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We model the predissociation of H3 in the electronic state corresponding to the upper sheet of the conically
intersecting 1 2A� and 2 2A� states, and we show that product-state rovibrational distributions are strongly
influenced by the geometric phase. Similarly, the differences in the product-state energy distributions in recent
three-body dissociation experiments for the 2s , 2A1� and 2p , 2A2� states of H3 are shown to result from the
presence of the geometric phase in this system, and thus provide experimental evidence of the influence of this
phase in a molecular dynamical process.
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Rydberg states of H3, which play an important role in the
dissociative recombination of H3

+ �1�, were first observed by
Herzberg �2� in the visible light emission spectra induced by
electric discharges through H2. These spectra were under-
stood on the basis of a model involving an active electron
interacting with the H3

+ ionic core �3–6�. In this model, the
H3 states are labeled by the principal quantum number n and
the orbital angular momentum L of the active electron, in
addition to the symmetry of the state with respect to permu-
tation of the identical H nuclei and parity with respect to
inversion of all coordinates. These Rydberg states are all
embedded in the continuum and predissociate with lifetimes
shorter than 1 �s. Their predissociation has been the subject
of intense experimental studies through coincidence mea-
surements of the fragments, for two-body �7,8� as well as
three-body �8–12� dissociation.

The two lowest of these states labeled 2p , 2E� display a
Jahn-Teller effect: they are degenerate for equilateral trian-
gular configurations of the nuclei at which the corresponding
adiabatic sheets 1 2A� and 2 2A� conically intersect �13�. The
2 2A� upper sheet can support quasibound states �cone states�
�14� which predissociate by vibronic couplings to the lower
sheet. The presence of the conical intersection induces a geo-
metric phase, a particular case of Berry’s phase �15�, on the
adiabatic electronic wave functions, namely, a change of
their signs when performing a closed loop around the conical
intersection �16� in configuration space. Whereas the impact
of this phase has been observed on several molecular spectra
�Ref. �17� and references therein�, there is up to now no
evidence of the effect of this phase on dynamical processes.
For instance, calculations predict limited effects on the H
+H2 reaction differential cross sections �18�, which still
await experimental confirmation. The first aim of the present
Rapid Communication is to show that this phase can impact
significantly product-state distributions of H3 and D3 predis-
sociation, from their 2 2A� cone states for which accurate
numerical simulations can be performed. The second aim of
this Rapid Communication is to show that the recent mea-

surements of product-state energy distributions in three-body
dissociation experiments �11,12� for the 2s , 2A1� and 2p , 2A2�
states of H3 and D3 can be interpreted as being due to the
presence of the geometric phase in this system.

We now present our model for the two-body predissocia-
tion of the 2 2A� cone states. Nuclear spin does not play a
significant role in the physical processes considered here,
and the electronuclear wave functions used do not include it.
They are called rovibronic wave functions because they in-
clude electronic, vibrational, and rotational contributions. We
use the DSP diabatic electronic potential energy surfaces
�19,20�, designed to be particularly accurate in the vicinity of
the conical intersection. In the strong-interaction region
where reaction takes place, we use row-orthonormal hyper-
spherical coordinates �21� to describe the system of three
atoms in a body-fixed frame �X ,Y ,Z� tied to the principal
axes of inertia of the system. In the weak-interaction region,
we use symmetrized hyperspherical coordinates �21�, and in
the asymptotic region, Jacobi coordinates, to describe the
two fragments. The scattering wave function is obtained by
an expansion in surface functions, which are solutions of the
fixed hyperradius bound-state problem solved using a hyper-
spherical harmonics basis set �22,23�. The scattering and
Smith lifetime �24� matrices are extracted from the
asymptotic form of the wave function. In the vicinity of a
resonance, one eigenvalue of the Smith lifetime matrix is a
Lorentzian, whose maximum gives the lifetime of the reso-
nance, and the corresponding eigenvector provides the
product-state distribution of the resonance decay. We per-
form two sets of calculations, both for zero total angular
momentum. The first involves expansion of the rovibronic
wave function in the pair of coupled electronic diabatic states
of symmetry 2p , 2E�. In order to extract the electronically
nonadiabatic effects, we compare it with a second set per-
formed with the single adiabatic 1 2A� ground state including
the geometric phase �25�. We consider rovibronic wave func-
tions belonging to the A1 or A2 irreducible representation of
the permutation group P3 of the identical nuclei.

