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Investigations of Ra* properties to test possibilities for new optical-frequency standards
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The present work tests the suitability of the narrow transitions 7s S| n—6d 2D3/2 and 7s S, n—6d D, o in
Ra* for optical frequency standard studies. Our calculations of the lifetimes of the metastable 6d states using
the relativistic coupled-cluster theory suggest that they are sufficiently long for Ra* to be considered as a
potential candidate for an atomic clock. This is further corroborated by our studies of the hyperfine interac-
tions, dipole and quadrupole polarizabilities, and quadrupole moments of the appropriate states of this system.
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Accurate time and frequency measurements are crucial
for the advancement of many fields of science and technol-
ogy [1]. This has led to a number of searches to find candi-
dates for optical frequency standards. The current frequency
standard is based on the ground-state hyperfine transition in
atomic cesium and has a quality factor (Q) of 10" [2].
Atomic spectral lines with high Q are generally interesting
for standards, however, good control over systematic line
shifts will be essential. As a result of the remarkable ad-
vances in the field of ion trapping and laser cooling, single
ions such as Hg* [3], In* [4], Ca* [5], Sr* [6], Yb* [7], Cd*
[8], and Ba* [9] are particularly interesting as they can be
localized using their electric charge rather than light forces,
which is necessary for atom trapping. Very accurate mea-
surements have been performed on Hg* and Sr*, where Q
exceeds 10'7. Some of the major systematic errors associated
with the clock frequency are the Stark effect, the Zeeman
effect, and quadrupole shifts due to stray electric fields in the
ion trap [10]. These errors can be estimated from high pre-
cision theoretical studies of hyperfine structure constants, po-
larizabilities, and quadrupole moments of the appropriate
atomic states. Indeed, studies of these quantities are also es-
sential for parity nonconservation (PNC) studies [11,12].
Some of the above-mentioned errors can be eliminated by
considering the clock transition between suitable hyperfine
states [3].

An experiment is in progress at KVI to search for a suit-
able optical frequency standard by measuring the frequency
of either 7s 2S,,—6d °D,,, or 7s 2S,,—6d *Ds, transi-
tions in Ra* for which an accuracy of one part in 10'® ap-
pears possible. A similar experiment is also being planned at
TACS [13]. In this paper, we report our theoretical studies on
the feasibility of these transitions for the optical frequency
studies in Ra*. In the case of Ba* it has been pointed out that
PNC and optical frequency standards experiments share
many features in common [9]. The techniques used in the
Ba® experiments can be extended to Ra* as the electronic
structures of the two ions are similar. However, Ra* has one
important advantage: the low-lying transition wavelengths
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[see Fig. 1(a)] of this ion are in the optical regime, making
them more easily accessible than their counterparts in Ba*.
Although it appears that these frequencies can be measured
very precisely using modern spectroscopic techniques, it is,
however, necessary to determine which transition is the most
suitable for an optical frequency standard.

First of all, one must determine which of the isotopes of
Ra™ merit consideration for optical clock studies. In this con-
text, it is worthwhile to note that only ***Ra and **’Ra have
half-lives of a few days (~10 days) and these isotopes are
therefore obvious choices. However, they have different
nuclear spins (I’s); the former has I=3/2 whereas the latter
has 7=1/2 and this results in different hyperfine splittings.
One has to take into account the various systematic errors
while considering both these isotopes. It is possible to elimi-
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FIG. 1. (Color online) Schematic diagram of energy levels of
Ra* with transitions for possible optical frequency standards.
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nate the quadrupole Stark shift by considering the transition
between the hyperfine (F) states such as |6s(J=1/2),
1=3/2;F=2)—|5d(J=3/2),I1=3/2;F=0) transition [see
Fig. 1(b)] for the frequency standard, although knowledge of
the hyperfine structure constants and the polarizabilities are
still required for these experiments. It is necessary to study
the hyperfine structure constants, lifetimes, and a few other
spectroscopic quantities for the 7s and 6d states of this sys-
tem in order to assess the suitability of the proposed clock
transitions.

