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Local-density-functional theory for superfluid fermionic systems: The unitary gas
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The first detailed comparison between ab initio calculations of finite fermionic superfluid systems, per-
formed recently by Chang and Bertsch [Phys. Rev. A 76, 021603(R) (2007)] and by von Stecher, Grange, and
Blume [e-print arXiv:0705.0671v1] and the extension of the density-functional theory superfluid local-density
approximation (SLDA) is presented. It is shown that SLDA reproduces the total energies, number density
distributions in inhomogeneous systems along with the energy of the normal state in homogeneous systems.
Unlike the Kohn-Sham LDA, in SLDA the effective fermion mass differs from the bare fermion mass and the

spectrum of elementary excitations is also reproduced.

DOLI: 10.1103/PhysRevA.76.040502

The density-functional theory (DFT) introduced by Ho-
henberg and Kohn [1] became the tool of choice in the cal-
culation of the properties of essentially most electron sys-
tems [2] after the introduction of the local-density
approximation (LDA) by Kohn and Sham [3]. In order to
achieve the accuracy needed in particular in chemical appli-
cations, a number of extensions of the LDA have been de-
veloped, the local-spin-density approximation [LSD(A)], the
generalized gradient approximation (GGA), etc., which have
been thoroughly tested on a large variety of systems over the
years by comparing the results of the LDA, LSD(A), and
GGA with ab initio calculations and by refining the form of
the density functionals used in practice [2,4]. All of these
formulations rely on the Kohn-Sham orbitals and thus cannot
deal effectively with superfluidity. The DFT extension to su-
perfluid systems is a fundamental problem of the many-body
theory. Almost two decades ago such an extension was sug-
gested [5], however in terms of a nonlocal pairing field. A
DFT formalism in terms of nonlocal fields is definitely intu-
itively less transparent, significantly harder to deal with in
practice, and most likely physically not well motivated. The
fact that the BCS theory leads formally to a nonlocal pairing
field is not a strong argument in favor of such an approach.
Such an argument was not used in the case of normal sys-
tems. All the BCS results could be recovered easily within a
fully local formulation [6,7]. There was a technical motiva-
tion to proceed with such a nonlocal formulation in the case
of superfluid systems: the presence of a rather annoying di-
vergence in the definition of a local anomalous density [6,7],
an issue which has been successfully dealt with in Refs.
[6-8]. This particular extension of the DFT to superfluid
systems was dubbed superfluid local-density approximation
(SLDA) and it was applied so far to nuclear binding system-
atics and to quantized vortices [8].

Here I shall analyze the properties of a fermion system at
unitarity, when the strength of the interaction in a two-
species fermion system (spin-up and spin-down) corresponds
to an infinite scattering length [9]. The basic properties of
such a system, the energy per particle, pairing gap, etc. have
been established in a series of ab initio calculations [10-13]
for homogeneous systems. In Refs. [14,15] two independent
groups report on ab initio calculations of the properties of
fermions at unitarity in a harmonic oscillator trap. These re-
sults provide the unique opportunity to test directly the ac-
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curacy of the SLDA, by deducing from the ab initio calcu-
lations of the homogeneous matter the appropriate local-
energy-density functional and then use it to predict the
properties of a fermion system in the presence of an external
one-body potential. The proof of the Hohenberg and Kohn
theorem is extended in a trivial manner [2] to the case when
the external field has in second quantization the structure
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Thus one establishes that there is a unique mapping between
the external potential, the total wave function of the system,
and the normal and anomalous densities and that a unique
density functional of these densities exists. Consequently, the
ground-state energy of a superfluid system can be computed
using a functional of the normal and anomalous densities.
Here T shall analyze systems for which only V,(r) exists
and one can consider formally that the external pairing field
A, (r) is vanishingly small, but not identically zero. This is
assumed simply to force the reader to appreciate the fact that
particle projection to a “wave function with a well-defined
particle number” is neither required nor needed in order to
recover the correct ground-state energy.

Fermions in the unitary regime (when the scattering
length a is large) are particularly attractive for a number of
reasons: (1) this is a strongly interacting system which ex-
hibits superfluid behavior and a complex phase diagram [16];
(2) at unitarity (Ja|=) the form of the energy density func-
tional is restricted by dimensional arguments; (3) the avail-
ability of ab initio results for homogeneous and inhomoge-
neous systems; (4) the relevance of this systems to a large
variety of physical systems (low-density neutron matter in
neutron stars, cold fermionic atoms in traps, high-7. super-
conductivity, etc.); (5) tunability of the interaction both theo-
retically and experimentally.

