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A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is
proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction
in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical
soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset.
Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of
the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media,
constituting a class of oscillatory solution, is identified.
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I. INTRODUCTION

Spatial solitons are well known in nonlinear optics and
have been studied for many years �1–3�. They are robust,
localized nonlinear waves exhibiting self-stabilizing and
self-guiding properties. Their remarkable stability under per-
turbation can be seen, for example, in the pair-wise collision
between two solitons. They can exhibit mutual transparency,
passing through each other elastically �no change in shape or
velocity� and inducing only a trajectory phase shift �a lateral
displacement in the position of each soliton center from its
unperturbed path�. These features make spatial solitons ideal
candidates for use in future information communication and
technology device applications �4–8�. Before such devices
can be realized, it is necessary to have a thorough under-
standing of the interplay between diffraction and medium
nonlinearity, and also of the limitations of conventional
paraxial modeling.

The term “nonparaxial” is often used to refer to ultranar-
row or subwavelength optical beams �9–14�, where the trans-
verse waist w0 and carrier wavelength � are comparable.
However, a “nonparaxial=ultranarrow” interpretation is in-
sufficiently general. In its widest sense, nonparaxial means
not paraxial and refers to any situation where the paraxial
approximation is violated. A beam may be described as
“paraxial” if it is �i� broad compared to the carrier wave-
length, �ii� of moderate intensity, and �iii� propagating in �or
at a negligible angle with respect to� the reference direction.
If all three criteria are not met simultaneously then the beam
is, by definition, nonparaxial. Here we are concerned with
the Helmholtz scenario, where conditions �i� and �ii� are al-
ways met rigorously but condition �iii� is relaxed. For com-
pleteness, the physical and mathematical character of
ultranarrow-beam and Helmholtz contexts will now be dis-
cussed.

Ultranarrow-beam nonparaxiality was effectively intro-
duced by Lax et al. �9�, who analyzed the fully vectorial
Maxwell equations in terms of a single parameter-of-
smallness ��� /w0. It is now well known that when �

�O�1�, transverse spatial variations of the electric field on
the � scale lead to appreciable divergence in the nonlinear
polarization. These steep gradients tend to produce strong
coupling between components of the field. In such cases, the
evolution of the dominant transverse component can be well
described through an order-of-magnitude analysis of Max-
well’s equations and retaining terms up to O��2�. The gov-
erning equation turns out to be of the nonlinear Schrödinger
�NLS� type, augmented by a range of higher-order diffractive
corrections �9–14�.

Helmholtz nonparaxiality is concerned with off-axis ef-
fects �15�. It differs fundamentally from ultranarrow-beam
contexts, and the arbitrary-angle aspects of optical propaga-
tion cannot be captured by �-type order-of-magnitude analy-
ses. Indeed, it will be shown that the potentially dominant
Helmholtz contribution to evolution is geometrical and can
be of any order irrespective of �. Here, we consider broad
beams in two-dimensional planar waveguides that comprise
a reference longitudinal direction �z� and a single effective
transverse direction �x�. In uniform media, x and z are physi-
cally indistinguishable and this spatial symmetry is respected
by Helmholtz diffraction �16�. The explicit assumption of
broad beams means that ��O�1� and the polarization-
scrambling term ��� ·E� in Maxwell’s equations �9–14� is
unimportant. One may treat the associated refractive-index
distributions within the scalar approximation, and the electric
field as a transverse electric �TE� polarized mode.