Electron correlation and relativistic effects must be treated
accurately for Ra*. Relativistic coupled-cluster (RCC)
theory: a size-consistent, size-extensive, and an all order per-
turbation method is well suited for this purpose [14]. It has
been successfully applied to determine accurately certain
ground and excited states properties of Sr* [15] and Ba* [16].
We employ the same method in the present study to obtain
accurate results for Ra*. The presence of the nonlinear terms
in this method makes it challenging to obtain the ground and
excited state wave functions for a large system such as Ra*.
We had observed earlier that these effects are important for
accurate studies [17] in other heavy systems. In order to
obtain the wave functions for Ra*, we solve the RCC equa-
tions considering single, double, and leading triple excita-
tions [CCSD(T) method]. This involves the determination of
107 cluster amplitudes self-consistently. This is one of the
largest computations to date for obtaining the wave functions
of an atomic system.

The starting point of our work is the relativistic generali-
zation of the valence universal coupled-cluster (CC) theory
introduced by Mukherjee et al. [18] which was put later in a
more compact form by Lindgren [19]. In this approach, the
atomic wave function |W,) for a single valence (v) open-
shell system is expressed as

(W, =e"{1+S,}P,), (1)

where |®,) is the reference state constructed out of the
Dirac-Fock (DF) orbitals of the closed-shell system (|®)) by
appending the valence electron orbital. Here 7" and S, are the
excitation operators from the core and valence-core sectors
(for example, see Refs. [15,17] for the second quantization
representations of these operators and equations to obtain
their amplitudes). The single particle orbitals in the present
calculations are linear combinations of Gaussian type func-
tions [20].

The transition matrix element of a hermitian operator (O)
corresponding to the initial state |¥;) and the final state |¥ )
can be expressed using the RCC method as

(wlolwy (@ {1+S}0{1+S5}|®)
V(W W W) NN

<0>if:

b}

2)

. define O=e'0Oe’  and NU=((1>U|eTTeT
+STeT TS, | ®,) for the valence electron v. We calculate the
above expression using the procedure followed in the earlier
works [15-17]. The expectation values are determined by
considering the special condition i=f.

where we
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TABLE 1. Transition amplitudes (in a.u.) due to M1 and E2
transitions in both length and velocity gauges. Length gauge results
of the E2 amplitudes along with M1 amplitudes are considered for
the determination of lifetimes.

Transition Ofi,-

states (a.u.) 01;’2 ; Lifetime
f—i Length Velocity (a.u.) (s)
6ds0)—|Ts10)  14.87(7) 1477(22)  0.0024(2) 0.627(4)
l6ds)— 751 19.04(5) 19.87(1.0) 0.301(3)
+H6dsp)—[6ds,)  8.80(4) 10.5(2.5)  1.546(1)  0.297(4)

Lifetimes of the 6d states. It is necessary to know the
lifetimes of the 6d metastable states to understand how reli-
ably the proposed experiments can be performed in that time
period. The lifetimes [in second (s)] of these states can be
determined from the inverse of the total transition probabili-
ties (A). The net transition probabilities (in s7!) of the 6d
states are given by

_ AE2 E2 M1
Agasin =Asasin—1s12 + Avasrn—easiz + Asasin—oedsrs

A6d3/2 = Agd23/2*>73‘1/2 + A16\4dg/2*>731/2’ (3)
where
g _ 111995 X107 @
f—i (2]f+ ]))\5 f—i
i _ 269735 X 10" i 5)
CT/E SIS

where S;;=[0;|* and \ (in A) are the transition line
strength for the operator O [in atomic unit (a.u.)] and wave-
length, respectively. These quantities depend on both the
transition amplitudes and wavelengths, and they can be cal-
culated using a single ab initio method. However, we use
experimental wavelengths [21] to reduce the errors in the
determination of the lifetimes.

