���=z0 ���. In Ap-

pendix A, we will show that such trivial eigenvectors �10�
are created by a spectral degeneracy of Û�. For the second

kind, we suppose that �v� is an eigenvector of Û�0
and the

corresponding eigenvalue is z0. If this is the case, all the

eigenvectors of Û�0
, except �v�, are orthogonal to �v�, and

accordingly become trivial eigenvectors of the first kind
mentioned above. Furthermore, �v� is also a trivial one in the

sense that �v� is an eigenvector of Û� for all �. This is be-
cause

Û��v� = Û�0
e−i��−�0�V̂/��v� = Û�0

e−i��−�0�/��v� = z0e−i��−�0�/��v� ,

�11�

where the corresponding eigenvalue z0e−i��−�0�/� depends on
�. The analysis of the two kinds of trivial eigenvectors are
completed.

In the following, we assume the absence of these trivial
eigenvectors since they are irrelevant to the later argument to
look for Cheon’s anholonomies. A systematic procedure to
reduce a Hilbert space by excluding these trivial eigenvectors

of Û� is explained in Appendix A. On the reduced Hilbert

space H, it is assured that the spectrum of Û� has no degen-

eracies for all �. In terms of Û0 and �v�, this assumption turns
out to be equivalent to the following two conditions. �i� The

spectrum of Û0 is nondegenerate. Note that we have already

introduced another assumption that the spectrum of Û0 con-
tains only discrete and a finite number of components to
assure the smoothness of the parametric dependence of ei-
genvalues and eigenvectors on � in Sec. II. �ii� �v� is not

orthogonal to any eigenvector of Û0, otherwise the reduction
is not complete. Note that �ii� implies that �v� is not any

eigenvector of Û0. Thus the conditions �i� and �ii� guarantee,
for all �,

0 � ��v���� � 1 for any eigenvector ��� of Û�, �12�

where either the lower or the upper bound of the equalities
would hold if any trivial eigenvector remains.

The conditions �i� and �ii� are further paraphrased with the
help of the notion cyclicity �20�, when we restrict ourselves
to the dimensionality of the Hilbert space H being finite. If

Û0 and �v� satisfy H=span	�Û0�m �v�
m=0
� �21�, �v� is called a

cyclic vector for Û0 �20�. It is shown in Appendix B, the

conditions �i� and �ii� are equivalent to �i�� Û0 has a cyclic

vector and �ii�� �v� is a cyclic vector for Û0, respectively. We
will discuss the case that these assumptions are broken in
Sec. V.

IV. CHEON’S ANHOLONOMIES IN QUANTUM MAPS

What happens to the quasienergies and the eigenvectors
when we adiabatically increase � by 2�, the period of the
Floquet operator �9�, and its spectrum, starting from �=�0?
The argument above suggests that we may have a conven-
tional �Abelian� phase anholonomy that appears only in the
phase of the eigenvectors. However, the following argument
will elucidate that we meet Cheon’s anholonomies in
quasienergies as well as in eigenspaces.

First, we examine quasienergies En��� �0�n
N
=dim H�. Note that we have N cases to choose “the ground
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quasienergy” due to the periodicity in the quasienergy space.
Once we choose a ground state, whose quantum number is
assigned to 0, the quantum number n �
N� is assigned so
that En��� increases as n increases. More precisely, in order
to remove ambiguities due to the periodicity in the quasien-
ergies, we choose the branch of the quasienergies, at �=�0,
as E0��0�
E1��0�
 ¯ 
EN−1��0�
E0��0�+2�T−1 holds,
where E0��0� and E0��0�+2�T−1 correspond to the same ei-
genvalue z0��0�=e−iE0��0�T. For brevity, we identify a quan-
tum number n with n+N.

To examine how much the ground quasienergy E0��0� in-
creases during a cycle of �, we evaluate

�En � �
�0

�0+2� �En���
��

d� . �13�

Note that �En is “quantized” due to the periodicity of the
spectrum, e.g., we have

�E0 = E���0� − E0��0� mod 2�T−1 for some � , �14�

because E0��� should arrive at E���0� for some � as �↗�0

+2�. To determine which � is possible or not, we evaluate
the integral expression �13� of �En with �En��� /��

=T−1��n��� � V̂ ��n���� �16�. Since V̂ satisfies V̂2= V̂, the eigen-

values of V̂ are only 0 and 1. Accordingly we have 0
��En��� /���T−1. However, the equalities for the minimum
and the maximum cannot hold because of �En��� /��
=T−1 � �v ��n�����2 and 0
 ��v ��n���� � 
1 �see Eq. �12��.
Hence we have 0
�En��� /��
T−1 and accordingly

0 
 �En 
 2�T−1. �15�

This imposes a restriction 0
�
N in Eq. �14�. In particular,
neither �=0 nor N is possible. Namely, the quasienergy
E0��� arrives at E���0� �0
�
N�, instead of E0��0�, as
�↗�0+2�. This is nothing but a manifestation of Cheon’s
anholonomy in quasienergy.

