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Numerical solutions of the Hartree-Fock �HF� equation of polyatomic molecules have been obtained by an
extension of the numerical density-functional method of Becke and Dickson �J. Chem. Phys. 89, 2993 �1988�;
92, 3610 �1990��. A finite-difference method has been used to solve Poisson’s equation for the Coulomb and
exchange potentials and to evaluate the action of the Laplace operator on numerical orbitals expanded on an
interlocking multicenter quadrature grid. Basis-set-limit HF results for an atom and diatomic and triatomic
molecules are presented with the total energies and the highest occupied orbital energies converged to within
10−5 Hartree without any extrapolation.
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The errors in the second-quantized electron-correlation
methods arise from two sources—the truncation of a many-
electron basis expansion of multidimensional wave functions
and that of a one-electron basis expansion of orbitals. While
various hierarchical electron-correlation methods have been
devised to accelerate the summation of the former expansion,
the convergence of energies and wave functions with respect
to one-electron basis sizes is notoriously slow and is consid-
ered by many one of the most outstanding issues in modern
electronic structure theory.

The slow convergence is traced to the lack of interelec-
tronic �r12� degrees of freedom in one-electron bases, e.g.,
linear-combination-of-atomic-orbital �LCAO� Gaussian
bases �1,2�. Hence, this problem can be avoided by introduc-
ing r12 dependence in the LCAO determinant-based electron-
correlation methods �3� or by constructing new electron-
correlation methods with two-electron and higher-order
bases �4,5�. In the latter category is a grid-based, numerical
solution of the Sinanoğlu equation �6� �a first-quantized form
of the second-order Møller–Plesset perturbation method� by
McKoy and Winter �7�, although it does not analytically
eliminate the Coulomb singularity at the coalescence of two
electrons �8�.

A grid-based, numerical solution of the Sinanoğlu equa-
tion requires a grid-based representation of the Fock opera-
tor, which also enables a grid-based, numerical Hartree-Fock
�HF� method. Such methods for atoms and diatomic mol-
ecules employing spherical or prolate spheroidal coordinates
have been reviewed in Refs. �9� and �10�. The HF equation
in a momentum space representation has been derived and
solved with a complete plane-wave basis by Alexander et al.
�11�. Becke and Dickson �12,13� have developed a numeri-
cal, real-space solver of density-functional theoretical �DFT�
self-consistent field �SCF� equation for polyatomic mol-
ecules on the basis of an interlocking multicenter quadrature
grid �14�, which is now widely adopted in LCAO DFT
implementations. Pahl and Handy �15� have used a mixed

plane-wave and atom-centered radial polynomial basis func-
tions and Yanai, Harrison, and co-workers �16,17� have in-
troduced self-adjusting multiwavelet basis functions to ob-
tain the HF solutions of polyatomic molecules in the
complete-basis-set �CBS� limit. Talman have variationally
optimized numerical atomic orbitals to solve the HF equation
of polyatomic molecules �18,19�.

In this paper, as an initial step to realizing grid-based,
numerical electron-correlation methods, we report the imple-
mentation of a grid-based, numerical HF equation solver for
polyatomic molecules without a basis-set error. Our imple-
mentation is an extension of the method developed by Becke
and Dickson �12,13�: We employ Becke’s multicenter grid to
expand orbitals and potentials, solve Poisson’s equation to
obtain the Coulomb and exchange potentials, and represent
the action of the Laplace operator �in the kinetic operator and
Poisson’s equation� on numerical orbitals in a finite-
difference approximation. Becke and Dickson have also re-
ported the numerical HF solutions of H3

+ �13� and of other
larger molecules �20,21� with the aim of describing disper-
sion interactions with smaller quadrature grids than those
used in our work. The algorithmic details of their numerical
HF methods beyond Refs. �12� and �13� have not been re-
ported. Our grid-based method treats the HF exchange op-
erator rigorously for general polyatomic molecules �albeit
with a rather severe molecular size limit�, necessitating an
effective algorithm to solve an eigenvalue equation involving
a non-Hermitian matrix. We present the exact HF solutions
�within 10−5 Hartree� of an atom and diatomic and triatomic
molecules obtained with the method.

Following the overall strategy of Becke and Dickson
�12,13�, we expand orbitals and potentials on an interlocking
multicenter grid �14�. Whenever necessary, these functions
are divided into the sum of atomic contributions, which are
in turn expanded by atom-centered radial �Gauss-
Chebyshev� and spherical �Lebedev� grids �22–27�. The Leb-
edev grid is characterized by its rank lquad and is designed to
integrate spherical harmonics Ylm exactly up to l= lquad. Each
atomic contribution is obtained by multiplying a weight
function wA�r� that has significant amplitude within a
Voronoi polyhedron centered at atom A and decays smoothly
at its boundary, overlapping with the contributions from the
adjacent cells �14�.
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The action of kinetic T̂, nuclear attraction V̂, and Coulomb

Ĵ operators on numerical orbitals on the grid can be evalu-
ated according to the computational prescription of Refs.
�12� and �13�. Specifically, Poisson’s equation is solved for
the Coulomb potential given an electron density �12�. The
Laplacian operator appearing in Poisson’s equation and in
the kinetic operator can be handled by letting it act on the
atom-centered contributions which are expandable by spheri-
cal harmonics, which are eigenfunctions of the operator, up
to lmax= 1

2 �lquad−1�. The second derivatives of the radial parts
are obtained by a seventh-degree finite-difference method
�12,13�.