In Helmholtz soliton theory �15�, the governing equation
is of the nonlinear Helmholtz �NLH� type. The spatial coor-
dinates appear on an equal footing and diffraction is fully
two dimensional, occurring in both x and z. By omitting the
slowly varying envelope approximation �SVEA�, the angular
restriction inherent to paraxial models is lifted and propaga-
tion may occur at any angle with respect to the reference
direction. For Kerr media, where the refractive index varies
with the square of the �local� optical field amplitude, exact
analytical soliton solutions are now known �15,17�. Exten-
sive numerical simulations have confirmed that they are
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stable robust entities surrounded by wide basins of attraction.
The power-law nonlinearity is of fundamental interest in

optics �18�. It is perhaps the simplest generalization of the
ubiquitous Kerr law and models a material whose refractive
index depends on the optical field amplitude raised to a
power other than 2. Various semiconductors, for example,
InSb �19� and GaAs/GaAlAs �20�, doped filter glasses �such
as CdSxSe1−x� �21�, and liquid crystals �such as methoxyben-
zilidene butylanaline, or MBBA � �18�, can possess power-
law behavior in their refractive index. Power-law solitary
waves have been investigated theoretically in the context of
interface surface modes �22�, and as elementary excitations
in thin films �23� and slab waveguides �24�. Snyder and
Mitchell have also derived an exact soliton solution to a
power-law NLS equation that describes the paraxial evolu-
tion of TE self-guided modes of a planar waveguide �25�.

In this article, we consider the broad range of optical ma-
terials whose field-dependent refractive-index distributions
can possess power-law characteristics. In Sec. II, we propose
a NLH governing equation with a power-law nonlinearity
that captures the Kerr response as a particular case. The geo-
metrical aspects of beam propagation are discussed and three
conservation laws reported. Two exact analytical soliton
families are then presented and the structure of these solu-
tions is explored in detail. In Sec. III, the advantages of using
an elliptic evolution equation are reviewed and the stability
of the Helmholtz solitons is investigated both analytically
and numerically. Perturbed non-Kerr power-law solitons are
discovered to have quite different behavior, under perturba-
tion, from their Kerr subset. Conclusions are presented in
Sec. IV.

II. HELMHOLTZ POWER-LAW SOLITONS

A. Model equation

We consider a continuous-wave scalar electric field with
angular frequency �,

Ẽ�x,z,t� = E�x,z�exp�− i�t� + E*�x,z�exp�+ i�t� , �1�

propagating in a uniform planar waveguide. When the com-
plex spatial envelope containing the field oscillations is as-
sumed to vary on a scale length much larger than �, as it
must for the scalar approximation to hold �10,16�, E�x ,z�
satisfies the NLH equation �15�,

� �2

�z2 +
�2

�x2�E�x,z� +
�2n2

c2 E�x,z� = 0. �2�

This broad beam model follows directly from Maxwell’s
equations when nonlinear divergence is neglected. The
power-law nonlinearity is introduced through a refractive-
index distribution n�	E 	 �=n0+nq	E	q, where n0 is the linear
index, nq is a nonlinear coefficient, and the exponent may
assume continuum values q�0 �25�. The Kerr effect corre-
sponds to q=2, and the generalized form also provides a
model for saturable media when q�2 �22�. If 	nq		E	q�n0,
which is usually satisfied for weak optical nonlinearities
�2,3�, then one has to an excellent approximation n2
n0

2

+2n0nq	E	q. To facilitate a comparison between Helmholtz

and conventional �i.e., paraxial� models, the z axis is chosen
as the reference direction and the spatial part of the electric
field is expressed as E�x ,z�=E0u�x ,z�exp�ikz�, where k
=n0k0 and k0�� /c=2� /�. Using Eq. �2�, one may derive
the normalized equation for the envelope u,

�
�2u

�	2 + i
�u

�	
+

1

2

�2u

�
2 ± 	u	qu = 0. �3�

The spatial coordinates are 	=z /LD and 
=�2x /w0, where
LD=kw0

2 /2 is the diffraction length of a reference Gaussian
beam with waist w0. The � sign flags a focusing or defocus-
ing nonlinearity, respectively, E0= �n0 /k	nq	LD�1/q and �
=1/k2w0

2��2 /4�2n0
2�O�1� quantifies the �inverse� beam

width. Equation �3� has the three associated conserved quan-
tities,

W = �
−�

+�

d

	u	2 − i��u*�u

�	
− u

�u*

�	
�� , �4a�

M = �
−�

+�

d

 i

2
�u*�u

�

−

�u*

�

u� − �� �u*

�	

�u

�

+

�u*

�


�u

�	
�� ,

�4b�

and

H = �
−�

+�

d
�1

2

�u

�


�u*

�

− �

�u

�	

�u*

�	
−

1

1 +
1

2
q

	u	2+q� , �4c�

that represent the energy-flow, momentum, and Hamiltonian,
respectively. Conservation laws are of fundamental impor-
tance in physical systems, and integrals �4a�–�4c� can be
used to monitor the integrity of the numerical scheme �26�
used to solve Eq. �3�.

