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We present a protocol for growing graph states, the resource for one-way quantum computing, when the
available entanglement mechanism is highly imperfect. The distillation protocol is frugal in its use of ancilla
qubits, requiring only a single ancilla qubit when the noise is dominated by one Pauli error, and two for a
general noise model. The protocol works with such scarce local resources by never postselecting on the
measurement outcomes of purification rounds. We find that such a strategy causes fidelity to follow a biased
random walk, and that a target fidelity is likely to be reached more rapidly than for a comparable postselecting
protocol. An analysis is presented of how imperfect local operations limit the attainable fidelity. For example,
a single Pauli error rate of 20% can be distilled down to �10 times the imperfection in local operations.
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The paradigm of distributed quantum computing �QC� in-
volves a number of simple, optically active structures, each
capable of representing at least one qubit. Relevant examples
include trapped atoms �1–3�, and elementary nanostructures
such as nitrogen-vacancy centers within diamond �4–6�. En-
tanglement between structures is to be accomplished through
an optical channel, for example by measuring photons after a
beam splitter has erased their “which path” information
�1,7–12�, as in Fig. 1�a�. Remarkably, recent experimental
results �3� demonstrated such an optical channel between
ions in separate traps. However, results todate show that the
“raw” entanglement generated in this way is liable to have
significant noise, well above fault tolerance thresholds
�13,14�. Thus it is important to ask, can we exploit the mod-
est complexity within each local structure in order to distill
the entanglement to a higher fidelity?

Originally entanglement distillation was intended for se-
cure quantum communication �15–18�, but the same proto-
cols naturally carry over to distributed QC �19,20�. First a
noisy entanglement operation produces many noisy Bell
pairs between two locations, which these protocols then con-
vert into fewer high-fidelity Bell pairs. At each local site
there must be a certain number of qubits available, one logi-
cal qubit that is directly involved in the computation, and
some number of ancilla qubits. Computation is performed by
distilling a high-fidelity Bell pair between two ancilla qubits,
and then using it to implement a gate between two logical
qubits. In addition to allowing purification, ancilla qubits
protect the logical qubits against damage from probabilistic
gates �1,4,19,20�. Since these protocols emphasize imple-
menting a good fidelity gate, we refer to them as gate-based
protocols. For significant purification of noise from a depo-
larizing source, these proposals require three or four ancil-
lary qubits �19,20�; whereas for phase noise, the number of
ancillas can be reduced by 1 �20�.

Another family of distillation protocols emerged after the
one-way model of quantum computing showed that all the
entanglement necessary for computation is present in a class
of states called graph, or cluster, states �21–24�. The distilla-

tion of graph states is akin to error correction, as it consists
in repeated measurement of the stabilizers that describe the
graph state. In virtue of this feature, we refer to these as
stabilizer-based protocols. The first such protocol uses noisy
copies of a graph state and postselects upon detection of a
single error �25–27�. Further proposals cast aside the need
for postselection at the cost of a stricter error threshold �28�,
above which distillation is possible. These proposals use a
combination of noisy copies of the graph state and highly
purified GHZ states. Because of the size of the entangled
states in the ancilla space, iterating these distillation proto-
cols may take longer than for gate-based protocols. A signifi-
cant temporal overhead will occur when the entangling op-
eration has a high failure rate. Building large entangled states
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FIG. 1. �Color online� An outline of a suitable architecture for a
distributed quantum computer. �a� The numbers label local sites,
each housing a matter system within an optical cavity. The optical
cavities emit photons into an input port of a multiplexer, which can
route any input port to any output port. Beam splitters erase which-
path information, so that entanglement is generated conditional on
the detector signatures. ��a� inset� For our primary protocol, each
matter system is assumed to have enough level structure to provide
two good qubits, an ancilla and a logical qubit. �b� Two example
level structures that would be suitable for the ancilla qubit. The
L-level has only one logical state that optically couples to an ex-
cited state. The �-level structure has both levels coupling to a com-
mon excited state, however, the two transitions are distinguishable
by either frequency or polarization.
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in the ancilla space also restricts the class of employable
entangling operations, excluding entangling protocols that
only produce Bell pairs �1,9�. Of course, provided we have
enough local qubits to provide ancillas for our ancillas, these
disadvantages are easily nullified. However, many systems
which are potentially well suited for distributed QC may be
very limited in the number of qubits they can embody.