If the system is two-level �i.e., N=2�, the above argument
immediately implies �=1. Hence it is straightforward to
show that

En��0 + 2� − 0� = En+1��0� mod 2�T−1 �16�

holds for all 0�n
N.
Equation �16� remains true for N2. Its justification re-

quires one to examine a sum rule on 	�En
n=0
N−1:

�
n=0

N−1

�En = �
�0

�0+2� 1

T
�Tr V̂�d� =

2�

T
, �17�

where we used Tr V̂=1 for V̂= �v��v� with normalized �v�.
The sum rule �17� implies that Eq. �16� holds for all 0�n

N, and vice versa, where the sum �n=0

N−1�En in Eq. �17�
takes its possible minimal value 2�T−1. Actually, if we as-
sume that Eq. �16� is broken for some n, e.g., En��0+2�
−0�=En+���0� mod 2� /T with 1
�
N, this contradicts the
sum rule �17�. Thus the quasienergy anholonomy �16� for
N-level quantum maps under the rank-1 perturbation is re-
vealed completely.

The quasienergy anholonomy �16� induces an eigenspace
anholonomy, which is expressed by projectors:

��n��0 + 2� − 0����n��0 + 2� − 0�� = ��n+1��0����n+1��0�� .
�18�

Note that ��n��0�� and ��n+1��0�� are orthogonal, since the
corresponding eigenvalues are different.

Finally, we show an anholonomy in a state vector as a
result of the adiabatic increment of � by the period 2� from
�=�0. When the initial state is prepared to be an eigenstate
��n��0��, the corresponding final state is

exp�− i�
j=1

M

En�� j�T + i�
�0

�0+2�

An���d����n+1��0�� .

�19�

If we keep the adiabatic increment of �, the state vector will

become parallel with the eigenvector ��n+���0�� of Û�0
after

the completion of the �th iteration of the periodic increment
and return to the initial eigenstate at the end of the Nth itera-
tion.

V. EXAMPLES

The simplest example of Cheon’s anholonomies occurs in
a two-level system. The Floquet operator of the unperturbed
system is

Û0 � �↑��↑ � + �↓�e−i��↓ � , �20�

where �� �0,2�� and T=1 are assumed. We employ �v�
= ��↑ �− i � ↓ �� /�2, which satisfies the conditions �i� and �ii�
mentioned in Sec. III. Although the constant term in V̂
= �v��v � = 1

2 �1− �̂y� seems to be irrelevant, this term arises
naturally in projection operators in the two-level system and

is required to ensure that the perturbed Floquet operator Û�

= Û0e−i�V̂ has the 2� periodicity about �. In order to show an
analytic form of quasienergies and eigenvectors, we employ

�=� �i.e., Û0= �̂z�. The eigenvalues of Û� are z0���=e−i�/2

and z1���=−e−i�/2. The period of each eigenvalue about � is
4�, though the period of the spectrum 	z0��� ,z1���
 is 2�.
The corresponding quasienergies are

E0��� =
1

2
� mod 2� and E1��� = � +

1

2
� mod 2� .

�21�

Now we demonstrate the anholonomy in quasienergy �see
Fig. 1�: At �=0, we start from the quasienergy E0�0�=0 of
the 0th eigenstate. The increment of � increases E0��� be-
cause of the fact dE0��� /d�= 1

2 0. At �=2�, E0��� arrives
at �, which agrees with the quasienergy E1�0�=� of the first
eigenstate at �=0. Next, we examine the eigenvectors

��0���� = �cos��/4�
sin��/4� �, ��1���� = �− sin��/4�

cos��/4� � . �22�

The corresponding geometric gauge potentials An��� �n
=0,1� happen to vanish in the present case. Hence it is easy
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to find the geometric phases from the parametric dependence
of the eigenvectors �22�. The excursion of the eigenvectors
by increasing the parameter � is the following:

��0�0�� = �↑� , ��1�0�� = �↓� ,

��0�2��� = ��1�0�� , ��1�2��� = − ��0�0�� ,

��0�4��� = − ��0�0�� , ��1�4��� = − ��1�0�� ,

�23�

where nontrivial geometric phases appear after the comple-
tion of the 4� increment of �.