When analyzing beam propagation in uniform media, a
fundamental symmetry of the governing equation should be
rotational invariance. This property follows directly from the
fact that one has complete freedom to choose any orientation
for the �x ,z� coordinate axes, relative to the beam �15�. For
instance, if a beam is stable when the propagation and z axes
are parallel, it must also be stable when there is an arbitrary
angle 
 between them. One should expect this intuitively
since the physical properties of the beam must be frame in-
dependent. The SVEA breaks rotational invariance, limiting

 to vanishingly small values only �15�.

One should also recognize that even the simplest experi-
mental arrangements can possess intrinsically angular char-
acters that are outside the remit of the paraxial approxima-
tion. Two important examples are beam multiplexing and
interface geometries. We have recently analyzed these con-
figurations for Kerr media using Helmholtz soliton theory
�27,28�. New qualitative phenomena were uncovered in an-
gular regimes, and corrections to paraxial theory in excess of
100% were predicted. The analysis of arbitrary-angle inter-
action or interface geometries that involve non-Kerr power-
law materials cannot proceed without first having detailed
knowledge of the corresponding exact analytical Helmholtz
solitons.
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B. Exact Helmholtz solitons

Since model �3� is second order in the longitudinal coor-
dinate, one expects to find both forward- and backward-
propagating solutions. We have derived two exact analytical
bright soliton solutions for a focusing nonlinearity that are
given by

u�
,	� = � sech2/q� a�
 ± V	�
�1 + 2�V2�

� exp
i� 1 + 4��

1 + 2�V2��V
 ±
	

2�
��exp�− i

	

2�
� ,

�5a�

a � q� �q

2 + q
�1/2

, �5b�

and ��2�q / �2+q�. Here, � is the amplitude parameter and
V is the conventional transverse velocity parameter. The for-
ward solution �upper signs� describes an exponentially-
localized beam evolving with respect to the +z axis at an
angle 
=tan−1��2�V�, where −90° �
� +90°, and 
�0 is
defined in a counterclockwise sense �15�. The forward and
backward solutions in Eq. �5�, depicted in Fig. 1, can be
combined into a single soliton whose propagation direction
is determined solely by 
,

u�
,	� = � sech2/q
a�
 cos 


+
	

�2�
sin 
��exp
i�1 + 4��

2�
�− 
 sin 


+
	

�2�
cos 
��exp�− i

	

2�
� . �6�

The profile of solitons �5� and �6� captures the angular beam-
broadening factor �1+2�V2�−1/2=cos 
 �see Fig. 2�, that can
be non-negligible even in moderate-angle regimes. For in-
stance, when 
= ±60° an observer in the �x ,z� frame per-
ceives the beam width to have doubled compared to its on-
axis value �15�. The origin of the relation tan2 
=2�V2 thus
lies in x-z equivalence, where the full generality of the �zz
operator has been retained. Importantly, 2�V2 can be of any

order of magnitude as 
→ ±90°, independently of the sys-
tem nonlinearity, and even though ��O�1�. At 
= ±90°,
where 2�V2→�, one finds that

u�
,	� = � sech2/q�a
	

�2�
�exp
�i�1 + 4��

2�

�

�exp�− i
	

2�
� , �7�

and the beam thus appears to be infinitely broad in 
. Trans-
forming to the �x ,z� frame �15,27�, it can be seen that Eq. �7�
describes a soliton beam propagating in the �x direction,
respectively �i.e., perpendicularly to the z axis�. These two
results �infinite width in 
 and evolution along �x� are
physically consistent with each other. We note that there is
no analog of Eq. �7� in paraxial theory.

