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Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity
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We report observations of the dynamics of electromagnetically induced transparency (EIT) in a A system
when the ground states are Stark shifted. Interactions of this type exhibit large optical nonlinearities called Kerr
nonlinearities, and have numerous applications. The EIT Kerr nonlinearity is relatively slow, which is a
limiting factor that may make many potential applications impossible. Using rubidium atoms, we observe the
dynamics of the EIT Kerr nonlinearity using a Mach-Zehnder interferometer to measure phase modulation of
the EIT fields resulting from a pulsed signal beam Stark shifting the ground state energy levels. The rise times

and transients agree well with theory.
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I. INTRODUCTION

Optical Kerr nonlinearities created via electromagneti-
cally induced transparency (EIT) have received increasing
attention recently because these extremely large nonlineari-
ties have numerous applications in the fields of low-light-
level and quantum optics [1-19]. Among the applications for
the EIT Kerr effect are low-light-level switching [2,9,11],
quantum nondemolition (QND) measurements of photon
number [15], entangling optical wavepackets [7,10] and the
synthesis of optical number states [5]. Also, EIT Kerr non-
linearities may play an important role in creating single-pho-
ton sources for quantum computing. For example, linear op-
tics quantum computing requires single-photon sources and
high efficiency single photon detectors [20], both of which
may be enabled by EIT enhanced Kerr nonlinearities [15].

For many of the above applications the speed of the Kerr
nonlinearity (i.e., the inverse of the rise time) is as important
as the size of the optical nonlinearity. Pulsed applications,
such as photon number resolving QND measurements, re-
quire a strong nonlinear response proportional to the pulse
energy. Thus, it is the ratio between the size and the rise time
of the Kerr effect that matters, not just the size. For example,
although the EIT Kerr effect can be very large even at very
low light level, the same parameters that make the EIT Kerr
effect large also make it slow [21].

The EIT Kerr rise time is inversely proportional to the
EIT linewidth, and is directly proportional to the EIT optical
depth. Similarly, the size of the EIT Kerr effect is inversely
proportional to the EIT linewidth, and is directly propor-
tional to the EIT optical depth. Thus, the typical methods for
increasing the size of the EIT Kerr effect leave the ratio
between size and rise time unaffected.

The dependency of the EIT Kerr rise time on linewidth
and optical depth have been shown theoretically, but these
dependencies have not been observed experimentally. In this
paper, we report experimental observations of the EIT Kerr
rise time. (Note that technically there are two types of EIT
Kerr nonlinearities: Refractive [2] and absorptive [3]. In this
paper we discuss exclusively the refractive type of EIT Kerr

*mvpack @pas.rochester.edu

1050-2947/2007/76(3)/033835(13)

033835-1

PACS number(s): 42.50.Gy, 32.70.Jz

nonlinearity. Observations of the dynamics of the absorptive
EIT Kerr nonlinearity have been reported previously
[12,22])

Coherent transients similar to the EIT Kerr effect have
been reported in a number of different contexts. Park ef al.
and Chen et al. have observed absorption transients in A-EIT
media induced by rapid changes to the Raman (two-photon)
detuning [23,24]. Similarly, Godone et al. have observed
transients due to phase modulation of Raman beams in a A
system [25]. Many others have also studied coherent tran-
sients in three level EIT systems in the contexts of coherent
Raman beats [26], Zeeman splitting [27-29], and EIT in
semiconductors [30,31].

In this paper we begin by reviewing the theory for EIT
Kerr dynamics before presenting the experiment and mea-
surement confirming this theory.

II. THEORY

Figure 1 shows a typical system for refractive EIT Kerr
nonlinearities. Various parameters such as the Raman detun-
ing &, single-photon detuning A, and Rabi frequencies (),
where i={P,C,S} are defined in the figure caption. The en-
ergy levels [1), |2), and |3) together with the coupling field
Q. and probe field Q2p make up a A-EIT system. Coherent

FIG. 1. Simple EIT Kerr system in a four-level N-type system.
The detunings are defined as Ap=(w3—w;)—wp, Ar=(w3—w))
—we, AS=(O)4—(D2)—(1)3, A=(AP+Ac)/2, and 5R=AC_AP' Also,
the Rabi frequencies are defined as Q;=w;E;/h where i={P,C,S},
M; is the dipole moment, and E; is the electric field. The spontane-
ous emission rate out of the excited state is given by y and I' is the
decoherence rate for the ground states.
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population trapping creates a transparency resonance when
the detunings of the probe and coupling fields are near Ra-
man resonance (i.e., 5x=0). This transparency window can
be very narrow with a correspondingly steep dispersion
curve, and it is the steepness of the dispersion that results in
large phase modulation of the probe field when the signal
field perturbs the EIT system away from Raman resonance.

In Fig. 1 the signal field Stark shifts ground state |1) by
Qé/ 4Ag, which changes the Raman detuning to

Sr(Qg) = 5z(0) + |QgM/4A. (1)

Thus the change to the probe phase in radians is approxi-
mately

2
wpL d Re(np)[aR(QS) _60)] ~ L|Qy

A = 9
r I 4v,Ag

2)

8

where L is the length of the medium, np=1+xp/2 is the
probe index of refraction, Q¢=pusE¢/h is the signal Rabi
frequency, ug is the dipole moment of the signal transition,
and v,~c/[wsdnp/ ;] is the group velocity for the
probe [we have assumed that |Re(yp)—1|<1 and
np<< w3, dnpl I8 ]. This cross-phase modulation of the probe
phase is a third order susceptibility x'* because [
x EgE} [i.e., the medium polarization at the probe frequency
is P(wp)=x"Es(ws)Eg(~w5)Ep(wp)].

The steep dispersion which makes possible ultraslow
group velocities in EIT also makes the EIT Kerr nonlinearity
possible. Group velocities as slow as 8 m/s [32] and 17 m/s
[33] have been measured in EIT experiments and group ve-
locities of ¢ X 1073 are routinely achieved in hot atomic va-
pors implying that large Kerr nonlinearities are possible at
relatively low light levels. Also, the four-level EIT Kerr sys-
tem does not have the large self-phase modulation Kerr non-
linearities that are present in other systems with large Kerr
nonlinearities such as highly nonlinear fiber.

