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Relativistic plane-wave Born theory and its application to electron-impact excitation
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An exact treatment of the relativistic plane-wave Born (RPWB) cross section for electron-impact excitation
is provided for an arbitrary atom or ion. This result represents an improvement over the cross section obtained
from the widely used Bethe high-energy theory developed in the 1930s. The results obtained from this RPWB
approach can be applied to a broad class of problems in fundamental electron-impact scattering theory. As an
illustration, the approach is used to approximate the high-€, partial-wave contribution in more accurate calcu-
lations of the excitation cross section, a problem which has been lacking a fully relativistic treatment for more

than 20 years.
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The Bethe high-energy theory (BHET) for electron scat-
tering from atoms and ions was put forth for nonrelativistic
[1] and relativistic [2] systems during the 1930s. This work,
along with a number of other topics, was summarized by
Bethe in a monumental 1933 Handbuch der Physik paper
[3]. The BHET approach begins with the standard, nonrela-
tivistic plane-wave Born (PWB) or relativistic plane-wave
Born (RPWB) expression for the cross section and employs a
series of approximations, valid in the high-energy limit, to
extract a remarkable amount of information from readily
available, fundamental atomic physics quantities. During the
intervening years this approach has been successfully applied
to a wide range of practical and fundamental problems. For
example, this approach was originally used in the determina-
tion of the stopping power of an arbitrary material from basic
atomic data [3]. More fundamental applications have in-
cluded a determination of the high-energy behavior of
electron-impact ionization cross sections for neutral atoms
[4], ions [5], and molecules [6].

A comprehensive review of the BHET has been written by
Inokuti [7], providing further insight into the approximations
used in this simple, yet powerful, method for obtaining so-
lutions to a variety of electron scattering problems in the
high-energy limit. This review is divided into a discussion of
both the nonrelativistic and relativistic theories originally
considered by Bethe and expanded upon by subsequent au-
thors. While improvements to, and exact treatments of, the
nonrelativistic theory are commonplace in the literature (see,
for example, [8,9]), the relativistic approach (i.e., the use of
plane waves that are four-vector solutions to the Dirac equa-
tion in free space) does not appear to have received much
attention; this omission is most likely due to the fact that the
relativistic approach is pertinent for heavy elements and rela-
tively large electron energies that are not as commonly en-
countered in typical research applications. Furthermore,
Bethe’s relativistic approach included an additional simplifi-
cation that was not germane to the nonrelativistic PWB
theory: the assumption that the speed and energy of the in-
cident and scattered electrons were equal eliminated the four-
vector dependence of the plane waves from the scattering
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matrix elements. This additional simplification resulted in
more tractable calculations, but further limited the range of
validity of the relativistic BHET.

The purpose of the present work is to provide an exact
treatment of the RPWB approach to electron-impact excita-
tion of an arbitrary atom or ion. This formulation provides a
framework for determining the RPWB excitation cross sec-
tion for a variety of scattering problems of interest including
excitations between fine-structure levels [10] or magnetic
sublevels [11], as well as integrated or (angular) differential
cross sections. In order to demonstrate the usefulness of this
formulation, the expression for the integrated RPWB cross
section for impact excitation between fine-structure levels is
applied to the long-standing problem of computing a fully
relativistic approximation of the high-€ (or “top-up”) contri-
bution [12] to a partial-wave summation of the excitation
cross section. The example is presented within the relativistic
distorted-wave (RDW) framework, but this method can also
be applied to any higher-order theory that requires an accu-
rate estimate of the top-up contribution, such as the relativ-
istic R-matrix approach [13-15]. Values of the RDW cross
sections are provided for He-like iron ions, which demon-
strate the correct high-energy behavior when the RPWB
top-up contribution is employed, as compared to the behav-
ior obtained from previously available, quasirelativistic treat-
ments.