We suggest a possible implementation of the example
above in a charged particle with a spin-1 /2. Assume that the
particle is localized to some place so that we may ignore the
motion of the particle. The unperturbed system is the spin

under a static magnetic field. The perturbation V̂ is composed
of two ingredients. One is a periodically pulsed magnetic
field, whose direction needs to be different from that of the
unperturbed magnetic field. The other is a periodically

pulsed electric field, which provides “the constant part” of V̂.

In order to prepare V̂, we need to adjust the ratio of the
strength and the period of the two perturbation fields.

Finally, we show another example that involves multiple
levels in Fig. 2�a�, where all quasienergies are involved in

the anholonomy. This is due to the cyclicity of �v�. In Fig.
2�b�, we also show an example that breaks the cyclicity of
�v�. This suggests that we may control the anholonomy to the
limited number of states by an appropriate choice of �v�.

VI. GEOMETRY AND ABUNDANCE OF QUASIENERGY
ANHOLONOMY

We remark on the geometry of the quasienergy an-
holonomy to discuss its stability and abundance. Concerning
Cheon’s eigenenergy anholonomy in a family of systems
with generalized pointlike potentials, Tsutsui, Fülop, and
Cheon examined the geometry of the anholonomy using the
fact that the parameter space of the family is U�2� �6,7�.
When the dimension of the Hilbert space is two, Tsutsui et
al.’s argument is immediately applicable to the quasienergy
anholonomy in the systems whose unit time evolution is de-
scribed by a Floquet operator, which is a 2�2 unitary ma-
trix. We employ a parametrization of such systems by their
quasienergy-spectrum 	�E0 ,E1�
 �Fig. 3�a��, whose element

2π

π

0
2ππ0 λ

E

2π

π

0
2ππ0 λ

E

(a)

(b)

FIG. 1. �Color online� Parametric motions of quasienergies
�bold lines� of two-level systems. We choose the model whose
“ground” quasienergy is zero at �=0. The other quasienergy �=�
at �=0 is indicated by the broken horizontal lines. �a� The example
examined in the main text, Eq. �21� ��v�= ��↑ �− i � ↓ �� /�2�. The
quasienergies draw two parallel lines, which have no avoided cross-
ing. �b� A generic example ��v�=cos�� /8� � ↑ �+sin�� /8� � ↓ ��. There
is a single avoided crossing. The broken curve represents
��↑��0�����2, which depicts that ��0���� becomes orthogonal to
��0�0�� in the limit �↑2�.

(a)

(b)

2π

π

0
2ππ0 λ

E

2π

π

0
2ππ0 λ

E

FIG. 2. �Color online� Parametric motions of quasienergies
�bold lines� in systems with multiple levels �dim H=5�. The unper-

turbed Floquet operator Û0, whose “ground” quasienergy is ad-
justed to zero at �=0, is randomly chosen. The quasienergies at �
=0 are indicated by the broken, horizontal lines. �a� A random

choice of �v�, which satisfies cyclicity for Û0. All quasienergies
exhibit anholonomy. �b� An example for broken cyclicity in �v�:
Only three components of �v�, in the representation that diagonal-

izes Û0, take nonzero values. The resultant parametric changes and

anholonomy occur only in the subspace span	Û0
m �v�
m, whose di-

mensionality is three. The other two quasienergies draw horizontal
lines, since they correspond to the trivial eigenvectors mentioned in
Sec. III, and are not affected by the perturbation.
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�E0 ,E1� is identified with �E1 ,E0�. The quotient quasienergy-
spectrum space is accordingly an orbifold T2 /Z2 which has
two topologically inequivalent and nontrivial cycles �see Fig.
3�c� and Ref. �7��. One cycle traverses the degeneracy line
E0=E1. The other cycle concerns the “increment” �or “dec-
rement”� of the quantum number. More precisely, the wind-
ing number along the latter cycle determines the increment
of the quantum number �Fig. 3�d��. When the dimension of
Hilbert space is larger than 2, similar geometrical argument
will be possible. The geometrical nature implies that the
quasienergy anholonomy is stable against perturbations that
preserve the topology of the cycle. Hence we may expect
that the same anholonomy appears in nonautonomous sys-
tems whose unit time evolution is described by a Floquet
operator, e.g., periodically kicked systems and periodically
driven systems.