Helmholtz solitons possess a range of generic features
that arise from spatial symmetry. These features have no
counterpart in paraxial theory, and include angular and
intensity-dependent corrections to the beam wave vector, and
the explicit appearance of the longitudinal phase term
exp�−ikz�. The absence of this factor from the paraxial solu-
tions �25� prevents one from transforming rigorously be-
tween the �
 ,	� and �x ,z� coordinate frames.

For the new power-law solitons �5�, it is possible to evalu-
ate the conserved quantities analytically for arbitrary values
of the exponent q,

W = ± �1 + 4���1/2P , �8a�

M =
V

�1 + 2�V2
��1 + 4���P � 2�Q� , �8b�

H =
W

2�
− � 1

2�
� 1
�1 + 2�V2

��1 + 4���P − 2�Q� , �8c�

where the upper �lower� signs denote the invariants of the
forward �backward� beam. The additional parameters P and
Q that appear in Eqs. �8� are given by

FIG. 1. Geometry of the �a� forward and �b� backward soliton
solutions of Eq. �5�, given by the upper and lower choice of signs,
respectively. The propagation angle in both solutions has been de-
fined so that 
�0 is always measured in a counterclockwise sense
relative to the z direction.

FIG. 2. Angular beam broadening of q=3 Helmholtz solitons
�5� for 
=0° �solid line�, 
=30° �dashed line�, 
=45° �dotted line�,
and 
=60° �dot-dashed line, where the beam width has doubled
relative to its on-axis value�. The solid line represents the paraxial
solution �10�, where broadening is absent and the beam has the
same width irrespective of the transverse velocity V.
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P =
�2

a
��2/q� , �9a�

Q = �2

q
�2

��2a����2/q� − ��2/q + 1�� , �9b�

and

��y� �
��1

2
���y�

��1

2
+ y� , �9c�

where � is the Gamma function. Analysis of Eqs. �8b� and
�8c� reveals that for the forward soliton, the energy-
momentum relationship �H /�M =�VH /�VM =V holds, where
�V denotes the derivative with respect to velocity V.

C. Recovery of paraxial solitons

It would be erroneous to conclude that the Helmholtz op-
erator ��		 can be omitted from Eq. �3� whenever ��O�1�.
The arbitrary magnitude of the term 2�V2 demonstrates that
angular effects cannot generally be captured by ultranarrow-
beam �i.e., single-parameter �-type� corrections. Compelling
evidence of the multifold character of ��		 can be found, for
example, in attempts to recover Synder and Mitchell’s
paraxial soliton �25� from Eq. �5�; this cannot be achieved
simply by setting �=0. Instead, recovery is possible if and
only if �a� �→0 �broad beams�, �b� ��q→0 �moderate in-
tensities�, and �c� �V2→0 �negligible propagation angles,
strictly 
→0°�. This simultaneous multiple limit, which is an
algebraic statement of ��		→0, defines the paraxial approxi-
mation. When applied to the forward Helmholtz soliton, one
obtains

u�
,	� 
 � sech2/q�a�
 + V	��exp
− iV
 + i�� −
V2

2
�	� .

�10�

That is, the paraxial limit maps a forward Helmholtz beam
onto its NLS counterpart. While �a� represents the scalar ap-
proximation and �b� is equivalent to n0�2	nq	E0

q �i.e., the
weak-nonlinearity approximation implicit in the derivation
of both Eq. �3� and the corresponding paraxial equation�,
condition �c� is a geometrical contribution that depends
solely upon the choice of reference frame �15�. Interestingly,
the fact that convergence of the Helmholtz beam to the
paraxial solution requires 
→0° �and does not occur for 

→ ±180°� emphasizes the absence of backward waves in
paraxial theory �25�. We also mention that by applying the
multiple limit to Eqs. �8�, one finds the paraxial conserved
quantities �29�, namely W
 P, M 
VP, and H
 1

2V2P−�P
+Q. Thus, P is identical to the beam power of the corre-
sponding paraxial soliton.

