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We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive
electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect
observed in the context of nonrelativistic tunneling as well as in its electromagnetic counterparts and which is
often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behav-
ior of both the phase �or group� tunneling time and the dwell time, and show that in the limit of opaque barriers
the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results
with the nonrelativistic ones and discuss their interpretation.
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I. INTRODUCTION

The phenomenon of tunneling is one of the most striking
and extensively studied consequences of quantum mechan-
ics. Yet after decades of scrutiny �for reviews see, for ex-
ample, �1–4�� it still presents serious conceptual challenges,
such as a meaningful definition of tunneling time—that is,
the time it takes for a particle to tunnel through a potential
barrier.

Several different scales of time associated with the tun-
neling process have been proposed �see �1��. Among the
most prominent ones are the phase time �or group delay
time�, given by the energy derivative of the phase shift in the
transmission �or reflection� amplitude, and the dwell time,
which is related to the average time spent by the particle in
the region of the potential.

It is well known that for the tunneling of a particle
through an opaque barrier the group delay saturates with the
width of the barrier, a phenomenon called the Hartmann ef-
fect �5�. Several authors interpret this saturated time as the
transit time for the particle to go through the potential, which
would imply, as an immediate consequence, the possibility of
superluminal �group� velocities for barriers with a suffi-
ciently large spatial extension. Such an interpretation has
been in the center of an intense debate in the literature �see,
e.g., �4,6,7� and references therein�.

Recently an apparently even more paradoxical effect,
which became known as the generalized Hartman effect, has
been brought to attention, not only in the context of nonrel-
ativistic quantum tunneling, but also in the context of its
electromagnetic counterparts. This effect consists in the fact
that for tunneling through two potential barriers separated by
a distance l the phase time is, in the limit of opaque barriers,
independent not only of the barrier widths but also of the
spacing between them �8� �see also �9,10��. In fact, Esposito

�11� showed that for a system of N barriers the phase time is
independent also of the number of barriers. Despite the fact
that phase time cannot, in general, be interpreted as a propa-
gation �or transit� time for the particle �or wave packet�, this
effect is counterintuitive since one would, naively, expect
that in the space between the barriers the group delay could
be viewed as a propagation time, and therefore, it should
depend on the distance between the barriers.

In the last years several papers have also analyzed the
problem of quantum tunneling from a relativistic standpoint
�12–19�. Some of these papers were concerned with the fact
that the analysis of possible superluminal group velocities
associated with the Hartmann effect should be properly ad-
dressed in the context of a relativistic theory �12,15–17,19�;
others were concerned with general aspects of the relativistic
problem, such as the relation between phase time and dwell
time �18� or the relation between dwell time and Larmor
times �14�. In fact, due to the relevance of the tunneling
phenomenon, it is important to consider the possible quanti-
tative and/or qualitative differences in the phase �and dwell�
time arising due to the relativistic dynamic. What is more, a
clear understanding of the relativistic aspects of tunneling is
imperative if one wants to eventually obtain a meaningful
time scale for this phenomenon, because the instantaneous
spread of the probability density in nonrelativistic quantum
mechanics �20� makes it difficult to define an unambiguous
tunneling time in the context of Schrödinger theory.

Most of the above papers were concerned with a single
potential barrier or potential well. In fact, to the best of our
knowledge, the only relativistic treatment of the two barrier
case was due to Leavens and Aers �21�, which were con-
cerned with Larmor times at resonance. Thus, the present
work complements the previous ones by considering the
relativistic approach to the problem of a wave packet tunnel-
ing through two successive barriers. We shall address the
emergence of the generalized Hartman effect in this context
and discuss its possible interpretations. We also compare our
results with those obtained in the nonrelativistic framework.

II. RELATIVISTIC PHASE AND DWELL TIMES

Here we shall be concerned with the relativistic one-
dimensional scattering of a mass m and spin-1 /2 wave
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packet by an electrostatic time-independent potential V�z�.
The general form of the incident wave packet is given by

��z,t� =� dEA�E���z�e−iEt/�, �1�

where A�E� are its Fourier coefficients, while ��z� must sat-
isfy the time-independent Dirac equation associated with the
energy E,

�− i�c�z�z + �mc2 + V�z����z� = E��z� , �2�

with �z and � being the Dirac matrices �we will follow the
conventions in �22��. The potential in which we are inter-
ested consists of two potential barriers of height V0 and
width a, and spaced by a distance l, as seen in Fig. 1 �since
barriers of different heights and widths do not introduce any
novelty, they will not be considered here�.

