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We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly con-
ducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on
equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions
on interatomic potentials. This method also gives a transparent physical picture of the role of a finite tempera-
ture and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the
potential both in the near and far zones, and consider several limiting cases of interest, according to the values
of the parameters involved, such as atom-atom distance, atoms-wall distance, and temperature.
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I. INTRODUCTION

Casimir-Polder forces are long-range interactions between
neutral atoms or molecules due to their common interaction
with the electromagnetic radiation field. In the case of two
atoms in the vacuum �zero temperature� the Casimir-Polder
potential energy behaves as R−6 for interatomic distances
smaller than typical atomic transition wavelengths from the
ground state �near zone� and as R−7 for larger distances �far
zone� �1�. In the near zone the potential energy coincides
with the well-known van der Waals interaction, but in the far
zone it decreases more rapidly due to retardation effects.
Analogous interactions exist between an atom and a neutral
conducting wall and between two conducting or dielectric
walls �the so-called Casimir effect� �2�. These interactions
are usually considered as a manifestation of the quantum
nature of the electromagnetic radiation field and related to
the zero-point energy. Although Casimir-Polder and Casimir
energies are very small, the Casimir force between macro-
scopic objects has been measured with remarkable precision
�for a review, see �3��. Relevance of Casimir forces to nano-
devices and microdevices has also been shown �4,5�. Also
the atom-wall Casimir-Polder force has been recently mea-
sured with precision, both in the near and in the far zone
�6–10�. The atom-atom van der Waals/Casimir-Polder energy
is still weaker, but experimental indirect evidences of them
have existed for a long time, in agreement with theoretical
predictions �11�. Direct measurements of the retarded van der
Waals attraction in mesoscopic systems have been also ob-
tained �12,13�. In order to obtain direct high-precision evi-
dence of the atom-atom force, it can be relevant to evaluate
them in realistic situations to be compared with actual labo-
ratory situations, for example, by taking into account tem-
perature effects and/or the presence of boundary conditions,
as well as to envisage situations where the intensity of these
forces could be increased. In a previous paper we have cal-
culated the atom-atom Casimir-Polder interaction energy
when the two atoms are placed in the vicinity of a perfectly

conducting wall �at zero temperature�, obtaining also a trans-
parent physical interpretation of the results in terms of image
dipoles �14�. In this paper we generalize this work and con-
sider the Casimir-Polder interaction between two ground-
state atoms at finite temperature and with boundary condi-
tions present, such as a conducting wall. We use a method
based on spatial correlations of the fields �15�, which, beside
being well suited as a calculation tool for this kind of prob-
lem, also gives a clear physical interpretation of the results
obtained. In Sec. II we outline the method used by reproduc-
ing in a simpler and transparent way the result for the
Casimir-Polder potential energy between two atoms in a ther-
mal field, well known in the literature �see, for example,
�16��. In Sec. III we derive and discuss our results for the
retarded atom-atom Casimir-Polder interaction when both a
thermal field and a boundary condition are present. Several
limiting cases involving the relevant parameters of the sys-
tem �temperature, atom-atom, and atoms-wall distances� are
explicitly discussed.

II. CASIMIR-POLDER POTENTIAL BETWEEN TWO
ATOMS AT NONZERO TEMPERATURE IN

THE FREE SPACE

We first consider two neutral atoms interacting with the
quantum electromagnetic radiation field in a thermal bath at
temperature T, and we investigate their Casimir-Polder inter-
action. Our approach to this problem exploits the idea that
field fluctuations induce instantaneous dipole moments in the
two atoms, which are correlated because vacuum fluctuations
are spatially correlated. The Casimir-Polder potential energy
then arises from the classical interaction between the oscil-
lating dipoles of the atoms �15�. This method has been used
in several different contexts, such as three-body forces �17�
and time-dependent situations �18,19�. It has been recently
used also in the case in which boundary conditions are
present �14,20�. In this section we show that this method is
valid and computationally useful also for the calculation of
Casimir-Polder forces at a nonzero temperature.