By blending ideas from the gate-based and stabilizer pro-
tocols, this paper proposes an entanglement distillation pro-
tocol which performs rapidly while requiring fewer ancillas
than previous protocols. The bulk of this paper shows that
one ancilla is sufficient to distill errors from dephasing noise.
We then extend the protocol to cover depolarizing noise; as
with other schemes this requires an additional ancilla, which
we use to reduce the depolarizing noise to a dephasing noise.
Like gate-based protocols, we build up a graph state edge by
edge, with ancillas never building entangled states larger
than Bell pairs. However, as with stabilizer-based protocols,
our proposal repeatedly makes stabilizer measurements di-
rectly onto the qubits constituting the graph state. Ancillas
must typically be optically active, such as in an L or � level
configuration �see Fig. 1�b��. Qubits are labeled Ax and Lx
for ancilla and logical qubit, respectively, at local site x.

First our analysis will focus on the case when the noisy
entanglement channel is dominated by one type of Pauli er-
ror, which may be very severe. Without loss of generality, we
describe the channel as being affected by phase noise, such
that two ancillas A1 and A2 can be put in the mixed state:

�A1,A2 = �1 − ����+���+� + �ZA��+���+�ZA, �1�

where ZA is the Pauli phase-flip operator acting on either A1
or A2, and ��+�= �0�A1 �1�A2+ �1�A1 �0�A2. If the dominant
noise is a different Pauli error, or different Bell pairs are
produced, then local rotations can always bring the state into
the form of Eq. �1�. Furthermore, only a single Z error is
possible as this Bell state is invariant under the bilateral
ZA1ZA2 rotation. Scenarios where such a noise model may
arise include parity based entangling operations �9,10� that
possess a degree of robustness against bit-flip errors.

After producing noisy entanglement between two ancillas,
the entanglement is pumped down to the logical qubits, re-
sulting in a quantum operation on the logical qubits. The
target �perfect� entangling operation we aim to eventually
achieve is either of the parity projections:

P− = 2��01��01� + �10��10�� ,

P+ = 2��00��00� + �11��11�� , �2�

which act on the logical qubits L1 and L2, and have an
additional normalization factor of 2 that simplifies later ex-
pressions. The only assumption we make about the initial
state of the logical qubits is that they are part of a graph state
�in the constructive definition�, such that they have equal
magnitude in both parity subspaces, �G � P+ �G�= �G � P− �G�;
where �G� denotes the graph state of all the logical qubits.
Both P− and P+ allow arbitrary graph growth, and which
projection we eventually obtain is unimportant as P± �G� dif-
fer only by local rotations �29�. We will see that entangle-

ment distillation results from repetition of an entanglement
transfer procedure.

Each round of our protocol is an entanglement pumping
procedure, described graphically in Fig. 2. Every round of
purification begins with performing a noisy entangling op-
eration between two ancillas, A1 and A2. This operation may
be probabilistic provided that success is heralded, in which
case it is repeated until successful. Next, a series of local
operations must be performed. First, apply a bit-flip then
Hadamard to one ancilla, say A1, and then two control-Z
operations between each ancilla and its logical qubit. The
resulting state is a graph state, with the possibility of a Z
error on A2. Then, measure A1 in the Y basis �correcting for
any by-product�, giving the state described by Fig. 2�e�. Fi-
nally, A2 is measured in the X basis. When no error was
present, this measurement performs a parity check on the
logical qubits, L1 and L2; that is, we measure the observable
ZL1ZL2. On the first round of pumping, the odd and even
parity outcomes will occur with 50/50 probability. Account-
ing for the possibility of a Z error causes a noisy parity
measurement, or quantum operation:

P���G��G�� =
��P+�G��G�P+ + �−�P−�G��G�P−

�� + �−� , �3�

where �= ��−1−1�1/2, and �=M1 is +1 for a �0� measure-
ment outcome, and −1 for �1�.