Moreover, we shall consider an incident wave packet
whose Fourier energy distribution A�E� is very sharply con-
centrated around a given value E0, corresponding, therefore,
to a smooth modulation of the eigenfunction corresponding
to E0. Such a wave packet must have, therefore, a large spa-
tial extension. For our purposes we shall assume that the
energy dispersion of the wave packet is sufficiently narrow
such that its spatial extension is always very large when
compared to the extension of the region in which the poten-
tial is nonvanishing �region 0�z� l+2a in Fig. 1�. With
these assumptions in mind it is justifiable to use the station-
ary phase method to follow the position of the peak of the
wave packet in the free regions �regions I and V� �see, for
example, �23� and references therein�. We shall also consider
that E0 is a positive energy �particle� in the evanescent region
E0−mc2�V0�E0+mc2. Therefore, the region of supercriti-
cal potential, in which there is pair production �and the as-
sociated Klein paradox� and where, therefore, the one-
particle Dirac equation ceases to be valid, will not be
considered �for a study of the supercritical region for the
one-barrier potential see �24��.

Considering, as usual, a wave packet incident only from
the left and having spin up �we make this assumption with-
out loss of generality, because the potential considered here
causes no spin flip�, the general solution of the stationary
problem in the various regions indicated in Fig. 1 is given by

�I�z� = eikzuE�k� + Re−ikzuE�− k� ,

�II�z� = Ae−qzuE−V0
�iq� + BeqzuE−V0

�− iq� ,

�III�z� = CeikzuE�k� + De−ikzuE�− k� ,

�IV�z� = Fe−qzuE−V0
�iq� + GeqzuE−V0

�− iq� ,

�V�z� = TeikzuE�k� , �3�

where

uE�k� =�
1

0

ck�

E + mc2

0
	 �4�

and

k 

1

�c
�E2 − m2c4, q 


1

�c
�m2c4 − �E − V0�2. �5�

The above coefficients can be determined, as usual, from the
boundary conditions requiring the wave function to be con-
tinuous at the potential discontinuities. After some simple but
tedious algebra we obtain the transmission and the reflection
amplitudes

T = e−2ika�cosh�qa� + i
�1 − �2�

2�
sinh�qa��2

+
�1 + �2�2

4�2 sinh2�qa�e2ikl�−1

�6�

and

R = ei�k�2a+l�−�/2� �1 + �2�
�

sinh�qa�

��cos�kl�cosh�qa� +
1

2�
�1 − �2�sin�kl�sinh�qa��T ,

�7�

where we have introduced

� 

k

q

�E − V0 + mc2�
�E + mc2�

. �8�

It is convenient to express the transmission and reflection
coefficients in terms of their phases as

T�E� = �T�ei�	t−k�2a+l��; �9�

R�E� = �R�ei	r, �10�

where 	r=	t−� /2, while 	t is given by

FIG. 1. Schematic view of the two barriers arrangement. We
consider two rectangular identical barriers of heigth V0 and width a,
separated between themselves by a distance L.
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	t = kl − tan−1� 4��1 − �2�sinh�2qa� − �1 + �2�2 sin�2kl��1 − cosh�2qa��
4�2�1 + cosh�2qa�� + �1 − cosh�2qa����1 − �2�2 − �1 + �2�2 cos�2kl��� . �11�

Now, according to the stationary phase method, the �extrapo-
lated� transmitted and reflected phase times are given, re-
spectively, as �1�


p
t = ��

d	t

dE
�

E0

, �12�


p
r = ��

d	r

dE
�

E0

= ��
d	t

dE
�

E0

, �13�

where we used in these expressions the same central energy
E0 of the incident wave packet, which is justifiable by our
previous assumptions about the sharp concentration of the
initial wave packet around this energy �this corresponds to
the situation in which there is essentially no distortion or
reshaping of the transmitted wave, a condition claimed by
several authors as necessary to allow a physical meaning to
the group velocity �4,25��. The above expressions imply the
equality of the transmitted and the reflected phase times, as is
always the case for symmetric potentials �26�. From now on
we will refer to both these times simply as the phase time 
p.
Such a time corresponds to the �extrapolated� instant in
which the transmitted and reflected wave packet peak appear
at z=2a+ l and z=0, respectively.