In order to provide a concise description of our approach
to obtaining the exact RPWB cross section for electron-
impact excitation, we chose to work within the framework of
the exact, nonrelativistic PWB treatment provided by Cowan
[9]. The reader should consult that work for details that are
not central to the relativistic description provided here.
Working within this context also makes evident those terms
which arise from strictly relativistic considerations. The con-
vention will be to use Rydberg atomic units throughout, as in
[9], except that relativistic expressions will be provided in an
explicit form for clarity. The relevant RPWB, Coulomb ma-
trix element for excitation between an initial magnetic sub-
level |yJM) and final sublevel |y'J'M’) of an atom or ion
with N bound electrons is given by

N
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a = |,y/J/M/>|eik/-r’mS/> (2)

a= |yJM)|eik",ms),

are direct products between the appropriate magnetic sub-
level and a Dirac plane wave. The values m, and m_ repre-
sent the spin magnetic quantum numbers of the incident and
scattered electrons, respectively, and have no analog in the
nonrelativistic case. (In the present work, we consider only
the Coulomb interaction between the bound and free elec-
trons. Bethe’s original relativistic approach also considered
the effect of exchange of a transverse photon, represented by
the Mgller or Breit interactions [16], which becomes impor-
tant for very high free- and bound-electron energies.)

While the matrix element in Eq. (1) is very similar in
form to the nonrelativistic result, there are some key differ-
ences. First, the Coulomb operator is really a 4 X 4 diagonal
matrix. Second, the bound and continuum wave functions
represent four-component Dirac spinors. Third, the plane
waves have a well-defined value for the spin magnetic quan-
tum numbers m, and m;, which does not occur in the non-
relativistic case. Employing the relation p=#ik, the Dirac
plane waves can be written as [17]

X'
d’k,ms(r) = U(k’ms)eik»r =N,| co-p . eik-r, (3)
E +mc?
where o are the usual 2 X2 Pauli matrices and x"s are the
eigenvectors of o, [17]. A value of Ny=\(E+mc?)/2E,
T o -

where E=+/(pc)?+(mc?)? is the total energy, has been chosen
such that the plane waves are orthonormal according to
¢km ., mr—UT(k my)U(k,m))= On '~ More generally, when
k' #k the relativistic plane waves satisfy the more compre-

hensive orthonormality condition

(e m|e® " m!y = 2w U (k,m) Uk’ ,m) Sk — k'),

(4)

where

Ut (k,m )UK’ ,my) =NkN;i[<)("S|)(”;>

c2<0-p)("5|0-p’%"~5>] )
(E+mcH)(E +me?) |

Equation (5) represents the scalar product between the
four-vector amplitudes of the incident and scattered plane
waves, which has no analog in the nonrelativistic case. The
term on the far right that contains the two dot products re-
sults from the small components of the incident and scattered
plane waves. It is well known that the small component dif-
fers from the large component by a factor of O(v/c), where
v=pc?/E is the speed of the electron. Therefore, in the non-
relativistic limit the term containing the dot products can be
ignored, the normalization constants N; and N, can be ap-
proximated as 1, and the scalar product in Eq. (5) can be set
to 1, provided that m=my, or to 0 if m, # m,.

In the high-energy limit considered by Bethe k' =k and
the scalar product can also be set to 1 due to the orthonor-
malization condition, again provided that m,=m; (otherwise
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the result is zero). If the spin polarization for the incident and
scattered electrons is not of interest, then the resulting scalar
product obtained after performing the appropriate averaging
and sums over the spin quantum numbers (see details below)
can also be approximated as 1 in both the nonrelativistic and
high-energy limits. Approximations of this latter type have
been used, for example, in Eq. (52.23) of Ref. [3] and Eq.
(13) of Ref. [18].

To determine an expression for the RPWB cross section
for electron-impact excitation, the manipulation of the matrix
element in Eq. (1) can proceed similarly to that described by
Cowan. In particular, the square of the matrix element can be
written in the form

6

|Haa’|2 41-(4 |U (k m )U(k, m )|2

iK-r YN
X <’}/JM|E elK m|‘yJM> . (6)

where K=k'-k is the momentum transfer. The above ex-
pression is formally identical to its nonrelativistic counter-
part, except for the extra factor containing the square of the
scalar product of the four-vector amplitudes. In the present
work, we wish to determine an expression for the excitation
cross section between fine-structure levels (yJ—y'J’).
Therefore, Eq. (6) must be averaged over M and summed
over M' values. The relevant double sum can be performed
in a manner that is formally identical to that applied in the
nonrelativistic case (since the scalar product is independent
of M and M’), and the reader is referred to [9] for details.