Since there are no experimental or theoretical predictions
of the lifetimes of the 6d states, we calculate the E2 transi-
tion amplitudes using both the length and velocity gauges in
order to assess the numerical accuracies of the results. These
results are given in Table I along with the M1 transition
amplitudes and the lifetimes of the 6d states. We have used
the E2 amplitudes in the length gauge as it converges faster
than the corresponding values in the velocity gauge. The
errors are estimated from the discrepancies of the results ob-
tained with different choices of bases.

Using the RCC method, we find that due to the enhanced
role of electron correlation, core polarization effects in par-
ticular, the M1 transition amplitude for the |6d5,) — |7s;,)
transition is 0.0024(2)ea, while the DF value is ~107ea,,.
From the calculated E2 amplitude of this transition, we ob-
tain the lifetime of the 6d5), state as 0.627(4) s. Inclusion of
the M1 transition probability changes this value by an insig-
nificant amount. This is similar to our earlier finding on the
first excited d3, states of other alkaline earth metal ions [24].
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TABLE II. Quadrupole moments of atomic states in a.u.
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TABLE III. Dipole and quadrupole polarizabilities in a.u.

State Opg (G 0, (G} State a, a, Ay a a
6d3) 3.48 -0.01 -0.51 2.90(2) a(l) 81 94.19 12.67 -0.76 0.02 106.12
6ds) 5.19 -0.02 -0.65 4.45(9) 6ds, 83.50 12.67  -0.66 0.03 95.54
6ds, 80.21 12.67 -1.06 0.03 91.85

. . _ ay  6dsyp -5461 -0.77 033 -001  -55.06
A.ga.m, as with the other ds, states in those systems, the 6ds)> 25861  —-0.77 106  —0.01 ~58.33
lifetime of the 6ds,, state reduces from 0.301 s to 0.297 s )
after including the contribution of the M1 transition prob- &0 Tsip 248479 5657 034 330 254752
ability in the |6ds,) — |6d5,,) transition.

Quadrypole moments of the 6d states. In.o.rder tp .estimate (2| 0E2I) P

the error in the frequency of the clock transition arising from a(z)(v) =—2> ARl el A (10)

quadratic Stark shifts, it is necessary to know the quadrupole
moments of the relevant states. The quadrupole moment of a
valence state (v) is given by

®(U) = <\Pu|0E2|\Pv>’ (6)

where OF? is the E2 transition operator. We divide the above
expression into three parts as follows:

O() = Opp(v) + 0,,(v) + 0,(v). (7)

Here Opg, O,,, and O, are the DF, core-valence, and valence
electron correlation effects. In Table II, we present these con-
tributions for the 6d;, and 6ds,, states. In this table, the
difference between the total RCC result and the sum of all
the above three contributions is due to the normalization of
the wave functions. The quadrupole moment of the 7s state is
clearly zero as the quadrupole moment operator is of rank
two. Therefore, we determine these quantities only for the 64
states.

As given in Table II, the dominant contribution comes
from Opg followed by ©,, which contains core-polarization
and pair-correlation effects to all orders, make significant
contributions as in Sr* [15] and Ba* [16]. We have followed
the same procedure as in the lifetime calculations to estimate
errors in these results.

Polarizabilities. We determine the dipole polarizabilities
for 7s and 6d states and quadrupole polarizability of the 7s
state for our study. The static [aé(]v)] and tensor dipole
[@)(J,)] polarizabilities for the valence v state with angular
momentum J, are given by

| |(,| DT
= DuEEML 8
ap(v) gﬁ, E _E, (8)

and
allo) =2 \/301;,(21,, - 1@y +1)
(o + D(2j, +3)
J, 1 J, | |{7,|DII)?
XE (_ 1)]U+Jk+1 v k |< v| | k>| , (9)
k#v 1 Jv 2 Ev_Ek

respectively, where D is the E1 operator. Similarly, the static
quadrupole polarizability [e3(v)] is given by

k#v Eu - Ek

We have used the sum-over-states approach and experimen-
tal energies to reduce the errors in the calculations; the cal-
culated energies used were obtained from the RCC method
where the experimental energies were not available.