Now, by using a general relation obtained by Winful et al.
�18,27�, we can determine the dwell time 
d, which is a mea-
sure of the time spent by the particle in the potential region,
without the distinction of whether it is finally reflected or
transmitted �28,29�. Such a relation, for symmetric poten-
tials, reads


d = 
p − 
i, �14�

where 
i is the self-interference delay, given by


i = −
m

�k2 Im�R� . �15�

The explicit expressions obtained for the phase and dwell
time from the above definitions are not particularly illumi-
nating and are presented in the Appendix. Here we will dis-
cuss their properties. The limit of one barrier �of width 2a� is
easily obtained by assuming l=0, and it agrees with the re-
sults of �15,16�. Also the nonrelativistic limit, obtained by
making mc2→� and V0�mc2, agrees with the results ob-
tained by �8�. In fact, we can verify these limits directly in
the expressions for the amplitudes and the transmission
phase above.

III. DISCUSSION AND CONCLUDING REMARKS

Of special interest for us is the limit of opaque barriers,
qa1, in which the phase and dwell times become


p =
2�

1 + �2�d�

dE
� =

2�

1 + �2

�k2 + q2�
k2

m

�q2 , �16�


d =
2�

�1 + �2�
m

�q2 , �17�

where we have used the result that in this limit 
i
=2� / �1+�2�m / ��k2�. From the above expressions it is clear
that both the phase and dwell times saturate in the opaque
limit, not depending either on the width of the barriers or on
the distance l between them. This demonstrates that the gen-
eralized Hartmann effect also emerges in the context of rela-
tivistic quantum mechanics. As a consequence, if we ex-
trapolate the concept of the group velocity into the potential
region, it will be given by vg
�2a+ l� /
p. This velocity can
be made arbitrarily large, allowing for superluminal group
velocities for sufficiently large barrier widths a, as we shall
see below.

Figure 2�a� shows the typical behavior of the phase and
dwell times in the domain of fully relativistic energies, where
we fixed all the relevant parameters, except the barrier width
a. We observe that for small values of the width a, both the
phase and dwell times are greater than the free and the light
times. As the barrier become thicker, both these times grow
slower �in fact, they can even decrease, depending on the
value of the other parameters, as is the case shown in the
figure� and they can become smaller than the free and the
light times. What is more interesting, the phase and dwell
times can become smaller than the light time even before the
saturated regime is obtained. So in the domain of fully rela-
tivistic energies the group velocity can be superluminal even
before arriving at the opaque limit. A similar behavior can be
observed also in the one barrier case �obtained by taking
l=0�. For comparison, we also showed the behavior of the
phase time calculated from Schrödinger equation. We see
that the nonrelativistic theory predicts a phase time of the
same order as the relativistic one, and sharing the same be-
havior, especially in what concerns the possibility of emerg-
ing superluminal group velocities before the saturation. Fig-
ure 2�b� shows the same plots for the energies in the
relativistic scales, but now with a greater difference between
the energy of the incident packet and the height of the bar-
rier. Figures 2�a� and 2�b� show that Dirac theory can predict
group velocities which can be smaller �Fig. 2�a�� or greater
�Fig. 2�b�� than those predicted by the Schrödinger theory,
each of these situations being determined by the specific
choice of values for the parameters, especially for the ener-
gies. These results are in agreement with those observed for
the single-barrier case in Ref. �16� and explain the origin of
the apparently contradictory claims of Krekora et al. �15�
and Leavens and Aers �21�, concerning whether the relativ-
istic theory predicts group velocities smaller or greater than
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those predicted by the nonrelativistic one. In Fig. 2�c� we can
check the complete agreement of the predictions from both
the relativistic and the nonrelativistic theories in the scale of
low �nonrelativistic� energies.