The action of an exchange operator K̂ on a trial function
�p�r� is expressed as

K̂�p�r1� = �
i

occ � �p�r2��i�r2�
�r1 − r2�

dr2�i�r1� = �
i

occ

Vpi�r1��i�r1� ,

�1�

where an exchange potential Vpi is defined for each pair of an
occupied orbital and the trial function �p�i and satisfies
Poisson’s equation �28�

�2Vpi�r� = − 4��p�r��i�r� . �2�

The pair density �p�i is divided into atomic contributions
and, for each, atomic exchange potential Vpi

A is obtained:

�2Vpi
A �r� = − 4�wA�r��p�r��i�r� , �3�

Vpi�r� = �
A

atoms

Vpi
A �r� . �4�

This step of constructing Vpi from its atomic contributions
�Vpi

A 	 is the most time consuming one because it requires the
evaluation of Vpi

A on the grids centered on atoms other than A
by interpolation. This is carried out by a cubic spline inter-
polation, which is accelerated by noticing that the Gauss-
Chebyshev radial grid points are evenly spaced after some
coordinate conversion.

With the grid representation of the Fock operator F̂= T̂

+ V̂+ Ĵ− K̂, we solve the HF equation iteratively. Defining the
residual ri�r� by

ri�r� = �F̂ − ẽi��̃i�r� , �5�

where �̃i�r� and ẽi are approximate orbital and orbital energy,
we consider the convergence is achieved when �ri�2�10−6

and the self-consistency is satisfied. With this threshold, or-
bital and total HF energies are accurate to within 10−5 Har-
tree. The iterative solution of Eq. �5� proceeds by a subspace

diagonalization of F̂ within the space spanned by trial func-

tions, i.e., �̃i�r�=�kCk�k�r�. The efficiency of this process
hinges on an effective scheme of generating trial functions
that expand the occupied orbitals accurately and compactly.
Conventional schemes �31,32� presume the diagonal domi-
nance of the matrix, which facilitates the approximate inver-

sion of �F̂− ẽi�. The finite-difference representation of F̂ is

far from diagonally dominant and we generate a useful trial

function �i� by approximately breaking down F̂ into spheri-

cally averaged atomic contributions �F̂sph
A 	 and acting �F̂sph

A

− ẽi�−1 on the residuals �13�:

�i��r� = �
A

atoms

�F̂sph
A − ẽi�−1wA�r�ri�r� , �6�

with

F̂sph
A = T̂ + V̂sph

A +
1

2
Ĵsph

A , �7�

where V̂sph
A and Ĵsph

A are also spherically averaged atomic con-
tributions of the respective operators. The empirical factor of

1/2 multiplying Ĵsph
A has been introduced to ensure swifter

convergence. The evaluation of �F̂sph
A − ẽi�−1 is straightfor-

ward since different angular components do not couple with
one another by virtue of the spherical averaging. Unlike
Becke and Dickson �13�, the subspace size �the number of
trial functions� increases until convergence in our scheme.
Since this procedure yields only occupied orbitals, first-
quantized equations �with no explicit reference to virtual or-
bitals� should be employed in a subsequent treatment of elec-
tron correlation.

The most time-consuming step is, as mentioned before,
the interpolation of atomic exchange potentials and the over-
all computational cost scales as O�noccntrialnatom

2 nradialnangular
2 �,

where each factor denotes the number of occupied orbitals,
the number of trial functions, the number of atomic centers,
the numbers of radial and angular grid points per atom �i.e.,
not proportional to the number of atoms�, respectively.

The first test has been performed on the Ne atom. Unlike
polyatomic molecules, an atomic orbital is a single spherical
harmonic times a radial function and a small angular grid is
sufficient. For Ne, the spherical harmonics only up to lmax
=2 �correspondingly nangular=14� suffice so that a product of
four p-type orbitals can be integrated exactly by the Lebedev
quadrature. As Table I shows, the converged total HF energy
and the highest occupied molecular orbital �HOMO� energy
are obtained at nradial=100, which are in agreement to all
shown digits with the results of Koga et al. �29�. The con-
vergence of the total HF energy with respect to nradial shows
the nonvariational nature of the method �i.e., the Fock matrix
on the grid is not Hermitian�.

TABLE I. The total HF �EHF� and HOMO �eHOMO� energies �in
hartree� of Ne.