If the spin orientation of the incident and scattered elec-
trons is not of interest (i.e., the free electrons are unpolar-
ized), an averaging over m, and summing over m, must also
be performed. The manipulations apply only to the square of
the scalar product in Eq. (6). A convenient expression that is
suitable for computational purposes can be obtained after
repeated applications of the relationship

(o-p)o-p')=p-p'+io-(pXp') (7)

or via applications of the more elegant trace theorems asso-
ciated with the Dirac matrices (e.g., [17]). We present the
final result in the compact form

- 2 |U (k,m,) Uk’ ,m! )|2

2 2 4
= (NkN;V[(l + %p .,,/) + g(p ><p')2}, (8)

where D= (E+mc?)(E' +mc?).

Equation (8) is a key result of this work as it normally
appears in the electron scattering literature for the simpler
case of Mott (elastic) scattering for which E=E’ and p=p’
(see, for example, [17,19,20]). This expression clearly dis-
plays the additional angular dependence that will eventually
appear in the (angular) differential cross section due to rela-
tivistic effects since p-p’=pp’ cos 6 and |p Xp'|=pp’ sin 6,
where 6 is the angle between the incident and scattered mo-
mentum vectors. From Eq. (8) it is easy to see that, in the
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limit of small velocities, this expression reduces to 1, as
previously stated. With a modicum of manipulation it can be
shown that Eq. (8) also reduces to 1 in the high-energy
(p’ —p) limit.

Before discussing excitation cross sections it is conve-
nient to first define the relativistic generalized oscillator
strength (GOS) according to

AE .
e <ny|2 el""mly'J'M'>

MM’
AE 2
:FE (2t+ l)<‘y] Y’J’> s
t
)

where g=2J+1 is the statistical weight of the level yJ and
AE is the energy associated with the transition yJ— y'J'.
This expression agrees formally with the nonrelativistic re-
sult except that the reduced matrix element is treated relativ-
istically, so that the small component of the target wave
functions is also considered. As in the nonrelativistic case,
Eq. (9) has the desired property that it reduces to the length
form of the relativistic dipole oscillator strength, gf;;:, in the
limit K— 0.

Moving along to a determination of the excitation cross
section, the relativistic angular differential cross section can
be written as

gfi(K) = ?

> jdKr,)CY

1 [ EE"\k'

Lo ()= —=\| == | = |Hao, 10
@ 16n3<m2c4)k| (10)

where a=|yJM;m,), a'=|y'J'M';m!), |Huu|* is the

squared matrix element appearing in Eq. (6), and the cross

section is in units of 7ag/sr. The substitution

v (e "

k m2c*) k

has been performed in order to take into account the kine-
matic effect due to the relativistic relationship between the
velocity and the momentum [7], v=pc?/E, for the incident
and scattered electrons.

The integrated cross section is given by

O, = 27rf 1,,/(6)sin 646, (12)
0

and the integration over 6 can be converted to an integration
over K using standard techniques. The total cross section
between fine-structure levels, Q;; (in units of Waé), is then
obtained by summing Q,, over M', m, and averaging over
M, my. Substituting the results from Egs. (8) and (9) and
employing the relativistic expression for the (dimensionless)

collision strength [10] €, yields

Kmﬂx

Fro(K)gf(K)d(In K),

min

8
Oyi(e) =k*gQyy(e) = Ef

K,
(13)

where e=E—mc? is the kinetic energy of the incident elec-
tron, AE is expressed in Rydbergs, k is in atomic units, and
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the relativistic limits of integration are obtained from stan-
dard relationships [7]. Formally, the only difference between
Eq. (13) above and the usual nonrelativistic PWB cross sec-
tion is the appearance of the relativistic correction factor
F,i(K) which consists of the product of Eq. (8) and the right-
hand side of Eq. (11), expressed as a function of K.

Equation (13) is the main result of this work. It presents
an exact expression for the RPWB excitation cross section
for an arbitrary fine-structure transition in an atom or ion. An
evaluation of this expression simply requires numerical val-
ues for the relativistic GOS and transition energy, both of
which can be readily obtained from a relativistic atomic
structure code (see, for example, [21]), and also a numerical
integration over the appropriate range of K values.