The elimination of ��		 from conventional narrow-beam
models must be carried out with care. In particular, one
should ensure that all angular effects in the unscaled system
can be safely neglected. Approximating ��		 by a perturba-

tion series �for example, in �

 operators �10,30�� destroys
the bidirectionality of the governing equation. The resulting
model is then parabolic, rendering finite-angle regimes inac-
cessible.

III. STABILITY OF POWER-LAW SOLITONS

Preserving the full generality of �zz allows Eqs. �2� and �3�
to support forward and backward waves, so propagation may
occur at any angle with respect to the reference direction.
Ellipticity is thus a key feature of both models. Stable propa-
gation in elliptic models has been known for several years
�26�. A linear stability analysis reveals that Helmholtz and
paraxial plane waves, in materials with arbitrary dispersive
nonlinearity, are modulationally stable in the same parameter
regimes �31�. For the power-law nonlinearity �25�, plane
waves with intensity I0 possess a region of modulational in-
stability in the long-wave spectral domain 	K
	��2qI0

q/4,
where K
 is the transverse wave number of the perturbation.
We also mention that numerical simulations confirm excel-
lent agreement between the predictions made by NLH-type
models, such as Eq. �3�, and those of nonlinear Maxwell
equations �32�.

A. Analytical predictions

Spatial symmetry allows one to analyze the stability of
Helmholtz solitons using the well-known Vakhitov-
Kolokolov �VK� integral criterion �2,33�. By rotating the
�x ,z� coordinate axes so that the reference and propagation
directions coincide, an isolated Helmholtz beam with �
�O�1� and �=O�1� in this “on-axis” frame of reference can
be regarded as quasiparaxial. The VK criterion states that a
localized soliton can be stable against small perturbations if
dP /d��0, where P is the beam power and � is the longi-
tudinal wave number. From Eq. �9a�, it is straightforward to
show that

dP

d�
=

1

22/q−1/2��2/q�
�2 + q�2/q

q
�2

q
−

1

2
��2/q−3/2. �11a�

From inspection of Eq. �11a�, it can be seen that the slope of
P��� is always positive provided q�4; when this inequality
is met, P��� increases monotonically. The character of soli-
ton stability is often connected to the curvature of P��� �34�.
For power-law nonlinearity,

d2P

d�2 =
1

22/q−1/2��2/q�
�2 + q�2/q

q
�2

q
−

1

2
��2

q
−

3

2
��2/q−5/2.

�11b�

The curvature is positive when q�qcrit, zero when q=qcrit

= 4
3 , and negative when qcrit�q�4 �see Fig. 3�. The exis-

tence of such a critical point �characterized by a change in
the sign of d2P /d�2� suggests that one should expect a quali-
tative change in the behavior of a perturbed soliton when
q�qcrit.
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B. Numerical perturbative analysis

We now evaluate the robustness of the power-law Helm-
holtz solitons �5� against perturbations to their shape,
through consideration of the initial condition

u�
,0� = sech2/q�a
�exp�− iV� 1 + 4��

1 + 2�V2
� , �12�

where �=2/ �2+q�. The input beam corresponds to a per-
turbed canonical �i.e., �=1� soliton that is launched at an
angle 
=tan−1��2�V� relative to the reference direction.
Through a rotational transformation, it can be seen that Eq.
�12� is entirely equivalent to an on-axis Helmholtz beam
whose width has been reduced by a factor of �1+2�V2�1/2.
Results are presented for a range of launching angles, 

=10°, 30°, and 50°, which represent weak, moderate, and
strong perturbations, respectively. These angles are clearly
nontrivial, and lie outside the remit of the paraxial approxi-
mation. When �=10−3 ��=10−4�, the transverse velocities
are V�3.94 �V�12.47�, V�12.91 �V�40.82�, and V
�26.65 �V�84.27�, respectively.

