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The first detailed comparison between ab initio calculations of finite fermionic superfluid systems, per-
formed recently by Chang and Bertsch �Phys. Rev. A 76, 021603�R� �2007�� and by von Stecher, Grange, and
Blume �e-print arXiv:0705.0671v1� and the extension of the density-functional theory superfluid local-density
approximation �SLDA� is presented. It is shown that SLDA reproduces the total energies, number density
distributions in inhomogeneous systems along with the energy of the normal state in homogeneous systems.
Unlike the Kohn-Sham LDA, in SLDA the effective fermion mass differs from the bare fermion mass and the
spectrum of elementary excitations is also reproduced.
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The density-functional theory �DFT� introduced by Ho-
henberg and Kohn �1� became the tool of choice in the cal-
culation of the properties of essentially most electron sys-
tems �2� after the introduction of the local-density
approximation �LDA� by Kohn and Sham �3�. In order to
achieve the accuracy needed in particular in chemical appli-
cations, a number of extensions of the LDA have been de-
veloped, the local-spin-density approximation �LSD�A��, the
generalized gradient approximation �GGA�, etc., which have
been thoroughly tested on a large variety of systems over the
years by comparing the results of the LDA, LSD�A�, and
GGA with ab initio calculations and by refining the form of
the density functionals used in practice �2,4�. All of these
formulations rely on the Kohn-Sham orbitals and thus cannot
deal effectively with superfluidity. The DFT extension to su-
perfluid systems is a fundamental problem of the many-body
theory. Almost two decades ago such an extension was sug-
gested �5�, however in terms of a nonlocal pairing field. A
DFT formalism in terms of nonlocal fields is definitely intu-
itively less transparent, significantly harder to deal with in
practice, and most likely physically not well motivated. The
fact that the BCS theory leads formally to a nonlocal pairing
field is not a strong argument in favor of such an approach.
Such an argument was not used in the case of normal sys-
tems. All the BCS results could be recovered easily within a
fully local formulation �6,7�. There was a technical motiva-
tion to proceed with such a nonlocal formulation in the case
of superfluid systems: the presence of a rather annoying di-
vergence in the definition of a local anomalous density �6,7�,
an issue which has been successfully dealt with in Refs.
�6–8�. This particular extension of the DFT to superfluid
systems was dubbed superfluid local-density approximation
�SLDA� and it was applied so far to nuclear binding system-
atics and to quantized vortices �8�.

Here I shall analyze the properties of a fermion system at
unitarity, when the strength of the interaction in a two-
species fermion system �spin-up and spin-down� corresponds
to an infinite scattering length �9�. The basic properties of
such a system, the energy per particle, pairing gap, etc. have
been established in a series of ab initio calculations �10–13�
for homogeneous systems. In Refs. �14,15� two independent
groups report on ab initio calculations of the properties of
fermions at unitarity in a harmonic oscillator trap. These re-
sults provide the unique opportunity to test directly the ac-

curacy of the SLDA, by deducing from the ab initio calcu-
lations of the homogeneous matter the appropriate local-
energy-density functional and then use it to predict the
properties of a fermion system in the presence of an external
one-body potential. The proof of the Hohenberg and Kohn
theorem is extended in a trivial manner �2� to the case when
the external field has in second quantization the structure

�
�=↑,↓

Vext�r���
†�r����r� + ��ext�r��↑

†�r��↓
†�r� + H.c.� . �1�

Thus one establishes that there is a unique mapping between
the external potential, the total wave function of the system,
and the normal and anomalous densities and that a unique
density functional of these densities exists. Consequently, the
ground-state energy of a superfluid system can be computed
using a functional of the normal and anomalous densities.
Here I shall analyze systems for which only Vext�r� exists
and one can consider formally that the external pairing field
�ext�r� is vanishingly small, but not identically zero. This is
assumed simply to force the reader to appreciate the fact that
particle projection to a “wave function with a well-defined
particle number” is neither required nor needed in order to
recover the correct ground-state energy.

Fermions in the unitary regime �when the scattering
length a is large� are particularly attractive for a number of
reasons: �1� this is a strongly interacting system which ex-
hibits superfluid behavior and a complex phase diagram �16�;
�2� at unitarity ��a�=�� the form of the energy density func-
tional is restricted by dimensional arguments; �3� the avail-
ability of ab initio results for homogeneous and inhomoge-
neous systems; �4� the relevance of this systems to a large
variety of physical systems �low-density neutron matter in
neutron stars, cold fermionic atoms in traps, high-Tc super-
conductivity, etc.�; �5� tunability of the interaction both theo-
retically and experimentally.