The stability of Cheon’s anholonomies against perturba-
tions is also expected from the fact that the parametric de-
pendence of the quasienergies has no crossings �see Figs. 1
and 2�a��. To achieve the stability in practice, the gap of
narrowly avoided crossings needs to be enlarged. This is pos-
sible with a suitable adjustment of �v� �e.g., see Figs. 1�a�
and 1�b��. We also remark that the presence of the trivial
eigenvectors, which are introduced in Sec. III, induces the
crossings of quasienergies, as can be seen in Fig. 2�b� and in
Appendix A. Hence quasienergy anholonomies coexisting
with trivial eigenvectors are fragile against perturbations in
general.

VII. APPLICATION: ANHOLONOMIC QUANTUM STATE
MANIPULATION

As an application of the quasienergy anholonomy, a de-
sign principle of systems that achieve manipulations of quan-
tum states with adiabatic passages is proposed. Before de-
scribing our argument, we mention that the conventional
works on the application of adiabatic passages to the ma-
nipulation of quantum states are the textbook results �22�. At
the same time, there are interesting proposals on quantum
circuits whose elementary operations are composed by adia-
batic processes �23�. The reason why the adiabatic processes
are employed is that the operations governed by the adiabatic
processes are expected to be stable. On the other hand, the
manipulation that involves the phase anholonomy is ex-
pected to be stable under the perturbation, due to its topo-
logical nature.

Our scheme proposed here also relies on the adiabatic
processes and employs nonconventional, Cheon’s anholono-
mies in quantum maps. The aim is to evolve a quantum state
�“the initial target”� into another state �“the final target”�.
What we need to carry it out is twofold: One is an “unper-

turbed” Hamiltonian Ĥ0, whose eigenstates must contain the
two target states. The other is a normalized vector �v�, which
must have nonzero overlappings between the two target
states. Under the influence of a periodically pulsed perturba-

tion V̂= �v��v� with its period T and strength �, the system is

described by the kicked Hamiltonian Ĥ�t� �Eq. �1��. The use
of the quasienergy anholonomy of the corresponding Floquet

O

O’

a

a’

b

E0

E1

O

O’

a

a’

b

O a

b

b’

O a

b

b’

(a)

(b)

(c)

(d)

FIG. 3. �Color online� A parametrization with the quasienergy-
spectrum of quantum systems whose unit time evolutions are de-
scribed by two-dimensional Floquet operators is explained. �a� An
E0−E1 plane, where a and a� are at �0,2� /T� and �2� /T ,0�, re-
spectively. Because of the periodicity of quasienergies, pairs of
lines Oa and a�O�, and Oa� and aO� are identified. On the diagonal
line E0=E1, two quasienergies are degenerate. In the subsequent
figures �E0 ,E1� and �E1 ,E0� are identified. �b� �Oba� and �O�ba
are identified with �Oba and �O�ba�, respectively, and so are
removed. �c� The quotient space T2 /Z2. Since Oa and a�O� in �b�
are identical, they are arranged to make a square. Furthermore, if
identical lines Ob� and ab are put together, a Möbius strip with
edges Ob and ab�, which are degenerate lines, is obtained �see Ref.
�7��. �d� Parametric motion of spectrum on T2 /Z2. Bold and dashed
lines, which are topologically equivalent on the Möbius strip, cor-
respond to Figs. 1�a� and 1�b�, respectively, where T=1 is assumed.
At �=0, they start from the open circle at �0,��. As � increases,
they move toward ab. At �=�, they arrive on a point on a line ab,
which is identical with Ob�. Then they return to �0,��. Such a
winding along the Möbius strip induces the quasienergy
anholonomy.
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operator Û� �Eq. �2�� is straightforward if Ĥ0 is bounded and
contains only discrete eigenenergies and T is smaller than
2�� /W, where W is the difference between the maximum

and the minimum eigenenergies of Ĥ0. Otherwise, we need
to achieve these conditions effectively, by adjusting �v�. For
example, �v� needs to be prepared to have no overlapping
with the eigenstates that have higher eigenenergies to make

an effective energy cutoff on Ĥ0.