When 
 deviates from zero, self-reshaping oscillations ap-
pear in the parameters �amplitude, width, and area
=amplitude�width� of the evolving beam. The nature of
these oscillations depends upon the nonlinearity exponent q.
For q=1, sustained self-oscillation dominates the long-term
evolution, and a stationary state does not appear to emerge as
	→�. Over propagation lengths longer than those shown in
Fig. 4�a�, the reshaping oscillations are modulated by a
slowly varying envelope function.

For q=2, it is known that the reshaping oscillations
strictly vanish as 	→� to leave a stationary beam �see Fig.
4�b��. Thus, in Kerr media, one finds that the input beam can
transform asymptotically into an exact Helmholtz soliton
�35�. For quasiparaxial beams, the properties of this
asymptotic Helmholtz Kerr soliton can be predicted by com-
bining geometrical considerations with inverse-scattering
perturbation techniques �36�. For q=3, small perturbations
tend to give rise to sustained self-oscillation in the beam
parameters, similar to the behavior found in the case of q
=1, but of generally longer period. However, as the pertur-
bation increases, self-focusing is insufficient to balance ini-

tial diffractive spreading. The peak amplitude decreases
monotonically with distance, and the beam loses its solitonic
properties �see Fig. 4�c��.

C. Representation of perturbed solitons

One way of representing the evolving beam is in the
�	u	m ,�		u	m� plane �see Fig. 5�. The trajectories associated
with perturbed q=1 solitons can then be associated with qua-
siperiodic orbits. For q=2, where the reshaping oscillations
vanish asymptotically, the trajectory winds onto a fixed point
with �		u	m=�	��		u	m�=0 as 	→�. This fixed point repre-
sents a stationary Helmholtz soliton, and its precise location
on the 	u	m axis depends upon the initial perturbation. We
have classified the Helmholtz solitons with q=2 as fixed
point attractors, and those with q=1 as limit cycle attractors
�31�. Helmholtz solitons with q=3 are conditionally stable.
These designations arise from the similarity between the
phase portraits in Fig. 4 and those found in other nonlinear
dynamical systems �37�. The fixed-point and limit-cycle ter-
minology has been discussed in more detail elsewhere �31�.

FIG. 3. Beam power P as a function of the parameter � �the
longitudinal phase in the corresponding paraxial model �25��, ob-
tained from Eq. �9a�. When q�qcrit, the curvature is positive,
d2P /d�2�0. For q=qcrit=

4
3 , P vs � is a straight line �d2P /d�2

=0�. When qcrit�q�4, the curvature is negative �d2P /d�2�0�.

FIG. 4. Universal reshaping oscillations in the peak amplitude
	u	m for initial condition �12� when �a� q=1, �b� q=2, and �c� q
=3. �b� corresponds to the reshaping of Kerr solitons �35�. Solid
curves: 
=10°, dashed curves: 
=30°, dot-dashed curves: 
=50°.
As 	→�, the oscillations in �b� are, strictly, vanishing. This is not
the case for the other two q values, and the oscillations present
survive in the long-term evolution.
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The stability properties of Helmholtz solitons are mapped
in Fig. 6, as a function of nonlinearity index q and the
launching angle 
 �that determines the magnitude of the per-
turbation�. When 0�q�

4
3 , a perturbed beam exhibits limit-

cycle reshaping oscillations, while for 4
3 �q�

5
2 one observes

fixed-point oscillations. The existence and nature of the bi-
furcation point at qcrit=

4
3 , predicted by the VK criterion, has

thus been confirmed numerically. Numerical analysis has
also identified a second bifurcation, occurring at q= 5

2 , at
which point the reshaping oscillations revert from the fixed-
point type back to limit-cycle type.

The existence of the second bifurcation point was not pre-
dicted from examining the P��� curves, which show no par-

ticular feature at q= 5
2 . Nonlinear analysis �2,34,38� will in-

evitably be required to quantify this bifurcation further, and
also to describe fully the internal mode-type oscillations un-
covered in numerical simulations �34,38�. However, we find
that the single �arbitrary� power-law introduces new com-
plexities into the nonlinear analyses used earlier �34,38�.
Moreover, stability analysis of NLH models also presents
further complications, such as the inclusion of backward
waves, and the fact that two initial conditions are required to
solve elliptic equations. For example, the ��		 operator hin-
ders the decoupling of the real and imaginary parts of the
perturbation field. Such decoupling allows solution of linear-
ized eigenvalue problems associated with paraxial governing
equations �2,39,40�.