The theory for the dynamics of the four-level EIT Kerr
system has been worked out in Ref. [21]. Because we use
slightly different notation than Ref. [21] we review some of
the more significant parts of the theory. First, by explicitly
accounting for the energy shift of state |1) due to the signal
[i.e., replacing 8x(0) by 8x(£)s)] we can reduce the four-level
system in Fig. 1 to an approximate three-level EIT system in
which level |4) and the signal field are not included. This
approximation ignores the increases of the decoherence rate
I' due to the signal field, which is given by I'(Qd) =1'(0)
+2]Qg?y, /A} where y, =1y/2 is the transverse decoher-
ence rate. Ignoring this additional decoherence is a reason-
able approximation as long as Ag>>y, . In the measurement
section, Sec. IV, we see that neglecting the additional deco-
herence creates some small discrepancies between theory
and experiment, but neglecting it makes the equations much
simpler.

The master equations for the reduced three-level system
[1), |2), and |3) are

P33 == Yp33 + Im(Qaps, + Qyp3)), (3)
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) Y 1
P2=" P33~ F(Pzz - E) - Im(Q,p3), (4)
) Y 1
P11 = 5P33—F P~y - Im(Q,ps3), (5)
) ) Or(Qdg)
P32=<1A(Qs)—l R2 = _ h)Psz
Q Qp .
+i_C(P22—P33) +i_PP21v (6)
2 2
. ) Or(Qdg)
P31 = <1A(Qs) +1 R2 = _ 'YL)pSl
Q QO
+i7P(P11 - p33) +i7€P21, (7)
and
) . Qp . O
pa1 =[i6r(Qs) =T} 1pyy —ITPP32+17CP31, (8)

where y, =(y+1")/2+7 is the transverse decoherence rate
for the excited state coherences and I' =(I'"+I') is the
ground state coherence decay rate. The primed decoherence
rates 7' and I'" are dephasing rates (i.e., loss of coherence
without transfer of population from one state to another).

When the excited state coherences p;; and p,3 can be
adiabatically eliminated (this assumption is easily satisfied
for our choice of experimental parameters), the three-level
master equation simplifies to a two-level Bloch vector equa-
tion [34]. Additionally, the adiabatic elimination of the ex-
cited state coherences makes it possible to write the probe
susceptibility as a simple function of the coherence between
the ground states p,;:

Npalpaal 1 = (palp5)"
Zfoh A—52+i'yl ’

Xp(le) = 9)

where N is the atomic density, p(z_l)z—Q;QC/ 0?=-0,/Qis
the ground state coherence (GSC) of the dark state, and |-)
=Qp|1)-Q|2) is the dark state. This result also assumes
that pzzzQZC/ 02, p”zQ%/QZ, and both fields are below
saturation )<y [21]. Finally, the equations simplify even
more when we assume the fields are real and positive, the
single-photon detuning is zero, A=0, and the Raman detun-
ing is much smaller than the homogeneous linewidth
Or < 7y, . All of the above assumptions are valid for the ex-
perimental parameters discussed in this paper.

Expressing the susceptibility as a function of the GSC, as
is done in Eq. (11), has several advantages for discussing the
dynamics of the EIT Kerr nonlinearity. The primary advan-
tage is that the dynamics and rise times of the GSC have a
physically intuitive interpretation. Also, the GSC interpreta-
tion results in simple analytic expressions for the steady-state
and transient solutions of the Bloch vector equation.
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FIG. 2. (Color online) (a) Steady-state (solid line) and transient
(dashed line) ground state coherences are plotted in the complex
plane, while (b) the probe susceptibility is plotted as a function of
the Raman detuning &g. All plots are theoretical with R~ 5I", and
all variables except the Raman detuning are held constant. The tran-
sient ground state coherence curve (dashed) started with steady
state for d=0, then suddenly the Raman detuning changed to 2R.
To show the mapping between ground state coherence and probe
susceptibility four shapes corresponding to four Raman detunings
have been plotted on both the steady-state ground state coherence
and susceptibility curves.

Both of these advantages are demonstrated in Fig. 2. First,
Fig. 2(a) shows that the steady-state GSC as a function of
Raman detuning is a circle (solid line) in the complex plane;
mathematically this is

PSR

(R+I)—idg (10)

P(zsf )(5R) =

The optical pumping rate R~?/vy, is the rate at which
optical pumping transfers atoms from the bright state to the
dark state. Figure 2(b) shows the real (black line) and imagi-
nary (gray line) parts of the steady-state probe susceptibility,

N ;€ Sx+T[(R+T) +iR&g)
p w3y (R+F)2+ 81% ’

(11)

plotted as a function of the Raman detuning, where a,
=Npy,| us|*/2h €y, is the probe absorption coefficient. To
help visualize the mapping of Eq. (11) between GSC and
probe susceptibility, corresponding points on the GSC and
susceptibility plots in Fig. 2 are indicated by various shapes
(e.g., triangle, square, circle, diamond).

The dashed line in Fig. 2(a) shows a trajectory of the
dynamical evolution of the GSC. Mathematically these tra-
jectories are given by

pa(t) = P(2S1S) +[p2(0) - P(zﬂs)]et(iﬁR_R_F) fort =0,
(12)

where p,;(0) is the initial GSC and all parameters are held
constant for times >0 with a steady-state GSC of pgsf).
When the final conditions have dz =R the trajectories follow
spiral patterns similar to the trajectory shown in the dashed
line in Fig. 2(a), and when the final Raman detuning is

|6x| <R the trajectories are essentially straight lines from
p21(0) to P(zsls)~
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FIG. 3. (Color online) The real and imaginary parts of the probe
susceptibility plotted as a function of time. The same parameters
have been used as in Fig. 2 (i.e., R=5I", for =0, 8=0, and for
t>0, x=2R).

Figure 3 shows the EIT Kerr transients in the time domain
[this is the same trajectory as the dashed line in Fig. 2(a)].
Plotted as a function of time the real and imaginary parts of
the susceptibility exhibit damped simple harmonic oscilla-
tions.

From transient curves, like those in Fig. 3, it is possible to
find the 1/e rise times for the refractive and absorptive parts
of the EIT Kerr nonlinearity. Figure 4 shows these rise times
as a function of Raman detuning. The refractive and absorp-
tive rise times approach two different sets of asymptotes in
the large Raman detuning limit §z>> R and in the small Ra-
man detuning limit <R (the condition for EIT is R>>T
making R+1"=R).