Dimensional arguments suggest at unitarity the simplest
SLDA energy density functional �units �=m=1�

E�r� = �
��r�

2
+ �
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k
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k
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��r� = �
k

vk
*�r�uk�r� , �4�

where �, �, and 
 are dimensionless parameters and n�r�,
��r�, and ��r� are the number of normal, kinetic, and anoma-
lous densities expressed through the usual Bogoliubov qua-
siparticle wave functions �uk�r� ,vk�r�� and where k labels the
quasiparticle states. The universal parameter � is being in-
troduced in this work and its presence proves to be critical in
order to achieve the high accuracy demonstrated below.
Since the kinetic and anomalous densities diverge �6,7�, one
has to introduce a renormalization procedure for the pairing
gap and for the energy density. The renormalized density
functional and the equations for the quasiparticle wave func-
tions obtained by the standard variation are as follows:

E�r� = �
�c�r�
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+ gef f�r���c�r��2
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EkEc
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EkEc

vk
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� �h�r� − ��uk�r� + ��r�vk�r� = Ekuk�r� ,

�*�r�uk�r� − �h�r� − ��vk�r� = Ekvk�r� ,
� �8�
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Here Ec is an energy cutoff and I have added as well an
external potential Vext�r�. It can be shown that in the total
energy the kinetic and anomalous densities have to enter in
the combination

�
�c�r�

2
− ��r��c�r� 	 �

�c�r�
2

+ gef f�r���c�r��2, �14�

and thus the pairing part of the functional is uniquely de-
fined. The second term in Eq. �10� for U�r�=�E�r� /�n�r� is
obtained by varying gef f�r�, see Eq. �6�, with respect to n�r�
and neglecting in the first approximation the dependence of
�c�r� on U�r�. There is still a small correction term to U�r�,
arising from varying �c�r�, which can be made rather small

if Ec is sufficiently large. This additional term can be com-
puted using

��c�r�
�n�r�

= −
1

4	2�2k0�r�
ln

kc�r� + k0�r�
kc�r� − k0�r�

�U�r�
�n�r�

�15�

and one can argue that to a good approximation
�U�r� /�n�r�
2�U�r�−Vext�r�� /3n�r�, which is consistent
with the universality of a homogeneous unitary Fermi gas
�UFG�, where U�r��n2/3�r�. The results are independent of
the value of the cutoff Ec if this is chosen appropriately large
�18�. The above formulas apply to systems with an even
particle number. In order to describe systems with an odd
particle number one has to place an extra quasiparticle in a
specific quantum state n0 �18�.

By requiring that a homogeneous gas of number density
n=N /V=kF

3 /3	2 has an energy per particle E /N=3�S�F /5, a
chemical potential �=�S�F, and a pairing gap �=��F, where
�F=kF

2 /2, one can determine the dimensionless parameters
�, �, and 
 in Eq. �5�. The corresponding equations deter-
mining these parameters are
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where

�k =
�k2

2
+ U − � =

�k2

2
+ ��̄ − �S��F, �19�

Ek = ��k
2 + �2�1/2, �̄ = � −

�3	2�2/3�2

6

, �20�

The momentum kF can be factored out of the equations
��16�–�18��, as expected, for a system at unitarity. Using
�S=0.42�2� and �=0.504�24� determined by Carlson
and Reddy �11� one obtains �=1.14, �=−0.553, and
1/
=−0.0906. Using the original values of Carlson et al.
�10�, namely �S=0.44 and �=0.486, one obtains instead
�=1.12, �=−0.520, and 1/
=−0.0955. A different set of
values has been calculated recently by Juillet �12�,
�S=0.449�9� and �=0.442�3�, which lead to �=0.812,
�=−0.172, and 1/
=−0.0705. The value of �=1.14 leads to
an effective mass of mef f /m=1/�=0.877.

One can now calculate the spectrum of the elementary
fermionic excitations of a homogeneous UFG, shown in Fig.
1, and compare it with the ab initio spectrum determined in
Ref. �11�. The agreement between the two spectra is nothing
short of spectacular, especially if one has in mind that DFT is
not usually expected to reproduce the single-particle spec-
trum �1–3�, unless one sets up from the outset to achieve that
as well �19,20�. The value of the effective mass is a matter of
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mild surprise, and also the fact that the minimum of Ek oc-
curs at k0=0.906kF. The analysis of Ref. �21� arrives at a
similar value for k0. The energy per particle of a homoge-
neous UFG in the normal state has also been determined
�10,13�, EN /N=3�N�F /5 with �N=0.55, which is an average
of the two results. The SLDA energy density functional is
consistent with this value, as �N=�+�=0.59. The param-
eters � and � from Ref. �12� lead to �N=0.64 and an effective
mass mef f /m=1/�=1.23 and to a quasiparticle spectrum, in
strong disagreement with the results of Ref. �11�.