We express generally the polarizabilities as

a() = a,(v) + a.,) + a.(v), (11)

where each term is defined similar to the corresponding
terms of the quadrupole moment expression given in Eq. (7)
except for a,, which is the pure core orbital contribution. We
calculate «, contributions from the calculated intermediate
states using the RCC method. However, «. and «,, are cal-
culated using the second order many-body perturbation
theory [MBPT(2)], where the residual Coulomb interaction
and E1 or E2 operators are treated as perturbation. All these
results are tabulated in Table III. Our result for the 7s,,, state
matches well with the previously determined value using the
Douglas-Kroll relativistic scalar Hamiltonian [22].

We have obtained up to 10s, 10p, 10d, 9f, and 9g low-
lying states using the RCC method to calculate the above
quantities. Contributions from other higher states are ac-
counted for using MBPT(2). They are just given as tail con-
tributions («,) in the table. Using the expression

(W 07wy

a(2)’6d(7s) =2 > Ee_E,
A

k=6d3,6ds/,

. (12

we obtain a2(7s)=1037(7)a(5) along with the corresponding
a, contribution. This is usually necessary for the lifetime
measurements of the 6d states.

In Table IV, we present the important reduced E1 matrix
elements which are used in the determination of dipole po-
larizabilities. These results are in reasonable agreement with
those of Dzuba et al. which are calculated using another
many-body approach [23].

Hyperfine structure constants. Studies of these constants
are important to investigate the underlying physics of the
wave functions in the nuclear region, especially to estimate
the errors of the PNC matrix elements (see Table V) [28].
The magnetic dipole (A,) and electric quadrupole (B,) hy-
perfine structure constants of the valence v state with angular
momentum J, are given by
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TABLE IV. Important reduced £1 matrix elements in au used to
determine the dipole polarizabilities.

781 6d3p 6ds
7[)1/2 328 3.64
8]71/2 004 007
83 0.50 0.15 0.40
5fsn 4.47 1.31
6f5 0.86 0.21
S5fan 6.21
6f12 1.08
MNE T
Apv) = =W TV, (13)
Jy

and

B, (v) =20V, |T?| W), (14)

respectively. In the above expressions, uy, g, and Qy are the
nuclear magnetic moment, gyromagnetic ratio, and quadru-
pole moment, respectively. Explicit expressions and the
single particle matrix elements of 7" and 7*® are given in
Ref. [25]. We have used g;=0.18067 [26] and Qy=1.254
[27] for ***Ra and g,=-1.4676 [26] for **’Ra in these calcu-
lations.

The trends of the correlation effects in the hyperfine in-
teractions of the 7s and 6d states in the present system are
similar to the corresponding states in Ba* [16,28]. We have
found 23, 31, and 181 % correlation contributions with re-
spect to the DF results of A, in the 7s, 6d5/,, and 6ds), states,
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TABLE V. Hyperfine structure constants in MHz.

Ts1p 6d3 6dsp
Ay Ay By, Ay By,
Mg+
RCC 3567.26 77.08 383.88 -23.90 477.09
Expt.a 3404.0(1.9)
2SR+
RCC -28977.76 -626.13 194.15
Expt!  -27731.0(13)

“Reference [27].

respectively. The core-polarization (CP) effect in the 6ds),
state is very strong and its contribution is larger than the DF
result. This gives rise to the unusual behavior of the electron
correlation effects.

Conclusion. We have successfully carried out accurate
calculations of the lifetimes, polarizabilities, quadrupole mo-
ments, and hyperfine structure constants in Ra® using the
RCC theory. Our calculated values of the lifetimes of the 64
states which are 0.627 and 0.297 s, respectively, suggest that
Ra* could be a suitable candidate for an optical frequency
standard. The results of the different properties that we have
calculated can serve as benchmarks to guide experimental-
ists. On the other hand, precise measurements of these quan-
tities can also be used to test our method of calculation.

We thank Dr. Manas Mukherjee for fruitful discussions.
We also thank Professor N. Fortson for clarifying a point
about the lifetime calculations of the 6d states. Our compu-
tations were performed on C-DAC’s ParamPadma.
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