For comparison, we note that the BHET cross section can
be obtained from Eq. (13) with the two approximations

2
Full) = e fB) = fie (19)
mec

where f;;: is the dipole oscillator strength, and also a deter-
mination of a suitable cutoff value to replace K,,. Some
obvious shortcomings of this approach are that it holds only
for dipole-allowed transitions, the incident electron energy
must be large enough so that the first approximation in Eq.
(14) is valid, and a value for the cutoff replacement for K,
must be determined, which is not straightforward in a gen-
eral sense. On the other hand, an evaluation of Eq. (13) is
straightforward and the result is an exact value of the RPWB
excitation cross section.

As an application of Eq. (13), we consider its use in ap-
proximating the high-€ contribution in a RDW calculation of
the collision strength. In practice, the infinite sum over inci-
dent and scattered partial-wave contributions (denoted by ¢
and €', respectively) to the RDW collision strength must be
truncated at finite values (denoted by €., €,,,)- The re-
mainder of that sum (the top-up contribution) can be ap-
proximated by the corresponding RPWB partial-wave contri-
bution. With this prescription the RDW collision strength can
be computed according to the Kummer transformation
[22,23]

(max’(r’nax
QRPW < ORPWE 3
£,6'=0

@Y - Q). (1)

where the values for €, and ¢, are chosen such that the

distorted waves can be reasonably approximated by plane
waves beyond this point. For convenience the JJ' subscripts
and & dependences have been omitted from Eq. (15), but
they are implied with each occurrence of ().

Nonrelativistic [23] and quasirelativistic (i.e., the bound
electrons are treated relativistically, but the free electrons are
treated nonrelativistically) [24] forms of Eq. (15) have been
applied to the calculation of distorted-wave collision
strengths with good success for relatively low-energy colli-
sions. The fully relativistic version has been implemented in
the RDW code described in [10] and the resulting collision
strength for the (152s) ;- — (152p,,),=; transition in He-like
iron is presented in Fig. 1. For this calculation, values of
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FIG. 1. (Color online) Collision strengths obtained via
different top-up methods as a function of impact energy for the
(152s) ;=1 — (152py/p) j=; transition in He-like iron. Solid curve: rela-
tivistic (Kummer) top-up contribution from Eq. (15). Dotted curve:
quasirelativistic, Coulomb-Bethe top-up contribution [10]. Dot~
dashed curve: quasirelativistic, Kummer top-up contribution [24].
The RPWB collision strength obtained from Eq. (13) is also pro-
vided (dashed curve).
€max=73 and €], =69 were used at the highest impact ener-
gies in Eq. (15). The resulting RDW collision strength (la-
beled “KUM”) merges nicely into the RPWB result at high
energies, as expected. For comparison, the RDW collision
strength obtained via two traditional quasirelativistic (QR)
top-up methods is also provided: the QR Coulomb-Bethe
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(QRCBe) [10] and the QR Kummer (QRKUM) [24] ap-
proaches. As can be seen from the figure, the two QR meth-
ods start to separate from the Kummer result at an energy of
~5 keV and develop different trends by 50 keV. A strong
divergence continues beyond this energy, but the plot is ter-
minated at that point because the exchange of a transverse
photon, mentioned previously in connection with Eq. (1), is
expected to become important beyond this range. However,
within the range of validity, Eq. (15) provides a convenient
prescription for obtaining an accurate estimate of the top-up
contribution for any transition that is described by a nonzero
RPWB collision strength.

In conclusion, an exact expression has been provided for
the relativistic plane-wave Born collision strength for
electron-impact excitation between arbitrary fine-structure
levels. The result was applied to the problem of computing
the top-up contribution to RDW collision strengths for He-
like iron ions, producing the correct behavior in the high-
energy region. This example demonstrates an improvement
in the accuracy of atomic data for heavier systems that are
employed in applications such as astrophysical modeling and
line diagnostics. The development and application of the
RPWB approach for other fundamental excitation cross sec-
tions, such as angular-differential and magnetic-sublevel re-
sults, is planned for future investigations.
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