IV. CONCLUSIONS

A NLH equation describing optical beam propagation in a
wide range of power-law materials �18–25� has been pre-
sented. Exact analytical forward- and backward-propagating
bright soliton solutions have been derived, for which known
Kerr solitons �15� are obtained when q=2. Ellipticity of the
governing equation is an essential feature if one is to de-
scribe beam evolution �35�, interaction �27�, and interface
�28� regimes involving oblique angles. The analysis of such
scenarios in general power-law media requires a detailed
knowledge of exact Helmholtz solitons �5� and also the cor-
responding conservation laws �8�, both of which have been
reported here. The geometrical properties of beam propaga-
tion have been explored in detail, and known paraxial solu-
tions emerge from the Helmholtz solutions in an entirely
physical multiple limit.

Arbitrary-angle regimes are outside the scope of classic
paraxial models, and it has been shown analytically that ��		

can be strongly perturbative in off-axis configurations. Exact
Helmholtz power-law solitons �5� have been found to be ro-
bust entities that propagate stably over arbitrarily long dis-
tances when 0�q�4. Analysis and simulations have led
directly to the identification of a class of oscillatory solution
associated with perturbed Helmholtz solitons in power-law
media with 0�q�

4
3 and 5

2 �q�4. These oscillatory solu-

FIG. 7. Diffractive instability of the Helmholtz soliton �5� when
q=4.2 for four different values of the nonparaxial parameter �.
Solid: �=10−3; dashed: �=0.5�10−3; dotted: �=10−4; dot-dashed:
�=0.5�10−4. The self-focusing “blow up” singularity of the corre-
sponding paraxial �parabolic� model is suppressed by the Helmholtz
operator ��		, even when �
0.

FIG. 5. �a� Phase plane for Kerr solitons, where q=2. Perturbed
initial conditions lead to trajectories that slowly spiral onto a node
�stable fixed point� in the phase plane. This asymptotic soliton state
has well-defined propagation-invariant parameters �i.e., amplitude
and width�. �b� Trajectories for the q=1 power-law nonlinearity
wind onto a slowly varying orbit that is characterized by quasi
periodic parameters.

FIG. 6. Schematic diagram illustrating the classification of ca-
nonical ��=1� soliton stability characteristics depending upon the
nonlinearity index q.
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tions have no counterpart in Kerr �q=2� media. Our stability
results also have implications for paraxial solitons.

For completeness, we comment on the behavior of the
predicted exact Helmholtz soliton �5� when q�4. It is well
known that, in this regime, the power-law NLS model pre-
dicts an unphysical collapse of a localized beam to zero
transverse size and infinite amplitude �2,25,40�. Numerical
analysis reveals that this type of “blow up” can be sup-
pressed in Eq. �3� and that, instead of such singular behavior,
the beam tends to undergo smooth diffractive spreading to-
ward a zero-amplitude state �see Fig. 7�. We thus find that an
instability is also present in the q�4 power-law Helmholtz
model, but that the character of this instability may be pro-
foundly different from that of its paraxial counterpart �where
the contribution from ��		 is neglected�. This phenomenon is
of interest in terms of universal amplitude equations involv-
ing Helmholtz-type generalization of the linear wave opera-

tor. However, consideration of higher-order nonparaxial ef-
fects is likely to be necessary for a full investigation of this
phenomenon in the specific context of nonlinear optical
beams.

The considerations in this paper are of fundamental physi-
cal and mathematical interest, examining the structure and
stability of exact solitons of nonintegrable elliptic wave
equations. Helmholtz soliton theory is proposed as essential
for the accurate modeling of nontrivial angular contexts in
nonlinear optics, and implications are expected for a wide
range of experimental regimes.
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