The SLDA calculations for the finite systems �with
Vext�r�=m�2r2 /2� have been performed using the Bessel dis-
crete variable representation �DVR� method �17�, and a few
details are presented in Ref. �18�. The comparison between
the Green function Monte Carlo �GFMC� �14�, fixed node-
diffusion Monte Carlo �FN-DMC� �15�, and SLDA is pre-
sented in Figs. 2 and 3, and in Ref. �18� �units for energy and
length defined by �=m=�=1�. The agreement between the
Monte Carlo �MC� and SLDA results is very good, espe-
cially keeping in mind that the MC calculations for both
infinite matter and finite systems have aside from statistical
errors also noticeable systematic errors. Both GFMC �14�
and FN-DMC �15� calculations are in principle variational
and, since the energies for the larger systems in the FN-DMC
calculation are consistently lower that the corresponding
GFMC results, one can expect that the FN-DMC results are
somewhat more accurate. That is also in line with the smooth
behavior of the �E�N�=EFN-DMC�N� /ESLDA�N�−1 with N as
opposed to the behavior of �E�N�=EGFMC�N� /ESLDA�N�−1.
The SLDA energies converge unexpectedly fast towards the
FN-DMC values, see Fig. 2 and Table I in Ref. �18�. As a
reference, the Thomas-Fermi energy E�N�= �3N�4/3��S /4,
which for
N=20 comes to 38.05 as compared to 43.2, 41.35, and 41.51

in GFMC, FN-DMC, and SLDA, respectively. This discrep-
ancy, whose size is typical in this particle range, is compa-
rable in magnitude with the condensation energy, but oppo-
site in sign.

As far as the density profiles are concerned, they agree
reasonably well in the surface region, but show noticeable
differences in the central region �18�. The reasons for this
disagreement are likely the relatively poorer quality of the
GFMC results for larger particle numbers �15�. It is notable
that there is a small discrepancy between the SLDA energies
calculated as expectation values of the functional and using
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FIG. 1. �Color online� The ab initio fermionic quasiparticle
spectrum determined in Ref. �11� �red circles� compared with the
SLDA spectrum defined by the ab initio parameters � ,� from Ref.
�11� �solid blue line�, �10� �dotted blue line�, �12� �dashed blue line�,
and naive BCS approximation at unitarity �black dotted-dashed
line�.
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FIG. 2. �Color online� The comparison between the GFMC �14�,
FN-DMC �15�, and SLDA total energies E�N�. The clear odd-even
staggering of the energies is due to the onset of the pairing corre-
lations. The inset shows the discrepancy between the GFMC and
FN-DMC and SLDA energies, �E�N�=EMC�N� /ESLDA�N�−1,
where EMC�N� stands for the energies obtained in GFMC or FN-
DMC, respectively.
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FIG. 3. �Color online� The pairing field ��r� for even
particle number systems. The inset shows the quantity �2E�N�
=E�N�− �E�N+1�+E�N−1�� /2 calculated in SLDA �red squares�
and GFMC �blue circles�.
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the viral theorem �22�, a discrepancy that seems to decrease
with increasing Ec. Notice that there is a somewhat bigger
discrepancy in the GFMC values of the energies and the
corresponding virial expectations �14,18�.

Even though the agreement between the SLDA and ab
initio results is surprisingly good, a better agreement would
have been bad news. The reasons for the discrepancies can
be ascribed to several origins: �i� The energy density func-
tional assumed here, see Eq. �5�, is certainly not unique, and
further efforts should be devoted to study other possible
forms. �ii� The so-called self-interaction correction �SIC� �2�
is not present here, and its absence is seen in the SLDA
energy for N=1, which is 1.37�� instead of 1.5��. Even
though �2E�N�=E�N�− �E�N+1�+E�N−1�� /2 calculated in
the two methods agree within the error bars, some differ-
ences are likely due to �iii� the absence of the polarization of
the even core by the field of extra odd particle �full spherical
symmetry was assumed�. Another reason is �iv� the absence
of spin number densities in this formulation of the SLDA and
an extension to superfluid LSD approximation is needed, es-
pecially for small systems. For now, the energies of the ho-
mogeneous asymmetric systems are known with significantly
less accuracy, see Ref. �16�. And last, but not least, �v� gra-
dient correction terms are needed �beyond those already in-
cluded through the use of explicit single-particle kinetic en-
ergy�.

The differences between the ab initio and the SLDA re-

sults are noticeably less than the corresponding differences in
electronic systems and the validation of the DFT extension
presented here is to my knowledge a first of such kind. I
anticipate that the existence of an accurate SLDA will have a
great impact on several physics subfields: atomic nuclei, neu-
tron matter, and quark matter in neutron stars, dilute atomic
Fermi gases, condensed matter and, maybe, on high-Tc su-
perconductivity as well. The ability to perform high accuracy
calculations using essentially mean-field techniques in lieu of
ab initio calculations can hardly be underestimated.

Note added in proof. The recent FN-DMC calculation of
Blume, von Stecher, and Greene �23�, extended to both even
and odd systems up to N�30, demonstrated very good agree-
ment with SLDA. The Galilean invariance of Eqs. �2� and �5�
becomes manifest upon adding the term �1−��p2�r� /2n�r�,
where p�r�=Re�−i�kvk

*�r��vk�r��.
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