For most refractive EIT Kerr applications it is generally
desirable to work near Raman resonance with changes in
Raman detuning that are small relative to the EIT linewidth.
That is, o < R for all times. This provides a maximal refrac-
tive Kerr nonlinearity with minimal change in absorption. In
this small Raman detuning regime, oz <R, the 1/e rise and
fall times for refraction are given by

/ T4 bs,rise

g T /
10 Refrise

Rise time (tR)

10" 10° 10
Raman detuning (BR/R)

FIG. 4. Solid lines show the 1/e rise time for absorption and
refraction resulting from the EIT Kerr nonlinearity. Rise times are
plotted logarithmically as a function of the magnitude of the Raman
detuning Sg. All quantities are dimensionless and normalized by the
optical pumping rate R, and I'/R=0.2. For small detunings the rise
times asymptotically approach 7,,,=2.15/(R+I") and 7=1/(R
+I"). For large two-photon detunings the rise times asymptotically
approach 7,,,=1.2/8 and 7,,;=0.63(R+T)/ 5. These asymptotes
are shown as the dashed lines.
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1+ a,z/4
3 — T [ Zai
lim Tref,rise = lim Tref,fall - (1 3)
Sp—0 Sp—0 R+T

and the absorption rise and fall times are

1+ (1+a,z/2)c

lim 7 jo= ————L2—— 14
5RHOTabs,nse R+T ( )
and
. 1+43c,a,z/8
lim Ty pn=——+—, (15)

Sg—0 R+T

where ¢;=In{2+In[2+In(2+---)]}, and &@,=a,R/(R+I) is
the depth of the EIT; the atoms occupy the half space z=0.
The probe and coupling fields are copropagating from
smaller z to larger z. These rise/fall times can be calculated
analytically for small optical depths @,z<1. For large opti-
cal depths the dependence of these rise and fall times on @,z
was determined by curve fitting numerical simulations of an
optically thick four-level system.

These rise and fall times can be understood intuitively as
the ratio between the total phase change of the GSC A# and

the rate of GSC phase change 6 (we use 6 for the phase of
the GSC, and ¢ for the phase of the probe field). In the limit
Sr<R and Q->Qp the optically thick equivalent of Egq.
(10) is

0p(2) p5'R ( Sr )

16
QO R+T “P\'R4T (16)

p5(z) =

where

@ 1)
QP(Z) i QP(O)eXp|:_ 2(2 _:1“) (F + iRR+1;>:| ’ (17)

and we have assumed Q(z) =(0). The total GSC phase
change is Af=6g(1+za,/2)/(R+T), and from Eq. (12) we

see that 0= 8. Thus, we expect the rise time to be approxi-
mately

T~A0/6=(1+za&,/2)/(R+T).

In the large Raman detuning limit, i.e., 8g>> (R+I"), the
rise times become more complicated. However, for small
optical depths the large-Raman-detuning rise times are still
straightforward to calculate. In this regime the GSC phase
change is Af=~ 71— 5;/(R+1), and the rise times are

arccos[e™ + (R + 1)/ 6]

(18)

lim Tabs,rise =
§R—> © 5R

and

. (1-eHR+T)
lim Tref,rise =T < -

Jim 5 (19)

For negligible optical thickness (i.e., aL>> 1), the asymptotic
rise times from Egs. (13), (14), (18), and (19) are shown in
Fig. 4 as dashed lines to compare with the exact rise times.

This simple four-level model provides a simple intuitive
picture for how the EIT Kerr nonlinearity evolves as a func-
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FIG. 5. (Color online) Schematic of the experimental apparatus.
The probe beam is sent through a Mach-Zehnder interferometer to
measure changes in the relative phase between the two arms of the
interferometer. The coupling and signal beams interact with the
probe in the rubidium cell before being separated from the probe
via polarization and spectral filtering. A computer controlled data
acquisition system records and averages the difference signal from
balanced homodyne detection.

tion of time, and almost all of the ideas presented in this
section generalize to the more complicated experimental sys-
tem discussed in the next sections. However, there are dif-
ferences between the simplified theory and the experimental
reality, and we discuss these differences as they become im-
portant.

For applications of the refractive EIT Kerr nonlinearity,
Eq. (13) is the most significant result of this section. This
equation shows that when &y <R the rise times are depen-
dent on only two parameters: The optical depth a,L and the
EIT linewidth FWHM=2(R+1I"), both of which are straight-
forward to measure experimentally. For large Raman detun-
ings 8> R, the rise times are also dependent on the size of
the Stark shift (i.e., Raman detuning) which is also an ex-
perimentally tunable parameter.

III. EXPERIMENT

Using a Mach-Zehnder interferometer as shown in Fig. 5,
we observed the transients of EIT on the D line of *’Rb. The
transients are created by pulsing the signal beam which is
about 2 GHz red detuned from the *Rb D, F=2—F’
={2,3} transitions. Previous experiments used frequency
modulation spectroscopy to observe similar Stark shifts and
refractive EIT Kerr nonlinearities [11], but such experiments
are unable to observe the transient behavior of the systems
because they require lock-in amplification. Thus this is a
direct observation of the dynamics and rise times of the re-
fractive EIT Kerr nonlinearity.

Both probe and coupling fields are obtained from a single
external cavity diode laser (ECDL1 with wavelength A\
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=795 nm) by splitting the beam at a polarizing beam splitter
(PBS) to obtain a coupling beam and a probe beam. The
probe beam is double passed through a 1.5 GHz acousto-
optic modulator (AOM) to shift its frequency by approxi-
mately 3 GHz the ground state hyperfine splitting of *’Rb.
Deriving both EIT fields from a single laser ensures the ex-
cellent phase coherence necessary for good EIT. Addition-
ally, we are able to control the frequency difference between
probe and coupling precisely via the microwave frequency
synthesizer driving the AOM.