In Fig. 3 we plot the behavior of 
p and 
d for fixed a and
varying l. Figure 3�a� shows, as expected, a trend to linear
increase with l �except for several resonance peaks� as long
as a is not very large. That is, outside the opaque domain
both the dwell and phase times do not saturate with the
barrier separation l. The same behavior is observed for the
nonrelativistic time with the same values of the parameters
�not shown in the figure�. We can also observe the equality
between the dwell and phase times at resonance �R=0�, as
predicted by the relation �14�. Again we observe that the
phase time off-resonance can be smaller than the light time,
even before attaining the saturated regime, which implies
superluminal group velocities. As the barrier width increases,
the off-resonant phase and dwell times tend to saturate to
their values at the opaque limit, but still present the resonant
peaks, as we can observe in Fig. 3�b�. Finally, it is only when
a→� that both these times saturate in such a way that the
resonant peaks are no longer observed—the generalized
Hartmann effect. Therefore, the results of the relativistic
theory reinforce the conclusion by Winful �4� that the gener-
alized Hartmann effect is just an artifact resulting from tak-
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FIG. 2. �Color online� The phase and dwell times vs barrier

width a. We used the system of natural units, in which �=c=1. The

energies were expressed in units of the particle rest energy

m ��0.5 MeV for an electron, for example�. Accordingly, distances

and times are given in units of m−1. For reference we also show

the free time in which the peak of a free wave packet traverses

the region 0�z�2a+ l and the light time in which a free light

pulse traverses the same region. For comparison we plotted also

the nonrelativistic �NR� phase time obtained from the Schrödinger

equation �8�. The horizontal dashed lines indicate the corresponding

saturated times in the opaque limit. The first two plots correspond

to energies in the relativistic scale, while the last one concerns

nonrelativistic energies. In all these plots we take l=0.7. �a� E0

=1.8, V0=1.5; �b� E0=1.46, V0=2.19; �c� E0=1.01, V0=0.018 �in
this last plot the relativistic and the nonrelativistic phase times

coincide�.
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FIG. 3. �Color online� The phase and dwell times vs separation
l between the barriers. E0=1.8 and V0=1.5. �a� a=0.7. �b� a=3.0.
The horizontal dashed lines indicate the corresponding saturated
times in the opaque limit. We used the same �natural� system of
units as in Fig. 2. The peaks in both figures correspond to resonant
tunneling.
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ing the opaque limit before exploring the variation with l �for
an alternative argument, using the multiple-peak approach,
see �30��.

Let us now look more carefully into the situation charac-
terizing the generalized Hartman effect by evaluating the flux
of particles Jz=c�†�z� both in the region between the barri-
ers �as given by �III� and to the right of the potential for the
given energy E0. The solution of the stationary problem
gives us

C = cosh�qa� + i
�1 − �2�

2�
sinh�qa��eikaT ,

D = − i
�1 + �2�

2�
sinh�qa�eik�3a+2l�T ,

for the coefficients in �III, with T being the transmission
coefficient. From Eq. �6� it is plain that in the opaque limit
T�e−2qa, so that both C and D decay with barrier width as
e−qa. Therefore, we conclude that in the opaque limit qa
1, there is essentially no flux, hence no propagation of
particles in regions III and V. Accordingly, it follows that the
saturated times would be the same even if the second barrier
were absent �18�, similar to what happens in the nonrelativ-
istic theory �10�; in fact, expression �16� is identical to that
obtained for the relativistic case of a single barrier at the
opaque limit �see �15,16��. Thus, the condition for the gen-
eralized Hartman effect to occur is the condition of no trans-
mission, in which case it makes no sense to associate any
velocity with the tunneling process �4�.

On the other hand, it is possible to have situations in
which qa is large, but finite, such that there is still an appre-
ciable transmission �before the saturation regime� and the
associated group velocities during the tunneling are superlu-
minal. Notice that we have considered wave packets sharply
centered around a given energy in such a way that the trans-
mitted wave packet could be seen essentially as a �attenu-
ated� nondistorted version of the incident one, a feature that
is claimed by several authors as allowing one to attribute a
physical meaning to the group velocity �4,25�. Therefore, if
one maintains the interpretation that the group velocities are
propagation velocities, it would seem that relativity does not
forbid superluminal tunneling velocities in the single- or
double-barrier tunneling. However, it must be noticed that
while there is little doubt that the group velocity in the region
V �or region I, for that matter� has a physical meaning, su-
perluminal group velocities emerge when we extrapolate the
concept of group velocity to the region within the barriers.
But it is clear that inside the barriers the �evanescent� wave
packet undergoes great distortion, not sharing the same shape
as the incident or transmitted ones; in fact, within the barriers
the wave packet does not even have a peak that travels from
one boundary to the another �4,10,15�. Thus, despite the fact
that the group velocity has well-defined meaning for the in-
cident �before reflections� and transmitted regions, the ex-
trapolation of this concept to the region inside the barriers
cannot be justified, and consequently there is no justification
for associating this �extrapolated� group velocity with tunnel-
ing velocity.