Once we prepare such Û�, it is straightforward to realize
the manipulation, at least, in theory. To convert a state vector,

which is initially in an eigenstate of Û0, to the nearest higher

eigenstate of Û0, is achieved by applying the periodically

pulsed perturbation V̂= �v��v�, whose strength � is adiabati-
cally increased from 0 to 2�. Note that at the final stage of
the manipulation, we may switch off the perturbation sud-

denly, due to the periodicity of the Floquet operator Û2�

= Û0. This closes a “cycle.” By repeating the cycle, the final

state can be any eigenstate of Û0. Note that, along the opera-
tion, �v� may vary adiabatically. In other words, the adiabati-
cally slow fluctuation on �v� does no harm. We remark that
an application of the present procedure to anholonomic adia-
batic quantum computation is described in a separate publi-
cation �13�.

The strongest limitations of the present scheme, in our
opinion, is that the target states for the manipulation must be

eigenstates of Ĥ0. Superpositions of the eigenstates of Ĥ0
cannot be the targets due to the presence of dynamical phases
that generally diverge in adiabatic processes. Note that, how-
ever, there is no obstacle to handle “superposed states” when

they are eigenstates of Ĥ0. Furthermore, if we could intro-
duce Cheon’s anholonomies to the systems whose quasien-
ergies are degenerate, it may be possible to carry out a co-
herent manipulation within a degenerate eigenspace. This
motivates us to seek an extension of the eigenspace an-
holonomy for degenerate eigenspace, i.e., Cheon’s anholono-
mies á la Wilczek and Zee.

VIII. DISCUSSION AND SUMMARY

We have discussed Cheon’s anholonomies in a family of

quantum map �9� with a rank-one projection V̂. Although our
geometrical argument in Sec. VI assures the abundance of
the systems that exhibit the anholonomies, we still do not
have any systematic way to find such systems, except the
quantum map �9�. In order to suggest exploring other ex-
amples of the anholonomies, we summarize conditions to
find the anholonomies. Two ingredients in our Floquet op-
erator �9� facilitate finding the anholonomies: �a� the period-
icity of the Floquet operator for the parameter � enforces the
periodicity of the spectrum; and �b� the positivity of the per-
turbation assures the monotonic increment of each quasien-
ergy for the increment of �. These two facts imply that En���
arrives at a higher excited quasienergy En+�n��� ��n0� af-
ter an increment of � by the period 2�. To realize the first

condition, V̂ need not to be a projection operator. For the
Floquet operator �2�, the condition for the periodicity is

e−i�V̂/�=1, where � is the period. In terms of the eigenvalues

	vn
n of V̂, this condition is that �vn / �2��� is an integer for
all n. Although we suppose that the anholonomies may be
realized without the condition �b�, we are not aware of any

examples, except the trivial cases, e.g., V̂ is negative definite.
Furthermore, the above two conditions generally do not de-
termine the exact value of �n, which is the increment of the
quantum number after a single cycle, whereas �n=1 for a

rank-1 projection V̂ is shown in Sec. IV. The value of �n
could be determined by the geometric argument shown in
Sec. VI. However, no systematic algorithm to compute �n
from a given family of Floquet operators is known to us.
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APPENDIX A: A REDUCTION OF HILBERT SPACE
FOR A QUANTUM MAP UNDER A RANK-1

PERTURBATION

We explain a procedure to reduce the Hilbert space for the
quantum map under a rank-1 perturbation �9�. Let us start

from �=�0. Assume that Û�0
has a pure point spectrum �i.e.,

the eigenvectors of Û� form a complete orthogonal system�
�24�. We exclude the case that �v� is an eigenvector of Û�0
because this implies that the whole Hilbert space becomes

trivial, as is explained in Sec. III. An eigenspace Hz of Û�0
,

where z is the corresponding eigenvalue, is reduced as fol-
lows. First, we introduce Hz

n, which is a subspace of Hz and
orthogonal to �v�:

Hz
n � span	��� � Hz;�v��� = 0
 . �A1�

We exclude Hz
n, since this is a trivial eigenspace of Û� �see

Eq. �10��. If the remainder Hz
p�Hz � Hz

n is not 	0
, Hz
p is a

one-dimensional eigenspace of Û�0
. Hence the degeneracy in

the eigenvalue z is removed. Then we examine the spectrum

of Û� on the resultant Hilbert space H� � zHz
p. On H, Û�0

has a pure point and nondegenerate spectrum. At the same

time, all of the eigenvector ��� of Û�0
satisfies

0 � ��v���� � 1. �A2�

For general �, we assume that Û� also has a pure point

spectrum. Namely, we exclude the case that Û� has a con-
tinuous spectrum, which emerges under some combinations

of Û�0
and �v� in an infinite dimensional H �15�. As a result

of the reduction of H, any eigenvector ��� of Û� also satisfies
the inequality �A2�. Hence we proved the inequality �12� in
the main text.
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APPENDIX B: CYCLICITY