A second laser (ECDL2 with wavelength N=780 nm) is
pulsed using an 80 MHz AOM with 50 ns rise time to create
the signal pulses. Both ECDL lasers are New Focus Vortex
lasers (i.e., they are single-mode external-cavity-feedback di-
ode lasers with linewidths of less than 300 kHz). The signal
and coupling beams are combined on a 50/50 beam splitter
(BS) and are both horizontally polarized so they can be
coupled into the Mach-Zehnder interferometer via a PBS.

The probe is split into two paths in the Mach-Zehnder
interferometer: a reference local oscillator path and a probe
path that goes through the cell (the reference field is about a
factor of two larger than the probe field Ex~2E,). After the
Mach-Zehnder interferometer, balanced homodyne detection
measures changes in the probe phase. Changes in probe am-
plitude can also be measured by blocking the reference arm
of the interferometer and measuring the current from just one
of the photodiodes. Both polarization and spectral filtering
are used after the cell to isolate the probe field from the
coupling and signal fields. When necessary the relative phase
of the two arms of the interferometer scanned and locked
using the piezomounted mirror (PZT) after the cell. The ho-
modyne signal is given by

O = |Eg||Ep|sin[ ¢, + Im(x,)kpL], (20)

where Ej is the electric field amplitude in the reference leg
of the interferometer, ¢,, is the relative phase between the
two arms of the interferometer controlled via the piezovolt-
age, L is the length of the cell, and kp=wp/c is the wave
number of the probe field.

The cell apparatus consists of three layers of magnetic
shielding with a long solenoid inside the innermost layer of
magnetic shielding. In addition to containing 20 torr of ni-
trogen buffer gas, the rubidium cell contains both rubidium
isotopes in their natural abundance (27.8% ®'Rb and 72.2%
85Rb). The cell is cylindrical in shape with a length of
30 mm and a diameter of 25.4 mm. The number density of
rubidium atoms is controlled by heating the cell with electri-
cal strip heaters positioned between the outer and middle
layers of magnetic shielding.

At the output of the Mach-Zehnder interferometer the ho-
modyne signal is measured using two reverse biased
Hamamatsu S2830 photodiodes soldered for differential de-
tection. After the photodiodes a 1 MHz low-noise transim-
pedance amplifier prepares the signal for computer con-
trolled data acquisition (DAQ). CW measurements are
recorded by the DAQ, and the fast transient data are recorded
and averaged using a 1.5 GHz bandwidth oscilloscope.

Figure 6 shows the hyperfine levels for the **Rb D, and
D, lines with laser transitions that are driven in the experi-
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FIG. 6. (Color online) Level diagram of **Rb D, and D, lines
with the primary transitions excited by the probe, coupling, and
signal fields. The inset shows the approximate beam sizes and
shapes for the probe (w,,=1mm and w,,=1.8 mm), coupling
(w.=2.1 mm), and signal (w;=2.2 mm) fields.

ment. The hyperfine splittings for the 5P;,, (361 MHz) and
5P;, (<220 MHz) hyperfine levels are much smaller than
the Doppler width (600 MHz), such that the individual hy-
perfine levels cannot be resolved. Additionally, rubidium-
nitrogen collisions create a rapid interchange of atoms
among the velocity classes without decohering the GSC,
which means that all EIT parameters such as optical pump-
ing R and linewidths y must be averaged over all velocity
classes (see the Appendix). Finally, the signal field Stark
shifts both ground hyperfine levels resulting in a total change
in Raman detuning of

Q%A
4A5(Ag+ Ay’

where Ayy=27X3.0357 GHz is the hyperfine splitting of the
ground states.

The inset in Fig. 6 shows the approximate 1/¢? intensity
beam shapes for the coupling, probe, and signal fields (in the
experiment the beams were not perfectly centered). The
coupling and signal beams were essentially identical with
beam radius of w,~w,=2.2 mm, while the probe beam was
smaller and slightly elliptical w,,=1.0 mm and w,,
=1.8 mm.

Or(Qdg) = GR(0) + (21)

IV. MEASUREMENTS

To verify the dependence of the EIT Kerr dynamics on
optical depth, EIT linewidth, and Raman detuning, we mea-
sured the transient and CW response of EIT to the signal
field while varying the cell temperature (optical thickness
aL), coupling intensity [EIT linewidth (R+I")], and signal
intensity (Stark shift ). The different conditions under
which data were taken are summarized in Table 1. Each row
in Table I corresponds to a different set of data in which both
CW and transient measurements were taken for several sig-
nal powers ranging from 0.2 mW to 4.9 mW. In all measure-
ments the probe power was 40 uW, and the signal detuning
was Ag=27mX 1.9 GHz. In the following sections we prima-
rily present the data for the first row of Table I, but the same
analysis was carried out for each row of Table I.
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TABLE I. Several measured parameters for the EIT line shapes
with no signal present. The beam powers were measured immedi-
ately before the PBS in front of the vapor cell. aL is the maximum
absorption experienced far from Raman resonance. @L is the differ-
ence between maximum absorption and the absorption minimum
near Raman resonance, and EIT FWHM is self-explanatory.

Power al al EIT
Temperature coupl. total  EIT depth (FWHM)
58°C 340(20) uW  5.2(3) 3.7(1) 11.5(7) kHz
58°C 1.0(1) W  5.3(2) 43(1)  31.9(1.2) kHz
58 °C 1.9(1) uW  55(2)  4.6(1)  58.1(1.8) kHz
48 °C 1LO(1) W 20(1)  1.5(1)  31.9(7) kHz
50°C 1L0(1) wW  33(1)  2.6(1)  33.2(7) kHz
72°C LO(1) uW  20409) 164(7)  41(3) kHz

A. CW measurements

Figure 7 shows the CW probe absorption as a function of
Raman detuning for several different signal powers, with a
cell temperature of 58 °C and a coupling power of 0.34 mW
(first row in Table I). Figures 10-15 also use this same data
set. In addition to the signal field Stark shifting the absorp-
tion minimum, the signal field also causes the transparency
resonance to become shallower and broader. These effects
are largely due to the additional decoherence created by the
signal field [i.e., ['(Q)=T'(0)+Q5y, /AZ], which is not ex-
plicitly included in the theory of Sec. II. This additional de-
coherence is most noticeable when the optical pumping is of
the same order of magnitude as the decoherence rate (i.e.,
R~T), which is the case for the data corresponding to row 1
of Table I. For all other sets of parameters in Table I the
optical pumping R is a factor of 3—-6 times larger than for

~

w

Probe absorption (al)

N

-20 -10 0 10 20 30
Raman Detuning (kHz)

FIG. 7. (Color online) Probe absorption versus Raman detuning
for different CW signal powers. The signal detuning is Ag=2
X 1.9 GHz and the coupling (probe) power is 340 uW (40 uW).
The fact that with no signal field Raman resonance is already
shifted away from the expected zero is due mostly to the 20 torr N,
buffer gas shifting the hyperfine splitting (Aw,s=27 X 240 Hz per
torr N,). The probe and coupling also cause a small (about 1 kHz)
Stark shift at these powers.
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FIG. 8. (Color online) Stark shift due to the signal field for
several settings of coupling power and EIT optical depth.

row 1 and the broadening is significantly less noticeable.