Dimensional arguments suggest at unitarity the simplest
SLDA energy density functional (units z=m=1)
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where a, B, and 7y are dimensionless parameters and n(r),
7(r), and »(r) are the number of normal, kinetic, and anoma-
lous densities expressed through the usual Bogoliubov qua-
siparticle wave functions [u(r),v,(r)] and where k labels the
quasiparticle states. The universal parameter « is being in-
troduced in this work and its presence proves to be critical in
order to achieve the high accuracy demonstrated below.
Since the kinetic and anomalous densities diverge [6,7], one
has to introduce a renormalization procedure for the pairing
gap and for the energy density. The renormalized density
functional and the equations for the quasiparticle wave func-
tions obtained by the standard variation are as follows:
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Here E. is an energy cutoff and I have added as well an
external potential V,,,(r). It can be shown that in the total
energy the kinetic and anomalous densities have to enter in
the combination

7.(r)
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and thus the pairing part of the functional is uniquely de-
fined. The second term in Eq. (10) for U(r)=38E(r)/ on(r) is
obtained by varying g,(r), see Eq. (6), with respect to n(r)
and neglecting in the first approximation the dependence of
A(r) on U(r). There is still a small correction term to U(r),
arising from varying A (r), which can be made rather small
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if E. is sufficiently large. This additional term can be com-
puted using

OA(r) 1
on(r)  4maPky(r)

and one can argue that to a good approximation
SU(r)/ on(r)=2[U(r)-V,,(r)]/3n(r), which is consistent
with the universality of a homogeneous unitary Fermi gas
(UFG), where U(r)=n?3(r). The results are independent of
the value of the cutoff E,. if this is chosen appropriately large
[18]. The above formulas apply to systems with an even
particle number. In order to describe systems with an odd
particle number one has to place an extra quasiparticle in a
specific quantum state n, [18].

By requiring that a homogeneous gas of number density
n=N/ V=kl3p/3w712 has an energy per particle E/N=3&sex/5, a
chemical potential u=&gep, and a pairing gap A= nep, where
ep=k7/2, one can determine the dimensionless parameters
a, B, and 7y in Eq. (5). The corresponding equations deter-
mining these parameters are
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The momentum k; can be factored out of the equations
[(16)-(18)], as expected, for a system at unitarity. Using
£=042(2) and 7=0.504(24) determined by Carlson
and Reddy [11] one obtains a=1.14, B=-0.553, and
1/7y=-0.0906. Using the original values of Carlson et al.
[10], namely £3=0.44 and %=0.486, one obtains instead
a=1.12, B=-0.520, and 1/y=-0.0955. A different set of
values has been calculated recently by Juillet [12],
£¢=0.449(9) and %=0.442(3), which lead to «=0.812,
B=-0.172, and 1/y=-0.0705. The value of a=1.14 leads to
an effective mass of m,;/m=1/a=0.877.

One can now calculate the spectrum of the elementary
fermionic excitations of a homogeneous UFG, shown in Fig.
1, and compare it with the ab initio spectrum determined in
Ref. [11]. The agreement between the two spectra is nothing
short of spectacular, especially if one has in mind that DFT is
not usually expected to reproduce the single-particle spec-
trum [1-3], unless one sets up from the outset to achieve that
as well [19,20]. The value of the effective mass is a matter of
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FIG. 1. (Color online) The ab initio fermionic quasiparticle
spectrum determined in Ref. [11] (red circles) compared with the
SLDA spectrum defined by the ab initio parameters &, 7 from Ref.
[11] (solid blue line), [10] (dotted blue line), [12] (dashed blue line),
and naive BCS approximation at unitarity (black dotted-dashed
line).

mild surprise, and also the fact that the minimum of E; oc-
curs at ko=0.906ky. The analysis of Ref. [21] arrives at a
similar value for ky. The energy per particle of a homoge-
neous UFG in the normal state has also been determined
[10,13], Ey/N=3&yep/5 with £y=0.55, which is an average
of the two results. The SLDA energy density functional is
consistent with this value, as {y=a+B=0.59. The param-
eters £ and 7 from Ref. [12] lead to £,=0.64 and an effective
mass m,;/m=1/a=1.23 and to a quasiparticle spectrum, in
strong disagreement with the results of Ref. [11].