Smith lifetime matrices for calculation of the pair of
coupled diabatic states differ from the single adiabatic state
results mainly by the addition of Lorentzian-shaped eigen-*bruno.lepetit@irsamc.ups-tlse.fr
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values near and above 4 eV. These extra eigenvalues are
shown as a function of energy for both A1 and A2 symmetries
of the rovibronic wave function in Fig. 1. There are two
maxima near 4.41 and 4.62 eV for A1 symmetry, and 4.49
and 4.70 eV for A2 symmetry. They correspond to reso-
nances with lifetimes close to 15 fs for A1 symmetry and
10 fs for A2 symmetry. Resonances with similar lifetimes
have been computed in Refs. �26,27� and detected experi-
mentally in Ref. �28�.

Figure 2 shows the product-state distributions after decay
of the A1 and A2 resonances at 4.41 and 4.49 eV, respec-
tively. In both cases, H+H2 decay products have significant
internal energy: for the A1 symmetry, 41% of the available
energy goes into rovibrational energy, and 51% for the A2
case. Thus, these resonances decay exclusively into excited
rovibrational states and were not observed in previously
computed reactive scattering transition probabilities and
cross sections �29,30�, which were performed for low exci-
tation either of the reactants or of the products. In our reac-
tion probabilities, these resonances display significant inten-
sities only for transitions between simultaneously excited
reactants and products.

Internal energy partitioning between vibration and rota-
tion is very different for A1 and A2 symmetries: 18% of the
internal energy goes into rotation for the A1 symmetry, in
contrast with 50% for the A2 symmetry. This reflects itself in
the product state distributions of Fig. 2, which have a maxi-
mum for low rotational quantum number j in the A1 symme-
try, but for j near 15 for the A2 case.

Interpretation of these results requires a knowledge of the
nuclear permutation symmetry of the vibrational wave func-
tion, which is strongly influenced by the presence of the
geometric phase. This phase appears for a pseudorotation D
of the system, starting at an obtuse �principal vertex angle
larger than 60°� isosceles triangular configuration, formed by
the three atoms 1–3, atom 1 being at the principal vertex. D
is defined to allow atom 1 to move on a circle centered on
the vertex of the equilateral triangular configuration and fi-
nally to return to its initial position. Application of D keeps
the rovibronic wave function unchanged, but the signs of its
electronic, vibrational, or rotational parts may �antiperiodic
boundary condition� or may not �periodic boundary condi-
tion� change. For instance, D induces a sign change in the

adiabatic 1 2A� and 2 2A� electronic wave functions �16�, but
not in the 2s , 2A1� and 2p , 2A2� ones. Applying D also induces
a flip in the orientation of two of the principal axes of inertia
�21�, which may induce a sign change of the rotational wave
function, according to the value of the total angular momen-
tum. For periodic boundary conditions, the electronic, vibra-
tional, or rotational wave functions also have an A1 or A2
symmetry. A1 vibrational wave functions have no nodal sur-
face prescribed by nuclear permutation symmetry, whereas
A2 vibrational wave functions have nodal surfaces imposed
by nuclear permutation symmetry for both acute �principal
vertex angle smaller than 60°� and obtuse isosceles configu-
rations. For the antiperiodic boundary condition case, we use
the irreducible representations of the double group associated

to P3 �31�. We call Ā1 �Ā2� the one-dimensional irreducible
representations which are symmetric �antisymmetric� with
respect to the permutation of atoms 2 and 3. The 1 2A� and

2 2A� adiabatic electronic wave functions have Ā1 and Ā2

permutational symmetries, respectively. Ā1 �Ā2� vibrational
wave functions have nodal planes for obtuse �acute� isosceles
configurations and maxima for acute �obtuse� configurations,

respectively �21,32�. Loosely speaking, Ā1 and Ā2 vibrational
wave functions therefore have dominant acute and obtuse
isosceles characters, respectively.