From the displacement of the probe absorption minimum
we determined the Stark shift as a function of signal power
(shown in Fig. 8). Figure 8 shows the Stark shifts due to the
signal field only for all rows of Table I.

There is also a Stark shift due to the coupling field inter-
acting with the probe transitions and a Stark shift due to the
probe field interacting with the coupling transitions. This
Stark shift is plotted as a function of coupling power in Fig.
9. Also, plotted in Fig. 9 is the transparency linewidth versus
coupling power. The linewidth and Stark shift are also
slightly dependent on the probe power, but probe power is
sufficiently small that it can be neglected. Figures 8 and 9
exhibit the expected linear dependence on intensity.

In addition to measuring the imaginary part of the probe
susceptibility via the probe absorption, we also measured the
refractive part of the susceptibility using balanced homodyne
detection shown in Figs. 10 and 11. The homodyne signal
was measured by setting the phase ¢, to a desired value and
then stepping the Raman detuning over the desired range
with a dwell time of 200 ms or greater at each Raman de-
tuning.

Figure 10 shows the homodyne signal for the first row of
Table T with no signal field (black) and a signal power of

80 i
EIT Linewidth

N ok
:_5 60 (FWHM) — theory
= 40} A alx15
=40 x ol=26
= 20t O ol~45
% olx16

0 ‘

5 ‘- ‘ .
N 4| Stark shift due to Coupling
§/ 3 and Probe fields only
= A alx15
B o2r x alx26 ||
<4l O alx45 []
& 0 * al~16

0 0.5 1 1.5 2 2.5

Coupling Power (mW)

FIG. 9. (Color online) Stark shift due to the coupling and probe
fields as a function of coupling power. Also shown is the FWHM of
the EIT resonance versus coupling power. The signal was oft for all
of these measurements.
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[N

Homodyne signal (arb. units)

30 20 -10 0 10 20 30 40 50
Raman detuning (kHz)

FIG. 10. (Color online) Raw CW homodyne data for coupling
power of 340 uW. Two sets of data are shown: one for P;=0 and
the other for P;=4.5 mW. The dotted lines show the homodyne
envelope (i.e., the maximum and minimum values which the homo-
dyne signal can obtain).

4.5 mW (nonblack). The dashed curves show an envelope of
maximum and minimum homodyne signal [i.e.,
+|E,||E,(8g)|], which is determined for each Raman detuning
g by measuring amplitude of the homodyne sinusoid when
the phase ¢, is scanned over several cycles. In Fig. 11 we
have used the data from Fig. 10 to calculate the real and
imaginary parts of the probe susceptibility. The homodyne
envelope gives the absorptive (imaginary) part of the probe
susceptibility, and the refractive (real) part of the probe sus-
ceptibility is extracted using Eq. (20), the homodyne enve-
lope, and the homodyne signal.

B. Transients measurements

Homodyne detection was also used to measure the tran-
sient response of the probe field when the signal field is
turned on and off with a fast rise time. Figure 12 shows the
transient homodyne signal and homodyne envelope when the

N}

N

w o

N}

Probe susceptibility (aL/2)

(peut ur ov) Aupgndaosns aqold

0 . . . .
-30 -20 -10 0 10 20 30 40 50

Raman Detuning (kHz)

FIG. 11. (Color online) Measured absorption aL and phase shift
A¢ derived from the homodyne data in Fig. 10. In addition to
obtaining refraction information we are able to confirm the absorp-
tion measurements shown in Fig. 7.
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Homodyne ==
Envelope =—
Signal --

Homodyne Signal (arb. units)

0 100 2004500 600 700 800
Time (us)

FIG. 12. (Color online) Homodyne measurements as a function
of time (Py;=4.5 mW, P.=340 uW). The signal was turned on at
t=0 and then turned off again at r=500 ws. Similar to Fig. 10, the
envelope shows the maximum and minimum values obtainable by
the homodyne signal.

peak signal power was 4.5 mW and all other parameters are
given by the first row in Table I. From these measurements,
the absorptive and refractive transients of the probe field can
be extracted. Figure 13 shows the extracted change in probe
absorption and probe phase for different choices of peak sig-
nal power. The inset shows the measured absorption and dis-
persion curves from Fig. 11 when P¢=0. The vertical lines in
the Fig. 11 inset show the Stark shifts corresponding to dif-
ferent signal powers. The square dashed line in Fig. 11
shows the time during which the signal was on.

There are several characteristics of these transients worth
noting. First, the steady-state changes in absorption and re-
fraction can be estimated by looking at the Fig. 11 inset. The
real and imaginary parts of the susceptibility are Stark
shifted from their Raman resonance values to approximately
those values indicated by the vertical lines in the Fig. 11
inset. For example, for small signal powers (e.g., Pg
=0.2 mW and P¢=0.4 mW) the change in refraction is larger
than the change in absorption, because near Raman reso-

0 020 30
Raman Detuning (kHz)

s
—
3
c
2
go.
o
(2]
< o 3 L L ! ;
0 50 100 150 l—J~ 500 550 600 650 700
Time (us)

FIG. 13. (Color online) Change in refraction and absorption as a
function of time for different values of peak signal power. Both
refraction and absorption are measured relative to their respective
values when the signal is off.
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Dynamics of Ground State Coherence

+— Rise Dynamics

—e— P, =45 mW
== Py =2.5mW
S Py =1.5mW
- Ps=0.4mW

0 01 02 03 04 05 06 07 08
Re(P21/50
(P/p0)

FIG. 14. (Color online) Trajectories of the ground state coher-
ence GSC in the complex plane. GSC was derived using Eq. (11)
and the refraction and absorption transients in Fig. 13. Steady state
GSC values (black line) and transient data (nonblack textured lines)
are both shown. The curved or spiraling lines show the rise dynam-
ics (6g#0), while the straighter lines show the fall dynamics (g
=0).