Grida EHF eHOMO

50�14 �2� −128.547127 −0.850412

70�14 �2� −128.547100 −0.850410

100�14 �2� −128.547098 −0.850410

200�14 �2� −128.547098 −0.850410

Koga et al.b −128.547098 −0.850410

anradial�nangular�lmax�.
bReference �29�.
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Once there are two �or more� atomic centers in the mol-
ecule, its orbitals are no longer proportional to spherical har-
monics. A considerably larger grid becomes necessary to ob-
tain accurate orbitals and energies and, in particular, to
represent functions at the Voronoi cell boundary. We used
nradial=100 or 150 and nangular=434, 770, or 1202 �lmax=17,
23, or 29� for diatomic tests as the use of smaller grids re-
sulted in a computational instability.

The converged total HF energy of the BH molecule �Table
II� agrees perfectly with the values obtained by Yanai et al.
�16� and by Pahl and Handy �15� and also with the value
quoted by Halkier et al. �30�. Our HOMO energy is also in
agreement with the result of Yanai et al. within 1 �hartree.
The corresponding value of Pahl and Handy is in error by
34 �hartree.

The convergence of energies with respect to grid sizes is
slower in the FH molecule �Table III� and the large grid
�150�1202 points per atom� is needed. The results with this
grid are in generally good agreement with the previously
reported values �15–17� within 5 �hartree. Again, the
HOMO energy of Pahl and Handy �15� suffers from a
slightly greater error from our results and those of Yanai et
al., which agree with each other within 2 �hartree. The total

energy depends on nradial and nangular in a rather systematic
fashion, possibly lending itself to an extrapolation, but the
energy changes upon the increases in nradial and nangular do not
appear to be additive.

Table IV lists the exact HF results of H2O at a geometry
of Yanai et al. �16�, i.e., oxygen placed at the origin and
hydrogens at �±1.4375, 0.0000, 1.1500� in a.u. The largest
grid afforded by our calculations leads to the total energy
within 3 �hartree and HOMO energy within 10 �hartree of
Yanai et al.’s values �16�, which appear slightly more accu-
rate. These values are consistent with LCAO Gaussian HF
results with huge basis sets �aug-cc-pVQZ or 5Z� �34�. How-
ever, the results obtained with the aug-cc-pV5Z basis set
seem to suffer from errors of around 170 �hartree that are
two orders of magnitude greater than our basis-set-free cal-
culations.

Figures 1 and 2 illustrate the rapid exponential conver-
gence of the total and HOMO energies and all five occupied
orbitals with respect to the number of iterations. Here, the
iterations refer to those for subspace diagonalization of the
Fock operator and simultaneously for achieving SCF. In fact,
the convergence of the total energy �Fig. 1� appears to be
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FIG. 1. The errors in the total HF and HOMO energies of H2O
as a function of the number of iterations for the subspace diagonal-
ization of the Fock operator and SCF.

TABLE II. The total HF �EHF� and HOMO �eHOMO� energies �in
hartree� of BH �bond length of 2.3289 a.u.�.

Grida EHF eHOMO

100�434 �17� −25.131636 −0.348324

100�770 �23� −25.131639 −0.348324

100�1202 �29� −25.131639 −0.348324

Yanai et al.b −25.131639 −0.348324

Pahl and Handyc −25.131639 −0.348290

Halkier et al.d −25.131639

anradial�nangular�lmax�.
bReference �16�.
cReference �15�.
dReference �30�.

TABLE III. The total HF �EHF� and HOMO �eHOMO� energies
�in hartree� of FH �bond length of 1.7328 a.u.�.

Grida EHF eHOMO

100�434 �17� −100.070741 −0.650392

100�770 �23� −100.070775 −0.650389

150�770 �23� −100.070788 −0.650393

100�1202 �29� −100.070791 −0.650389

150�1202 �29� −100.070799 −0.650392

Yanai et al.b −100.070803 −0.650394

Pahl and Handyc −100.070795 −0.650380

Sundholm et al.d −100.07082

anradial�nangular�lmax�.
bReference �16�.
cReference �15�.
dReference �33�.

TABLE IV. The total HF �EHF� and HOMO �eHOMO� energies
�in hartree� of H2O �see Ref. �16� for the geometry used�.

Grida EHF eHOMO

100�770 �23� −76.065592 −0.509705

150�770 �23� −76.065593 −0.509711

100�1202 �29� −76.065592 −0.509706

Yanai et al.b −76.065596 −0.509721

aug-cc-pVQZ −76.064122 −0.509676

aug-cc-pV5Z −76.065429 −0.509704

anradial�nangular�lmax�.
bReference �16�.
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faster than a single exponential decay, which might be due to
the rapid convergence �Fig. 2� of the 1s core orbital that
contributes the most to the total energy. The rates of conver-
gence of orbitals are roughly in the order of the absolute
values of the orbital energies.

For H2O, the action of the Fock operator on five trial
functions in the first iteration took 10 min on the 100�770
grid and 24 min on the 100�1202 grid with an IBM Power5
2.1 GHz workstation �1 CPU�. The CPU time increases lin-
early with the number of trial functions. The most time-
consuming step �the interpolation of the exchange poten-
tials�, however, can be effectively parallelized.
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FIG. 2. The norm of the residual �Eq. �5�� of the occupied or-
bitals of H2O as a function of iterations. The orbitals are numbered
in the ascending order of energies.
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