The energies of the two lowest bound states on the 2 2A�
upper electronic sheet are shown in Fig. 1 for A1 and A2
rovibronic symmetries. The corresponding vibrational wave
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FIG. 1. �Color online� Smith lifetimes for A1 and A2 rovibronic
wave functions. The vertical arrows indicate the energies of the
bound states on the upper electronic potential energy surface, when
coupling to the ground electronic state is neglected.
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FIG. 2. �Color online� Population of the different H+H2�v , j�
channels in the decay of the A1 and A2 resonances at 4.41 and
4.49 eV, respectively.
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functions have Ā2 and Ā1 symmetries �see Table I� and a
vibrational angular momentum l=3/2 �14�. There is a clear
correlation between resonance and bound-state energies,
with a small shift of the order of 0.05 eV. This correlation
allows us to characterize the resonances as quasibound cone
states predissociating through electronic nonadiabatic cou-
plings to the lower sheet. These resonances are examples of
Slonczewski excited states �33�, stabilized by the vibrational
angular momentum l=3/2 which creates a pseudocentrifugal
barrier pushing the vibrational wave function away from the
conical intersection region where electronic nonadiabatic
coupling is strongest. The final continuum A1 and A2 rovi-
bronic wave functions in the ground 1 2A�electronic state

have Ā1 and Ā2 vibrational symmetries �Table I�, which have,
respectively, acute and obtuse isosceles dominant characters.
For near acute isosceles configurations, the decay mecha-
nism is an abstraction one, in which one atom departs from
the two others without providing significant rotational exci-
tation. A1 resonances thus decay into products with little ro-
tational excitation, in agreement with the result of Fig. 2. On

the contrary, for Ā2 obtuse isosceles vibrational wave func-
tions, the decay mechanism is an insertion one, where the
atom initially close to the principal vertex of the isosceles
triangle is pushed toward the two others. This motion pro-
vides a bending excitation of the triatom, which turns into
rotational energy as the system departs from isosceles con-
figurations, which correspond to an electronic potential crest
and a saddle point for collinear geometries. Consequently,
fragments arising from A2 resonances have significant rota-
tional excitation, as shown in Fig. 2. The strong differences
in product-state distributions are therefore the direct conse-
quence of the nodal structure imposed to the vibrational
wave function by the geometric phase. A similar nodal struc-
ture analysis is used in Ref. �32� to explain the impact of the
geometric phase on the cyclic-N3 vibrational spectra.

Similar geometric phase effects are at play in recent co-
incidence measurements of the energy of the three escaping
hydrogens �11,12� after predissociation of various H3 Ryd-
berg states. For the predissociation from the 2s , 2A1� state in
its ground bending mode, most of the available energy is

equally shared by two of the three atoms. This corresponds
to three lobes with maxima for obtuse isosceles configura-
tions on the Dalitz plots of Refs. �11,12�. Configurations with
equal sharing of the energy between the three atoms have a
low probability of occurrence which gives a minimum at the
center of the Dalitz plot. The situation is opposite for predis-
sociation from the 2p , 2A2� state in its ground bending mode:
equal sharing of energy between the three atoms now has a
high occurrence probability �maximum at the center of the
Dalitz plots �11,12��. Configurations where one atom carries
most of the energy also have a high probability of occurrence
and produce secondary lobes with maxima for acute isosce-
les configurations on the Dalitz plots. These systematic ef-
fects do not depend on the choice of the symmetric stretch
excitation of the predissociation state and they are equally
valid for hydrogen and deuterium.

Our interpretation of these experimental results relies on
the identification of the symmetry of the vibrational part of
the rovibronic wave function. In the case of Ref. �12�, the
predissociating 2s , 2A1� and 2p , 2A2� states are populated by
laser excitation of the 2p , 2A2��l=0, N=0, K=0� metastable
state followed by a radiative cascade. N is the total angular
momentum of the system and K its projection on the Z axis
perpendicular to the molecular plane. The initial metastable
rovibronic wave function has an A2 symmetry �vibrational
and rotational contributions are A1 and the electronic part is
A2�. The rovibronic permutation symmetry A2 is conserved
in the radiative processes, and Table I gives the symmetries
of the resulting 2s , 2A1�and 2p , 2A2� states, involving three
photons and two-photon radiative cascades, respectively
�34�.