The SLDA calculations for the finite systems [with
V,.(r)=mw’r*/2] have been performed using the Bessel dis-
crete variable representation (DVR) method [17], and a few
details are presented in Ref. [18]. The comparison between
the Green function Monte Carlo (GFMC) [14], fixed node-
diffusion Monte Carlo (FN-DMC) [15], and SLDA is pre-
sented in Figs. 2 and 3, and in Ref. [18] (units for energy and
length defined by Ai=m=w=1). The agreement between the
Monte Carlo (MC) and SLDA results is very good, espe-
cially keeping in mind that the MC calculations for both
infinite matter and finite systems have aside from statistical
errors also noticeable systematic errors. Both GFMC [14]
and FN-DMC [15] calculations are in principle variational
and, since the energies for the larger systems in the FN-DMC
calculation are consistently lower that the corresponding
GFMC results, one can expect that the FN-DMC results are
somewhat more accurate. That is also in line with the smooth
behavior of the SE(N)=Epy.pyc(N)/Eg pa(N)—1 with N as
opposed to the behavior of SE(N)=Egpyc(N)/Egips(N)—1.
The SLDA energies converge unexpectedly fast towards the
FN-DMC values, see Fig. 2 and Table I in Ref. [18]. As a
reference, the Thomas-Fermi energy E(N)=(3N)*3Vé&g/4,
which for
N=20 comes to 38.05 as compared to 43.2, 41.35, and 41.51
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FIG. 2. (Color online) The comparison between the GFMC [14],
FN-DMC [15], and SLDA total energies E(N). The clear odd-even
staggering of the energies is due to the onset of the pairing corre-
lations. The inset shows the discrepancy between the GFMC and
FN-DMC and SLDA energies, SE(N)=Ey(N)/Egps(N)—1,
where Ey(N) stands for the energies obtained in GFMC or FN-
DMC, respectively.

in GFMC, FN-DMC, and SLDA, respectively. This discrep-
ancy, whose size is typical in this particle range, is compa-
rable in magnitude with the condensation energy, but oppo-
site in sign.

As far as the density profiles are concerned, they agree
reasonably well in the surface region, but show noticeable
differences in the central region [18]. The reasons for this
disagreement are likely the relatively poorer quality of the
GFMC results for larger particle numbers [15]. It is notable
that there is a small discrepancy between the SLDA energies
calculated as expectation values of the functional and using

FIG. 3.
particle number systems. The inset shows the quantity &FE(N)
=E(N)-[E(N+1)+E(N-1)]/2 calculated in SLDA (red squares)
and GFMC (blue circles).

(Color online) The pairing field A(r) for even
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the viral theorem [22], a discrepancy that seems to decrease
with increasing E.. Notice that there is a somewhat bigger
discrepancy in the GFMC values of the energies and the
corresponding virial expectations [14,18].

Even though the agreement between the SLDA and ab
initio results is surprisingly good, a better agreement would
have been bad news. The reasons for the discrepancies can
be ascribed to several origins: (i) The energy density func-
tional assumed here, see Eq. (5), is certainly not unique, and
further efforts should be devoted to study other possible
forms. (ii) The so-called self-interaction correction (SIC) [2]
is not present here, and its absence is seen in the SLDA
energy for N=1, which is 1.37Aw instead of 1.5%w. Even
though &E(N)=E(N)-[E(N+1)+E(N-1)]/2 calculated in
the two methods agree within the error bars, some differ-
ences are likely due to (iii) the absence of the polarization of
the even core by the field of extra odd particle (full spherical
symmetry was assumed). Another reason is (iv) the absence
of spin number densities in this formulation of the SLDA and
an extension to superfluid LSD approximation is needed, es-
pecially for small systems. For now, the energies of the ho-
mogeneous asymmetric systems are known with significantly
less accuracy, see Ref. [16]. And last, but not least, (v) gra-
dient correction terms are needed (beyond those already in-
cluded through the use of explicit single-particle kinetic en-

ergy).
The differences between the ab initio and the SLDA re-
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sults are noticeably less than the corresponding differences in
electronic systems and the validation of the DFT extension
presented here is to my knowledge a first of such kind. I
anticipate that the existence of an accurate SLDA will have a
great impact on several physics subfields: atomic nuclei, neu-
tron matter, and quark matter in neutron stars, dilute atomic
Fermi gases, condensed matter and, maybe, on high-T, su-
perconductivity as well. The ability to perform high accuracy
calculations using essentially mean-field techniques in lieu of
ab initio calculations can hardly be underestimated.

Note added in proof. The recent FN-DMC calculation of
Blume, von Stecher, and Greene [23], extended to both even
and odd systems up to N=30, demonstrated very good agree-
ment with SLDA. The Galilean invariance of Egs. (2) and (5)
becomes manifest upon adding the term (1-a)p?(r)/2n(r),
where p(r)=Re[-iZw,(r) Vv (r)].
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