Fall Dynamics

nance the slope of the dispersion curve is greater than the
slope of the absorption curve. According to the theory from
Sec. II the change in absorption is quadratic for small Stark
shifts around Raman resonance. However, the theory ne-
glects the small linear change in the absorption due to the
increase in decoherence F(Qs)=F(0)+ZQ§'y o/ A§ arising
from the signal field. For small signal powers the Stark shift
is a constant.

For large signal fields the rise time decreases and the os-
cillatory nature of the transients becomes more noticeable.
The fall time is independent of the signal field and is never
oscillatory because 6z=0 when the signal field is off.

Additional insight comes from considering the dynamics
of the GSC. In Fig. 14 we have used the inverse mapping of
Eq. (11) to obtain the measured GSC transients. The real part
of the GSC is plotted versus the imaginary part of the GSC
parametrically as a function of time. The rise dynamics look
very similar to the transient trajectory shown in the theory
plot in Fig. 2. The fall dynamics are essentially straight lines
back toward the dark state GSC.

Figure 15 shows measured 1/e rise and fall times for the
transient measurements presented in Fig. 13. The solid lines
are theoretical rise times in which optical thickness is ac-
counted for by multiplying the theory curves from Fig. 4 by
the factor (1+a&L/4) for the refractive curves and the absorp-
tive theory curves have been multiplied by 1+c aL/(2
+2c,). The fall times are mostly independent of the size of
the Stark shift as expected (the theory curves are only for the
rise times, not the fall times). The theory curves agree very
well with the measured rise times, except for the absorptive
rise and fall times for small Stark shifts. For small Stark
shifts the change in absorption is very small, as can be seen
in Fig. 13, making this discrepancy of little practical impor-
tance. Also, there is no simple analytic theory for the rise
time when the Stark shift is large (i.e., 5g ~R), so it is some-
what surprising that the theory curves agree as well as they
do in this region.
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FIG. 15. (Color online) Rise times of the refraction and absorp-
tion resulting from the EIT Kerr nonlinearity (P.=340). Squares
and triangles show the measured refractive rise and fall times. Dia-
monds and circles show the measured absorptive rise and fall times,
and solid curves are theory for the rise times. The values alL
=3.75 and R+I'=27 kHz are used to obtain the theory curve fit.

Figure 16 shows the rise time plots for the data sets cor-
responding to the second through fifth rows of Table I. For
each data set in Fig. 15 we include the EIT half width at half
maximum, HWHM=R+TI', and EIT depth which were used
to calculate the theory curves.

Finally, Fig. 17 shows the measured and theoretical rise
times versus optical thickness for small Stark shifts. The
measured refractive rise and fall times fit the theory curve
well. For small optical depths aL <6 the absorptive rise time
agrees with theory. However, the absorptive fall times differ
from the theory, and both absorptive rise and fall times dis-
agree with theory for large optical depths. It is not clear why
these differences exist, and they are not significant for appli-

100 T T T T

(a) ° (b)

@ 10} -
% GL=17 al =26
e , R+ = 12 kHz R+T = 12 kHz
© Q
- (c)
(@)
%)
Y
10¢

oL =4.3

Gl = 4.6
R+I"=12 kHz R+T = 20 kHz
2 . . .

1 10 1 10
Raman detuning (kHz)

FIG. 16. (Color online) Rise- and fall-time measurements for
the conditions (a) 7=48 °C and P.=1 mW, (b) 7=52 °C and P,
=1 mW, (¢) T=58 °C and P.=1 mW, and (d) 7=58 °C and P,
=1.9 mW. The definitions for measured data and curve fits are the
same as in Fig. 15, and the parameters used in the curve fits are
given in each figure.
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FIG. 17. (Color online) Rise and fall times for the refractive and
absorptive parts of the EIT Kerr nonlinearity versus optical depth.

The Stark shift is small [Szr<(R+T)] for all measurements and
theory.

cations based on the refractive EIT Kerr nonlinearity.

V. DISCUSSION

Although the simple theory from Sec. II shows general
agreement with the measured results, there are several differ-
ences which should be explained. These differences mostly
arise from two sources: Approximations made in the theory,
and the experimental system is more complicated than the
theoretical system (note that the theoretical system assumes
plane waves, a single velocity class, and a four-level atom).

We have already mentioned that in addition to creating the
Stark shift the signal field also adds to the decoherence be-
tween ground states; i.e.,

T'(Qg) =T(0) + O3y, /AL

By leaving this additional decoherence out of the theory (see
Sec. II) the equations become simpler, but this also leads to
some inaccuracy. Figure 18 illustrates the results of neglect-
ing the signal dependent decoherence, by comparing the
measured and theoretical GSC dynamics. First, the measured

(22)

(a)

Measured GSC Dynamics

Re(P/p0)

0 0.2 0.4 0.6 0.8
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steady-state GSC is not a circle as predicted by the theory. In
the theory near 5;=0 the change in refraction is linear in
signal intensity [Re(Ay,)Im(p,;) «}] whereas the ab-
sorption is quadratic in signal intensity [Im(Ay,)>Re(p,)
e Qé] resulting in a smooth quadratic steady-state GSC curve
near Raman resonance. However, in reality both the absorp-
tion and refraction have a linear dependence on the signal,
and the measured steady-state GSC curve comes to a cusp
near Raman resonance. The signal dependent decoherence is
also the source for the differences between the transient mea-
sured and theoretical GSC curves. When the signal depen-
dent decoherence is used in calculations simple analytic re-
sults are no longer possible but the theory agrees much more
closely with measurements. Even with its inadequacies the
theory does a good job of predicting the measurements as
shown in Fig. 18.