For both initial states, predissociation occurs mainly on

the excited 2 2A� electronic state, which has A2
¯ symmetry.

Indeed, the electronic nonadiabatic couplings of the 2s , 2A1�
and 2p , 2A2� states to the upper sheet 2 2A� are larger than
those to the lower 1 2A� one �35�. The vibrational and rota-
tional symmetries of the final rovibronic wave functions are
given in Table I. The 2s , 2A1��l=0; N=1,3; K=0� state decays
through vibrational predissociation: its rotational part is un-
affected by this decay mechanism; the final vibronic wave
function is therefore A1 like the initial one, and the final

TABLE I. Symmetries of the electronic, vibrational, and rotational parts of the rovibronic wave functions
in the predissociation of 2 2A� �first pair of rows�, 2p , 2A2� �second pair�, and 2s , 2A1� �third pair� states. The
first row of each pair corresponds to the symmetries of the quasibound initial state and the second row to
those of the final continuum state. N is the total angular momentum, K its projection on the axis perpendicular
to the molecular plane, and l the vibrational angular momentum. Rovibronic symmetries are the products of
electronic, vibrational, and rotational symmetries.

Electronic Vibrational Rotational Rovibronic

2 2A��l=3/2, N=0, K=0� Ā2 Ā2 / Ā1
A1 A1 /A2

1 2A��N=0, K=0� Ā1 Ā1 / Ā2
A1 A1 /A2

2p , 2A2��l=0; N=0,2; K=0� A2 A1 A1 A2

2 2A��N=2; K= ±1� Ā2
A1 A1̄

A2

2s , 2A1��l=0; N=1,3; K=0� A1 A1 A2 A2

2 2A��N=1,3; K=0� Ā2 Ā2
A2 A2
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electronic and vibrational wave functions are both A2
¯ . The

final vibrational wave function therefore has a dominant ob-
tuse isosceles character, giving maxima on the Dalitz plots of
Ref. �12� for these configurations, and nodal lines for acute
isosceles configurations. These nodal lines intersect at the
center of the figure, where the Dalitz plot has a minimum.
The 2p , 2A2��l=0; N=0,2; K=0� states decay through rota-
tional predissociation, which corresponds to a Hamiltonian
coupling term of the form NXLX+NYLY involving total and
electronic angular momenta. The symmetry of the vibrational
wave function is kept untouched in the process. The geomet-
ric phase that appears in the electronic part of the wave func-
tion in the transition from the 2p , 2A2� state to the 2 2A� one is
canceled by a similar one in the rotational part of the wave
function �Wigner rotation functions with K= ±1�. The disso-

ciative wave function therefore has an electronic part with A2
¯

symmetry, a rotational part with A1
¯ symmetry, and a vibra-

tional one with A1 symmetry. Having no nodal line imposed
by symmetry, the vibrational wave function has significant
amplitude for equilateral triangular configurations. This cor-
responds to the maximum for equal sharing of the momen-
tum observed at the center of the 2p , 2A2� Dalitz plots. The
lobes for acute isosceles configurations on the Dalitz plots
are also compatible with the A1 vibrational symmetry. The

strong differences between the 2p , 2A2� and 2s , 2A1� Dalitz
plots are therefore a direct manifestation of the different
symmetries in the two cases, and in particular of the geomet-
ric phase which shows up in the final vibrational wave func-
tion for the 2s , 2A1� case.

In this Rapid Communication, we have considered the
electronic predissociation of the cone states supported by the
2 2A� electronic state. These states decay to highly excited
vibrational and rotational states of H2, and appear as broad
resonances in H+H2 transition probabilities. The geometric
phase has a strong effect on predissociation product-state dis-
tributions. Similar symmetry effects are at play in the three-
body predissociation of the 2s , 2A1� and 2p , 2A2� states. The
differences between 2s , 2A1� and 2p , 2A2� Dalitz plots are pri-
marily due to the presence of the geometric phase in the
vibrational function for the 2s , 2A1� case and thus provide
experimental evidence of the effect of the geometric phase in
a molecular dynamical process.
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