The relation between the Fourier components of the fluc-
tuating electromagnetic field �zero-point and/or thermal*roberto.passante@fisica.unipa.it
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fields� and of the induced dipole moment in the atoms is �15�

�l�kj� = ��k�El�kj,r� , �1�

where

��k� =
2

3�c
�

p

kp0��p0�2

kp0
2 − k2 �2�

is the dynamical polarizability of the atoms �assumed isotro-
pic for simplicity�, �ckp0=Ep−E0 is the transition energy
from the state p to the ground state 0 of the atom and �p0 are
matrix elements of the atomic dipole momentum operator.
El�kj ,r� is the l component of the electric field operator, that
in the multipolar coupling scheme coincides with the trans-
verse displacement field �21�,

E�kj,r� = i�2��ck

V
êkj�akje

ik·r − akj
† e−ik·r� . �3�

The Casimir-Polder interaction energy, described as the clas-
sical interaction between the induced atomic dipole moments
�15�, is then written as

WAB�R� = �
kj

��l
A�kj��m

B�kj�	Vlm�R�

= �
kj

�A�k��B�k��El�kj,rA�Em�kj,rB�	Vlm�k,R� ,

�4�

where R= �rB−rA� is the distance between the two atoms and

Vlm�k,R� = ��2�lm − �l�m�Rcos kR

R

=
1

R3 
��lm − 3R̂lR̂m��cos kR + kR sin kR�

− ��lm − R̂lR̂m�k2R2 cos kR� �5�

is the classical electromagnetic potential tensor between two
oscillating dipoles at frequency ck �22�, and the superscript R
indicates the variable with respect to which the derivatives
are taken.

The expectation value of the spatial field correlation
�El�kj ,rA�Em�kj ,rB�	 in Eq. �4� must be taken on the field
state in consideration, in our case the equilibrium thermal
state at temperature T �isotropic and unpolarized�. Thus

�akj
† akj	 =

1

e�ck/kBT − 1
, �6�

where kB is the Boltzmann constant. We assume that the
temperature is such that the atomic excitation probability due
to the thermal field is negligible �that is, kBT���0, �0 being
a typical transition frequency of the atom�.

In the continuum limit, we can easily perform the polar-
ization sum and the angular integration

�
j
� d�k�El�kj,rA�Em�kj,rB�	

=
8�2�ck

V
coth �ck

2kBT
��lm�k,R� , �7�

where we have used Eq. �6� and defined the tensor

�lm�k,R� =
1

4�
� d�k��lm − k̂lk̂m�e±ik·R

= − ��2�lm − �l�m�Rsin kR

k3R

= ��lm − R̂lR̂m�
sin kR

kR

+ ��lm − 3R̂lR̂m� cos kR

k2R2 −
sin kR

k3R3 � . �8�

The final expression for Casimir-Polder energy, valid at any
distance R between the atoms outside regions of wave func-
tions overlapping, is

WAB�R� =
�c

�
�

0

	

k3�A�k��B�k�coth �ck

2kBT
�Vlm�k,R��lm�k,R�

= −
�c

�
� dk�A�k��B�k�coth �ck

2kBT
�


���2�lm − �l�m�Rcos kR

R
�


���2�lm − �l�m�Rsin kR

R
�

= −
�c

�R3�
0

	

dkk3�A�k��B�k�coth �ck

2kBT
�


kR sin 2kR + 2 cos 2kR − 5
sin 2kR

kR

− 6
cos 2kR

k2R2 + 3
sin 2kR

k3R3 � . �9�

In the so-called near zone, that is, for interatomic distances
smaller than typical atomic transition wavelengths from the
ground state, we can approximate kR�1, and this expres-
sion reduces to

WAB�R� � −
3�c

�R6� dk�A�k��B�k�coth �ck

2kBT
�sin 2kR ,

�10�

which coincides with the result obtained in �23� with differ-
ent methods. For larger distances, in the so-called far zone,
we can replace the dynamical polarizabilities �A,B�k� with
their static values �A,B=�A,B�0�. After integration over k, we
obtain
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WAB�R� = �A�BkBTQR coth2�kBTR

�c
� , �11�

where the differential operator

QR = −
1

16R2

�4

�R4 +
1

4R3

�3

�R3 −
5

4R4

�2

�R2 +
3

R5

�

�R
−

3

R6�
�12�

has been defined. The result �11� was already obtained by
Boyer in the framework of stochastic electrodynamics �24�.
Our method has allowed us to reproduce known results in a
simpler way, also obtaining a transparent physical interpreta-
tion of Casimir-Polder forces at finite temperature in terms of
the atomic dipole moments induced by both vacuum and
thermal field fluctuations.