Other differences arise because the experimental system is
actually a collection of many systems (i.e., velocity classes,
etc.) that must be averaged. This averaging takes several
forms. First, the °Rb level structure for the D, and D, lines
is rather complicated (eight hyperfine levels and 48 magnetic
sublevels) resulting in five dark states and seven bright
states. Second, at room temperature °Rb experiences signifi-
cant Doppler broadening, requiring us to average over atoms
from different velocity classes. Finally, the experiment uses
Gaussian-like beams with spatially varying intensities, re-
quiring spatial averaging.

The experimental EIT Kerr system with a total of 48 lev-
els will obviously be more complicated than the four-level
system assumed in Sec. II. Even so, the theory of Sec. II
accurately predicts most experimental observations. One sig-
nificant difference resulting from the experimental level
structures is that four of the five dark states are only semi-
dark. These semidark states are much darker than bright
states, but they are still weakly coupled with the excited
states resulting in nonzero transparency even when I'=0. For
the parameters in the experiment these semidark states limit
our best transparency to about aL/7. The Appendix has the
details about how we average over dark states and velocity
classes to obtain the effective optical pumping rate R,,. and
homogeneous linewidth 7.

(b)
Theoretical GSC Dynamics
0.6

FIG. 18. (a) Measured transient (solid line with dots) and steady-state (solid line) GSC and (b) transient (dashed line) and steady-state
(solid line) GSC calculated using the theory from Sec. II. Both plots show the normalized real part of the GSC plotted versus the imaginary
part of the GSC. The GSCs are plotted parametrically as a function of time (transient data), or as a function of Raman detuning (steady-state
data). The transient data show GSC starting out in steady state for zero Raman detuning, and evolving toward steady state when the Raman
detuning is g = 1.2(R+T), after which the Raman detuning is sharply switched back to zero, and the GSC again evolves toward steady state.
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The spatial averaging over variations in field intensities
has the primary result that the simple relation between the
rise times and the EIT HWHM must be slightly modified to
become

1+ aL/4

Tref =f(HWHM) > (23)

where HWHM=R+1 and f is a integration factor accounting
for spatial averaging. The factor f arises because the effect of
spatial averaging is slightly different for the 1/e rise time
and the HWHM. Diffusion is also important in spatial aver-
aging because it tends to coarse-grain the averaging. The
characteristic diffusion length is [, = V0l Tk, where  is the
mean velocity, [, is the mean free path length between
87Rb-N, collisions, and Tx=1/R is the optical pumping pe-
riod. Atoms that are within the characteristic diffusion length
will on average have encountered the same average field in-
tensity over the last optical pumping period Ty regardless of
the difference between the field intensities at their current
locations. This diffusion length sets the characteristic length
for coarse graining the spatial average.

In the experiment transit-time broadening [35] is the
dominant source of GSC decoherence, which means that the
diffusion length is related to the beam waist by R/T
~(w,/lp)* (the probe beam waist w, is the limiting beam
waist). Thus, when R~T" the diffusion length is similar to
the beam diameter and f= 1 and spatial averaging does noth-
ing. When R>T" f approaches its maximum value, which
depends on the relative probe and coupling beam diameters.
Experimentally, the changes in f can be calculated for differ-
ent ratios R/I" by taking the ratio of the values for R+1" in
Figs. 15 and 16 and the measured EIT FWHM from Fig. 9.
For coupling powers of P.=0.34 mW, P.=1 mW, and P,
=19 mW we find that f=1, f~1.3, and f=~1.4, respec-
tively. This agrees with the fact that as the optical pumping
rate increases the diffusion length decreases and the value of
f monotonically approaches its maximum value. The maxi-
mum value of f= 1.5 can be calculated by spatial averaging
while assuming an infinitesimal diffusion length.

VI. CONCLUSIONS

The transients and rise times of the EIT Kerr nonlinearity
are well modeled by the theory of Ref. [21] (this theory is
also reviewed in Sec. II). This agreement between theory and
experiment is especially good for the refractive Kerr nonlin-
earity when intensity variations in the fields (e.g., Gaussian
beam shapes) are accounted for. Also, by thinking in terms of
the GSC it is possible to develop a more intuitive under-
standing of the physical mechanisms behind the EIT Kerr
nonlinearity and its dynamics.

Our primary result is that the rise and fall times of the
refractive Kerr nonlinearity are accurately predicted by Eq.
(13) for the small Raman detunings. This means that in the
limit of greatest interest for most EIT Kerr applications (i.e.,
al>>1 and S < R), the EIT Kerr rise time is inversely pro-
portional to the optical thickness and linearly proportional to
the EIT linewidth.

PHYSICAL REVIEW A 76, 033835 (2007)

Both of these proportionalities may prove problematic for
pulsed applications of the refractive EIT Kerr nonlinearity
such as QND measurements of photon number. Pulsed EIT
Kerr applications require a strong nonlinear response at low
pulse energies, which implies that the EIT Kerr nonlinearity
should be both large and fast. However, one advantage of the
EIT Kerr nonlinearity is that it can theoretically be made
arbitrarily large because it is linearly proportional to the op-
tical thickness and inversely proportional to the EIT line-
width. Thus, making the EIT Kerr nonlinearity large also
makes it slow and vice versa. Applications that are limited by
the slow rise time of the EIT Kerr nonlinearity include: QND
measurement of photon number, entangling optical wave
packets, synthesis of number states, and single photon
sources and detectors. All of these applications require
pulsed few-photon operation.

Although the slow rise time of EIT Kerr nonlinearity lim-
its its applicability, the EIT Kerr nonlinearity is still com-
paratively large relative to other Kerr nonlinearities, and it
has other advantages such as weak self-phase modulation. In
most parametric nonlinear processes the rise time is so fast
that it is ignored. For EIT enhanced nonlinear processes the
rise time is sufficiently slow that it cannot be ignored for
most applications.
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APPENDIX: CALCULATIONS OF AVERAGE
OPTICAL PUMPING RATE AND EFFECTIVE
HOMOGENEOUS LINEWIDTH

In this appendix we discuss how the complicated %Rb
system can be distilled into a couple of parameters: The av-
erage optical pumping rate R,,., and the effective homoge-
neous linewidth vy,g. These parameters allow us to use the
simple four-level theory of Sec. II to predict the EIT dynam-
ics in ®Rb. In the experiment EIT is created on the D, line of
85Rb using orthogonal linearly polarized probe and coupling
beams. Choosing the quantization axis along coupling beam
polarization, Fig. 19 shows the probe and coupling transi-
tions with their transition coefficients.