In what concerns the dwell time, since it does does not
distinguish between the transmitted and reflected channels, it
is better interpreted as a cavity lifetime. However, it is im-
portant to notice that here, contrary to what happens for a
Fabry-Perot cavity �4,10�, the phase and dwell times are not
equal in the off-resonance case �see Figs. 2 and 3 and the
limits �16� and �17��. This prevents an immediate identifica-
tion of phase time as a cavity lifetime in the present scenario.

Summarizing, in this paper we have analyzed the relativ-
istic tunneling of a spin-1 /2 particle through two successive
electrostatic potential barriers and showed that the so-called
generalized Hartmann effect also occurs in the realm of rela-
tivistic quantum mechanics. In addition, we obtained that the
dwell time also saturates with the width of the barriers. We
demonstrated that the phase and dwell times can become
smaller than the light time �which implies superluminal
group velocities� even before the saturated regime is ob-
tained, and we observed that the group velocities predicted
by the relativistic theory can be smaller or greater than those
predicted by Schrödinger’s theory, depending on the values
of the parameters. We also showed that the phase and dwell
times show an almost linear increasing with the separation
between the barriers and tend to saturate only when the bar-
rier becomes extremely opaque. Finally, we discussed a pos-
sible interpretation of the results, favoring the argument that
the group velocity cannot be interpreted as a tunneling ve-
locity.

ACKNOWLEDGMENTS

J.T.L. thanks CNPq/Brazil for partial support �Grant No.
201183/2005-6 PDE� and also the Observatory of Complex
Systems of the University of Palermo for kind hospitality.

APPENDIX

In this appendix we list the explicit expressions for the
phase time 
p and the self-interference delay 
i. From Eqs.
�12� and �11� we obtain


p =
1

�c2��kl�
E

k2 −
1

k2q2

h1

�2 + �2� , �A1�

where we have defined

� 
 8�2 cosh�2qa� − 4�1 + �2�2 sin2�kl�sinh2�qa� ,

�A2�

� 
 4��1 − �2�sinh�2qa� + 2�1 + �2�2 sin�2kl�sinh2�qa� ,

�A3�

and
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h1 
 ��2�1 + �2���1 + �2�Eq2�2kl�sin�2kl� − 4�2mc2�k2 + q2�cos�2kl��sinh2�qa� − 4�2mc2�k2 + q2���1 + �2�

+ �3 − �2�cosh�2qa�� + k2�2qa��E − V0���1 + �2�2 cos�2kl� − �1 − 6�2 + �4��sinh�2qa��

+ ��− 4��1 − �2�k2�2qa��E − V0�cosh�2qa� + 2�1 + �2���1 + �2�Eq2�2kl�cos�2kl� + 4�2mc2�k2 + q2�sin�2kl��sinh2�qa�

+ �4��1 − 3�2�mc2�k2 + q2� − �1 + �2�2k2�2qa��E − V0�sin�2kl��sinh�2qa�� . �A4�

From Eqs. �6� and �7�, the self-interference delay, as defined in Eq. �15�, is given by


i =
m

�k2

�1 + �2�
4�3

h2

h3
, �A5�

with

h2 

1

2
��1 − �2�sin�2kl�sinh2�2qa� + �2 cos2�kl�sinh�4qa�

+ ��1 − �2�sin�2kl�sinh2�qa�cosh�2qa� + �1 − �2�2 sin2�kl�sinh2�qa�sinh�2qa� , �A6�

h3 

1

8�4 �8�4 cosh4�qa� + �1 + 6�4 + �8 − �1 − �4�2 cos�2kl��sinh4�qa�

+ �2��1 − �2�2 + �1 + �2�2 cos�2kl��sinh2�2qa� + 2��1 − �2��1 + �2�2 sin�2kl�sinh2�qa�sinh�2qa�� . �A7�

Finally, the dwell time is obtained from the phase time and the self-interference delay from Eq. �14�.
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