We can consider two limiting cases of Eq. �11� �far zone�,
given by 2�kBTR /�c�1 and 2�kBTR /�c�1; they can be
considered as a low- and high-temperature limit of the
Casimir-Polder energy, respectively. Alternatively, for a
given value of the temperature, as it is known, there is a new
distance scale inside the far zone given by �c /2�kBT: for
distances smaller than this scale, Eq. �11� gives a potential
energy as R−7, while for larger distances the potential be-
haves as R−6, as in the near zone �16,25,26�.

III. CASIMIR-POLDER INTERACTION BETWEEN TWO
ATOMS AT NONZERO TEMPERATURE IN THE

PRESENCE OF A CONDUCTING WALL

We now consider how the presence of a boundary condi-
tion such as a perfectly conducting wall modifies the
Casimir-Polder interaction between the two atoms at finite
temperature. We use the same method discussed in Sec. II.
The electric field operator is now

E�r� = �
kj

E�kj,r� = i�
kj

�2��ck

V
f�kj,r��akj − akj

† � ,

�13�

where f�kj ,r� are appropriate mode functions given by the
boundary conditions for the field operators �j is a polariza-
tion index�. As shown in �14�, the presence of the wall re-
quires also a modification of the classical interaction be-
tween the induced atomic dipoles to be used in our method,
because the image dipoles �reflected on the wall� must be
taken into account. We assume the wall located at z=0, and
that rA ,rB are, respectively, the positions of atoms A and B.

Thus we write the atom-atom Casimir-Polder interaction
energy as

WAB�R,R̄� = �
kj

�l
A�kj��m

B�kj�Vlm�k,R,R̄�

= �
kj

�A�k��B�k��El�kj,rA�Em�kj,rB�	Vlm�k,R,R̄� ,

�14�

where the quantum average of the field operators is taken on
a thermal state of the radiation field at temperature T. As

already mentioned, the potential tensor Vlm�k ,R , R̄� should
now take into account not only the interaction between the
two induced atomic dipoles, but also the interaction between
the induced dipole of one atom and the image reflected on
the wall of the induced dipole of the other atom. So we take
the following expression for the potential tensor:

Vlm�k,R,R̄� = Vlm�k,R� − �lpVpm�k,R̄�

= ��2�lm − �l�m�Rcos kR

R

− �lp��2�pm − �p�m�R̄cos kR̄

R̄
, �15�

where the matrix

� = �1 0 0

0 1 0

0 0 − 1
� �16�

gives a reflection on the conducting plate, supposed orthogo-

nal to the z axis, and R̄= �rB−�rA� is the distance between
one atom and the image of the other atom reflected on the
plate. The atom-atom Casimir-Polder potential energy �14�
adds to the well-known atom-wall Casimir-Polder interaction
energy, of course.

The equal-time spatial correlation of the electric field at
points rA and rB in Eq. �14�, in the presence of the conduct-
ing plate and evaluated on the thermal state of the field, is

�El�kj,rA�Em�kj,rB�	

=
2��ck

V
fl�kj ;rA�fm�kj ;rB��2�akj

† akj	 + 1�

=
2��ck

V
fl�kj,rA�fm�kj,rB�coth �ck

2kBT
� . �17�

In the continuum limit, performing the sum over polariza-
tions and the angular integration over the directions of k and
using the appropriate mode functions �27�, we obtain

1

4�
� d�k�

j

f l�kj ;rA�fm�kj ;rB� = �lm�k,R� − �ln�nm�k,R̄� .

�18�

Substitution of Eqs. �15�, �17�, and �18� into Eq. �14� yields

WAB�R,R̄� =
�c

�
� dkk3�A�k��B�k�coth �ck

2kBT
��Vlm�k,R�

− �lpVpm�k,R̄����lm�k,R� − �ln�nm�k,R̄�� . �19�

Using Eqs. �5� and �8�, this expression can be written in the
following form:
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WAB�R,R̄� = −
�c

�
� dk�A�k��B�k�coth �ck

2kBT�

���2�lm − �l�m�Rcos kR

R �

���2�lm − �l�m�Rsin kR

R �
−

�c

�
� dk�A�k��B�k�coth �ck

2kBT�

���2�lm − �l�m�R̄cos kR̄

R̄
�


���2�lm − �l�m�R̄sin kR̄

R̄
�

+
�c

�
�ln��2�lm − �l�m�R 1

R
��2�nm − �n�m�R̄ 1

R̄


� dk�A�k��B�k�sin k�R + R̄�coth �ck

2kBT� .