In order to achieve coherent population trapping and EIT,
the dark states must be simultaneously dark for both the F’
=2 and F’'=3 excited hyperfine levels. There is only one
superposition of ground states that satisfies this condition.

There are also four other semidark states which are not
completely decoupled from the excited states, but are more
weakly coupled to the excited than the bright states. To cal-
culate the coupling between the ground and excited states we
solve for the eigenvalues of the time independent Hamil-
tonian. The Hamiltonian accounts for only the D, line dipole
allowed transitions explicitly shown in Fig. 19 and includes
all field and detuning parameters while assuming a rotating
reference frame and the rotating wave approximation. The
eigenvalues and eigenvectors are calculated for the case
when 6p=0 and A>(),, where
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FIG. 19. (Color online) Transitions excited by the vertically po-
larized probe laser (gray lines) and horizontally polarized coupling
laser (black lines). The quantization axis is chosen along the hori-
zontal polarization. Also shown are the hyperfine matrix elements
for each excited transition, which are related to the Clebsch-Gordon
coefficients by the factor (—I)F,+J+'+’\/(2F’+1)(21+1) ;, J,F 11},
where I=3/2 is the nuclear spin, J=J'=1/2 are the orbital plus spin
angular momenta for the ground and excited state, respectively, and

we have used the Wigner 6-j symbol.

O, =2pp NEp + L3, (A1)
is the back-of-the-envelope “bright” Rabi frequency for the
Dy line and where wp =2.54% 10‘39 C m is the dipole mo-
ment for the D, line (,LLDI ~ pup,/ \V2). The calculated eigen-
values are the Stark shifted excited and ground state ener-
gies, and the amount of the Stark shift gives the strength of
the coupling. The 12 eigenvectors with eigenvalues closest to
the original ground state energy can be projected onto the
ground states and normalized to create a new orthonormal
basis for the ground states. The Stark shifts of the energy for
these new basis ground states are used to determine the Rabi
frequency (), using
AU;=-Q7/4A, i={1,2,...,12}, (A2)
where AU, is the Stark shift for each of the ground states.
Figure 20 shows each of the 12 ground state Rabi frequen-
cies (); normalized by the back-of-the-envelope “bright”
Rabi frequency (), plotted as a function of the ratio between
probe and coupling field amplitudes Ep/E (for the experi-
ment discussed in this paper 0.2=0,/Q-=0.6). A new or-
thonormal basis for the excited states can be calculated by
projecting the 12 excited state eigenvectors onto the excited
states and normalizing. Each of the new basis ground states
will couple to one of the new basis excited states with the
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FIG. 20. (Color online) Normalized Rabi frequencies ;/Q,
plotted versus the ratio Ep/E.. There are 12 Rabi frequencies:
seven bright states, four quasidark states, and one completely dark
state.

exception of the completely dark states which are completely
decoupled from all other states.

The effective optical pumping rate can be approximated
as the average of the optical pumping rates out of each bright
state into one of the five dark states. The optical pumping
rate out of bright state m is given by

5 12

Ry=2 2 Plef+,)Riy ) »
n=1 I=1

(A3)

where P(e;|+,,) is the steady-state conditional probability
that if the atom is in either bright state |+),, or one of the
excited states, then it is in excited state |e),, and R|e>ﬁ|_>n is
the spontaneous decay rate from excited state |e), to dark
state |-),. The effective optical pumping rate is then

7
1
Rye= ;2 R, (A4)
m=1

where we have assumed that the bright states are equally
populated in steady state (in reality there will be some varia-
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FIG. 21. (Color online) Plot of B=R Y.t/ Qi versus the ratio
Ep/Ec. Also plot is the value 5/12=0.417, which is the ratio of the
number of dark states to ground states. Over the range 0.2
=FEp/E-=0.6 B is approximately 3/8.
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tion in the bright state populations but it should be small for
the parameters considered in the experiment). Evaluating Eq.
(A4) we find that in the range 0.2Q=(),=0.6() that

307

~ , (AS)
8 Vet

ave

where 7y, is the effective homogeneous linewidth that arises
due to a combination of Doppler broadening and buffer gas
effects. Figure 21 shows the value of R, .7Ves/ Qi as a func-
tion of Qp/Q. Naively one might expect this value to be
5/12, which is the ratio between the number of bright states
and the total number of ground states, but calculations shown
in 21 reveal that it is slightly smaller than 5/12 and is weakly
dependent on the ratio p/ Q.

The optical pumping rate also has a spatial dependence
due to the inhomogeneity of the field intensities (i.e., the
beams are approximately Gaussian). Thus quantities that are
dependent on the optical pumping rate such as the rise times
and transparency FWHM must be averaged spatially.

There are two primary contributions to the effective ho-
mogeneous linewidth: homogeneous broadening due to the
buffer gas and Doppler broadening. The buffer gas actual has
two distinct effects. First, collisions between 8Rb and N,

PHYSICAL REVIEW A 76, 033835 (2007)

atoms change the velocities of the atoms. Second, the colli-
sions randomize the phase of the 5S,,— 5P, transitions
which broadens the homogeneous linewidth. For 8Rb with a
N, buffer gas the measured increase in homogeneous line-
width is 16.3 MHz per Torr N, [36,37]. In our experiment
we have 20 Torr N, resulting in y, =330 MHz before con-
sidering Doppler broadening. Although buffer gas collisions
randomize the phase of the 5S;,— 5P, coherences, the
ground state coherences (GSC) are essentially unaffected by
the ¥Rb-N, collisions. Because the **Rb-N, collision rate,
which is about 27X 50 MHz, is much faster than the optical
pumping rate in the experiment R~ 30 kHz, the atoms will
on average “wander” through every velocity class several
times in one optical pumping period 7=1/R without loss of
ground state coherence (GSC). Thus, processes such as EIT
which are determined by the GSC must be averaged over the
contributions from all velocity classes. Thus the effective
homogeneous linewidth is

( N
» EXp|— )
1 Y1 J 2AD)
—= dA, (A6)
Yett \"ETAD -0 4A7 + VZL

and vy,;=660 MHz when Ap=530 MHz and y, =330 MHz.
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