If we repeat the entanglement pumping procedure n times,
then we will get a series of measurements results
M1,M2, . . .Mn. Concatenating the mapping, for each mea-
surement result, we get back an operation of the same form
but with �=	i=1

i=nMi. The core of our proposal is that we
continue to purify the qubits until ��� reaches some value �H
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FIG. 2. �Color online� The sequence of operations required to
pump entanglement down to two logical qubits L1 and L2, shown
in the graph state notation. �a� Ancillas are prepared in the
��0�+ �1�� /
2 state, and the logical qubits are part of some larger
graph state �G�. �b� An entangling operation is performed between
the ancillas, with the possibility of Z noise. �c� A H ·X is applied to
ancilla A1. �d� At both local sites control-Z operations are per-
formed between ancilla and logical qubit. �e� Ancilla A1 is mea-
sured in the Y basis. �f� Ancilla A2 is measured in the X basis. The
possibility of a Z error is tracked by using ZE, where E=1 tracks an
error, and E=0 tracks the errorless state. The measurement outcome
is represented by M, where M = +1 for a �0� measurement and
M =−1 otherwise. The dotted line between the logical qubits repre-
sents a projection operator P± between the logical qubits, where the
sign is equal to M�−1�E.
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at which point we halt the procedure. �H is chosen such that
it corresponds to a target fidelity FT, where the fidelity is
simply F���= �1+�−2����−1.

In contrast to previous gate-based protocols, our protocol
is not postselective �NPS�. Analogous postselecting �PS� pro-
tocols using an equivalent entangling pumping procedure to
eliminate phase errors have already been proposed �20�. The
essential difference for PS is that it resets upon any measure-
ment outcome Mx that differs from the first measurement
outcome M1; a reset consists in measuring out the qubits
being distilled, bringing them back to �=0. Benefits of NPS
are twofold: �i� since purification is never restarted it is safe
to operate directly on the logical qubits, hence we eliminate
the need for an additional ancilla that exists in PS protocols;
�ii� the probability of success within T rounds is never less
than for PS, indeed, we shall show that NPS significantly
outperforms PS in this regard. A point in favor of PS is that,
if we can freely use multiple ancillas, then PS may achieve a
higher asymptotic limit of fidelity �due to the effect of errors
in local operations�. However, we shall see that NPS can still
attain fidelities within fault tolerance thresholds.

Returning to our consideration of the evolution of � in
our protocol, it is clear that at each purification step T, � can
either increase or decrease by 1. Hence the evolution bears
similarities to a random walk, illustrated by Fig. 3. It differs
from a random walk in two regards: �i� it halts when it
reaches �= ± ��H�; �ii� the probabilities are biased when �
�0. The bias increases the chance of walking in the direc-
tion of larger ���, which occurs with probability:

PD =
�1 − ���D + ��−D

�D + �−D , �4�

where D= ���. On the face of it, it seems that the probability
of walking to a state � in T steps is dependent upon which
path is taken. However, the probability of a kink in the
path—D increasing and subsequently decreasing—is inde-
pendent of D, and is k= PD�1− PD+1�=��1−��. Hence each
path occurs with probability:

Ppath�D,T� = ��
d=0

D−1

Pd
k�T−D�/2. �5�

The total probability of walking to �D ,T� is the product of
Ppath�D ,T� with the number of paths to that position.

We have calculated the total probability of success, after T
rounds, by summing over all the different ways of reaching
the halting line. For comparison, we performed the analo-
gous calculation for an otherwise equivalent PS protocol.
Figure 4 shows PS and NPS protocols for a target fidelity of
FT=1−10−4, with each plot being for a different error rate �.
Note that, for higher error rate or higher target fidelity, the
width of the random walk is wider �larger �H�. In this re-
gime, the superiority of NPS increases, as more entangle-
ment can be lost upon postselection. Conversely, when
�H=2 the protocols are effectively identical, as stepping
back will take the walk to the origin. A protocol’s yield is the
expected ratio of distilled Bell pairs to used noisy Bell pairs.
Since each time step uses a Bell pair, the yield of a protocol
is 1 / �T�, with some values given in Fig. 4. Since NPS is a
faster protocol than PS, it also has a superior yield.