�20�

Comparing Eq. �20� with Eq. �9�, it is evident that, in the
presence of the conducting plate, the atom-atom Casimir-
Polder potential energy at nonzero temperature is the sum of
three contributions: �i� the “direct” interaction between the
two atoms, as in absence of the wall: this is the first term in
Eq. �20�, which depends only on R; �ii� the interaction be-
tween an atom and the image of the other atom, which has
the same formal expression of the previous contribution, but

in terms of R̄; and �iii� a term depending on both distances R

and R̄. In the limit of zero temperature, Eq. �20� reduces to
previous results at zero temperature in Refs. �14,27�.

In the far zone, the expression �20� of the potential energy
can be written in a more compact form using the operator
defined in Eq. �12�

WAB�R,R̄� = �A�BkBT�QR coth R

�T
� + QR̄ coth R̄

�T
�

+ �ln��2�lm − �l�m�R 1

R
��2�nm − �n�m�R̄ 1

R̄


cothR + R̄

2�T
�� , �21�

where �A,B are the static polarizabilities of the atoms and we
have introduced the thermal length �T=�c /2�kBT.

It is worth considering different limiting cases of Eq. �21�
according to the values of R, R̄, and �T.

If R , R̄��T, we obtain

WAB�R,R̄� = − �A�B 23

4�

�c

R7 +
23

4�

�c

R̄7
−

�c

�
�ln��2�lm

− �l�m�R��2�nm − �n�m�R̄ 1

RR̄�R + R̄�
�

�22�

which shows that the potential in this case scales as the in-
verse of the seventh power of the distance. Equation �22�
indeed reproduces the zero-temperature result �14,27�.

If R��T and R̄��T, Eq. �21� yields

WAB�R,R̄� = − �A�B� 23

4�

�c

R7 +
3kBT

R̄6
−

kBT

R3R̄3


�3 sin2  + 3 sin2 ̄ − 2�� , �23�

where  and ̄ are, respectively, the angles that R and R̄ make

with the axis perpendicular to the wall. Being R� R̄ and
R��T, the last two terms inside the brackets are negligible
compared to the first one, and thus the Casimir-Polder poten-
tial between the two atoms is essentially the same as for
atoms in the free space at zero temperature.

If R , R̄��T, Eq. �21� yields

WAB�R,R̄� = − �A�BkBT� 3

R6 +
3

R̄6
−

1

R3R̄3


�3 sin2  + 3 sin2 ̄ − 2�� . �24�

Equation �24� shows that in this case the potential scales as
the inverse of distance to the sixth power. We also notice
from Eq. �24� that the last term, containing both distances R

and R̄, gives a contribution to the potential opposite to the

other two terms; however, by taking into account that R̄
�R, it is easy to show that the potential is attractive for any
spatial configuration of the atoms with respect to the wall.
However, in this case both the presence of the wall and the
finite temperature of the field significantly affect the Casimir-
Polder potential energy between the two atoms.

IV. CONCLUSION

In this paper we have considered the Casimir-Polder po-
tential energy between two atoms near a perfectly conducting
plate and at nonzero temperature, both in the near and far
zone. We have investigated the effect of the boundary con-
dition and of the finite temperature on the potential, in order
to consider situations close to realistic experimental setups.
We have used a method based on spatial field correlations,
which has proved quite convenient and physically transpar-
ent in dealing with this kind of problem. Using this method
we have first reproduced in a more transparent way the
known results for the atom-atom Casimir-Polder potential in
the free space at finite temperature. Then we have applied the
same method, with appropriate modifications, to derive the
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expression of the atom-atom potential at nonzero tempera-
ture, when a conducting plate is also present. We have ob-
tained an analytical expression of the potential both in the
near and the far zone. We have then analyzed limiting cases
of interest, according to the relation between atom-atom and
atoms-wall distances with the thermal length, which is pro-
portional to T−1. In the future, we plan to extend this work to
the case in which one or both atoms are in their excited state
and/or when they are in the space between two parallel walls,

where resonance effects could yield relevant modifications of
the Casimir-Polder interatomic potential.
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