When a Hilbert space span	Ûm �v�
m=0
� , which is induced

by a vector �v� and an operator Û, agrees with the whole

Hilbert space, �v� is called a cyclic vector of Û �20�. The
notion of the cyclicity is useful to discuss how we choose �v�
in the quantum map �9� to find Cheon’s anholonomies, as is
explained in Secs. III–V. Hence a review of the cyclicity is

shown below, where we assume that the spectrum of Û has
only discrete and finite components.

A characterization of the cyclic vector �v� for Û is ex-

plained: Any �normalizable� eigenvector ��� of Û satisfies
�� �v��0. To show this, let z be the eigenvalue correspond-
ing to ���. Due to the cyclicity, ��� is a linear combination of

	Ûm �v�
m=0
� , i.e., ���=�m=0

� cmÛm �v� with appropriate coeffi-

cients cm. Hence we have �� ���=�m=0
� cm�� � Ûm �v�

=�m=0
� cmzm�� �v�= ��m=0

� cmzm��� �v�. Since �� ��� is nonzero
and �m=0

� cmzm is finite, we conclude �� �v��0. Note that this
just proves the fact that the condition �ii�� implies the con-
dition �ii� in Sec. III.

Next, we show that the inverse holds, i.e., condition �ii�
implies condition �ii�� when the spectrum of Û is nondegen-

erate. More precisely, when all eigenvectors ��� of Û satisfy

�v ����0, �v� is a cyclic vector for Û. To show this, we prove

that 	Ûm �v�
m=0
N−1 are linearly independent, where N is the

number of the eigenvalues. Namely, for an N-dimensional
vector c= �c0 ,c1 , . . . ,cN−1�, we show that

�
m=0

N−1

cmÛm�v� = 0 �B1�

implies c=0. Let zn and ��n� denote an eigenvalue of Û and
the corresponding eigenvector, respectively �n=0,1 , . . . ,N

−1�. From Eq. �B1�, we have �m=0
N−1��n � Ûm �v�cm

= ��n �v��m=0
N−1�zn�mcm=0. The assumption ��n �v��0 implies

�m=0
N−1�zn�mcm=0 for all n. This is written as Ac=0, where A is

the N-dimensional square matrix whose �m ,n�-element is
�zn�m. Accordingly we encounter a Vandermonde determinant

det A = �
1 z0 �z0�2

¯ �z0�N−1

1 z1 �z1�2
¯ �z1�N−1

¯ ¯ ¯ ¯ ¯

1 zN−1 �zN−1�2
¯ �zN−1�N−1

�
= 

n�n�

�zn� − zn�� �B2�

and we have det A�0 due to the absence of spectrum degen-
eracy of Û. Hence we have c=0.

We can now examine the condition when Û has a cyclic
vector to see the correspondence between the conditions �i�
and �i�� in Sec. III. If the spectrum of Û is nondegenerate, Û
has a cyclic vector, e.g., �n=0

N−1 ��n�, from the above discussion.
Furthermore, Û has a cyclic vector only when Û has no
degenerate eigenvalue. To show the latter, we examine its

contraposition. Hence we assume that Û has a degenerate
eigenvalue, i.e., det A=0. Accordingly we have a nonzero c
that satisfies Ac=0, i.e., �m=0

N−1�zn�mcm=0 for all n. With such
c and arbitrary dn, we have 0=�n=0

N−1dn��n ��m=0
N−1�zn�mcm

=�n=0
N−1dn��n ��m=0

N−1Ûmcm, i.e., �m=0
N−1cmÛm=0. Accordingly,

with any vector �v�, we have �m=0
N−1cmÛm �v�=0, i.e.,

	Ûm �v�
m=0
N−1 is linearly dependent and any �v� cannot be a

cyclic vector for Û. Thus the degenerate eigenvalue of Û
leads to an absence of its cyclic vector.

To summarize this Appendix, we explain the conditions

�i�� and �ii�� in Sec. III. If the spectrum of Û is finite and

nondegenerate, Û has a cyclic vector. Furthermore, if �v�
satisfies �v ����0 for any eigenvector ��� of Û, �v� is a cyclic

vector of Û.
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