For this idealized error model we can asymptotically ap-
proach unit fidelity. However, it is important to consider how
other errors limit the maximum attainable fidelity. For sim-
plicity, we take an aggressive error model where if a single
error occurs once, then the overall entangling gate has fidel-
ity zero. We use � to denote the probability per time step that
an error occurs, where these errors can result from either
faulty local operations or noise in the entanglement channel
that is orthogonal to the distilled dominant noise. Further-
more, we approximate the chance of an error after T rounds
by its upper bound, �T. Once we reach �H the fidelity will
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FIG. 3. �Color online� The evolution of � against T, the number
of rounds of entanglement pumping. The state evolves as a biased
random walk in �. The weighting of probabilities at a some point �
is such that there is a probability P��� for increasing the magnitude
of �, where P��� is defined in Eq. �4�. The red dashed lines represent
the halting lines for �, and in this example �H=3. Note that the
paths to the halting line occur at T=�H+2n, for non-negative inte-
ger n.
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FIG. 4. �Color online� A comparison of the rapidity of our
proposal vs a postselection protocol, with a target fidelity
FT=1−10−4. The three plots represent different values for the error
rate �, and hence require a different value of �H; shown in the key.
On each plot we show the probability of success against the number
of rounds T, for both the protocol NPS �blue� and PS �orange�. The
yield for NPS and PS �Ynps and Yps� is given in each plot. Notice
that for NPS, the probability of success increases in steps. This is
explained by Fig. 3, which shows that successful paths are sepa-
rated by two time steps.
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depend on the number of time steps taken. Therefore we
calculate the expectation of the fidelity, E�F�. Figure 5 shows
how the expected infidelity, 1−E�F�, varies with � and �.
Since the optimal choice of �H changes with � this produces
inverted humps along the curves, which are more pro-
nounced for small �. On all curves the behavior is roughly
the same; we can characterize the performance by noting that
when the dominant error rate is 0.2 �i.e., 20%�, and the prob-
ability of other error sources is �, then the protocol brings all
error probabilities to order 10�. Given that relevant fault

tolerance strategies can handle noise of order1% �13,14�, the
single-ancilla distillation may suffice when � is of order
0.1%.

If the orthogonal errors are too large, then an additional
ancilla is required. Using the two ancillas, bit errors are first
distilled away by a postselective protocol, such as in �20�.
Orthogonal errors are at their most extreme when the noise is
depolarizing, producing Werner states of fidelity F0. As an
example, we consider the distillation of Werner states of
F0=0.85; a rigorous analysis is provided here �30�. Five
rounds of distillation reduces the orthogonal errors to �10−5,
after which the phase noise has accumulated to �=0.22; we
have not gained fidelity, but we have mapped all noise into
phase noise. These dephased Bell pairs are used in our pri-
mary distillation protocol, and are distilled to E�F��10−4.
This result is marked in Fig. 5, where � is taken to equal the
remaining nonphase errors. As a final remark, note that if we
create GHZ states among ancillas �rather than Bell pairs�
then our strategy can be combined with the bandaid protocol
of �28�, increasing tolerance of imperfect local operations.

In conclusion, using fewer ancillas than previous propos-
als, an otherwise intolerably large error is rapidly reduced
below error-correction thresholds �13,14�. For dephasing or
depolarizing noise models, the protocol needs only one or
two ancillas, respectively.
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FIG. 5. �Color online� A logarithmic plot of the expected infi-
delity, 1−E�F�, when additional error sources affect our distillation
protocol. The plot is a function of �, the probability of a phase error
occurring in the long-range entangling operation. Each curve is a
different value of �, the probability per distillation round that some
other error occurs. The blue cross marks an example discussed in
the text, where the dephased Bell pairs are obtained by prior distil-
lation on raw depolarized Bell pairs.
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