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I. INTRODUCTION

The reduction in the quantum fluctuations of an atomic
ensemble angular momentum has recently received much at-
tention in connection with quantum information, high-
sensitivity frequency measurements, and high-precision
magnetometry. Such spin-squeezed atomic states may be ob-
tained via nonlinear interaction processes between an en-
semble of � atoms and cavity fields �1,2� or by direct map-
ping of a squeezed state of light onto the ground state atomic
spin �3–6�. Another approach consists in probing the atomic
angular momentum in a quantum nondemolition �QND�
manner in order to reduce the quantum fluctuations of one of
its components below the standard quantum noise �7,8�. The
atomic squeezing is then conditioned on the QND measure-
ment result and can be actively fed back to the atomic angu-
lar momentum using a magnetic field �9�. So far, these pro-
tocols have been implemented with cesium atoms �10,11�.
Since the angular momentum is greater than 1/2 a full de-
scription of the atomic state not only requires to take into
account the three components of the angular momentum, but
also the higher order tensorial components. This means that
one has to add to the simplified effective QND Hamiltonian
FzSz �10,11� three of the five components of the atomic align-
ment, which in general will perturb the measurement of the
orientation Fz. It is, however, possible to choose the atomic
detuning with the excited states such that their contribution is
zero or negligible �12–14�.

The goal of the present paper is to investigate high-
angular momentum atom situations in which the Hamiltonian
is not purely vectorial and show how it is actually possible to
realize QND measurements of the atomic alignment compo-
nents. Such measurements may then allow for squeezing not
only the quantum fluctuations of the atomic orientation, but
also those of the alignment, which are involved in several
atom-light quantum interface protocols �2,15�. For instance,
by achieving conditional squeezing of the alignment of an
atomic ensemble combined by single atomic excitation re-
trievals using the Duan-Lukin-Cirac-Zoller �DLCZ� protocol
�15,16�, it is possible in principle to produce exotic atomic
states with a non-Gaussian Wigner function, in a way similar
to non-Gaussian optical states �17,18�. In addition to being a
tool for atomic quantum noise studies, controlling the fluc-
tuations of the atomic alignment may be of interest for im-

proving the precision of magnetometers �10,19,20�. In order
to draw simple conclusions, we shall limit ourselves to a first
order linear atom-field interaction in the optical pumping re-
gime, but we note that interesting possibilities may also be
offered by orientation or alignment conversion �21� and non-
linear selective addressing of high-rank atomic polarization
moments �22�.

In Sec. II we give the effective Hamiltonian and derive
the atom-field evolution equations. After reviewing in Sec.
III the well-known vectorial Hamiltonian situation leading to
QND squeezing of the orientation, we examine in Sec. IV the
purely tensorial Hamiltonian situation. We highlight the dif-
ferences with the vectorial situation and show how QND
measurements of the alignment can be performed, leading to
conditional squeezing or entanglement of the atomic compo-
nents. The effect of spontaneous emission losses on the ob-
tainable squeezing and the experimental feasibility are dis-
cussed in Sec. V in the case of rubidium atoms.

II. HAMILTONIAN AND EVOLUTION OF THE SYSTEM

We consider an optical field propagating along z which
interacts with an N-atom ensemble in the low saturation re-
gime and consider slow processes as compared to the evolu-
tion of the excited state populations and optical coherences,
which can be adiabatically eliminated. In this case, the effec-
tive Hamiltonian describing the atom-light interaction can be
written as �12,13,23�
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F �F�� is the total angular momentum of the ground state �of
one of the excited states�, and its Cartesian components
are denoted by Fx,y,z. �F� is the resonant cross-section of the
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F→F� transition, and �F� is the probe one-photon detuning
with respect to this transition ��0 if blue detuned�. A is the
field cross-section and L the length of the N-atom medium.
The vectorial and tensorial polarizabilities are denoted by

�V
F� and �T

F� and their exact form, given in Refs. �13,23�, is
recalled in Appendix A. The definition for the Stokes opera-
tors used throughout the paper is

Sx = ax
†ax − ay

†ay , �2�

Sy = ax
†ay + ay

†ax, �3�

Sz = i�ay
†ax − ax

†ay� , �4�

S0 = ax
†ax + ay

†ay , �5�

where the field a with frequency 	 is defined by E=E0�a
+a†� and E0=��	 /2
0Ac .

To simplify the discussion and relate it to the experimen-
tal situation which will be considered in Sec. V, we assume
in the following an F=1 total ground state spin, but the
physical conclusions would actually remain the same for a
higher angular momentum. The irreducible tensor operators
Tq

k for F=1 are given by �24�

T0
1 = Fz/�2, �6�

T±
1 = ± F±/2, �7�

T0
2 = �3Fz

2 − 2�/�6, �8�

T±1
2 = ± �FzF± + F±Fz�/2, �9�

T±2
2 = �F±

2�/2, �10�

with F±=Fx± iFy. In this case, the Hamiltonian reads

Hint = �
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The anti-Hermitian terms in the Hamiltonian of Eq. �1� are
due to optical pumping. For an off-resonant interaction, these
anti-Hermitian terms may be neglected, although their con-
tribution should be considered carefully when it comes to
optimizing the squeezing as it will be shown in Sec. V. If
these terms are neglected the evolution of the atomic opera-

tors is simply given by �d /dt�Â= �1/ i���Â ,Hint�, which
yields

d

dt� T0
1
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We limited ourselves to this set of three operators, since it is a closed system under Ĥint and allows for conditional squeezing
of T2

2+T−2
2 or T2

2+T−2
2 as we will show later. The terms ��V in Eq. �12� correspond to light-shifts, and the ones ��T to Raman

processes involving coherences between sublevels with ��mF�=2. Under the slowly varying envelope and paraxial approxi-
mations �5�, the field evolution equations read
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The terms ��V in Eq. �13� correspond to the well-known
Faraday rotation. In the following, we will consider the
Stokes operators before (in) and after (out) the interaction,
integrated over the pulse duration T: Sin/out=�0

Tdt s�0/L , t�,
and the collective atomic operators before/after the interac-

tion Ain/out=�0
Ldz Â�z ,0 /T�. s and Â have been normalized so

that Sin/out and Ain/out are dimensionless. We note that the
evolution Eqs. �12� and �13� can alternatively be deduced
following the methods of �25,26� for the atoms and �27,28�
for the photons.
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III. VECTORIAL HAMILTONIAN

For �T=0, the Hamiltonian �1� reduces to the well-known
“QND” Hamiltonian ���� /4A����V /2�SzFz, which allows
for nondestructively measuring Fz via a measurement of the
conjugate observable of Sz, as was shown in �7,8,10,11�. We
briefly review the principle of this conditional squeezing of
the orientation before generalizing it to an alignment in the
next section.

Prior to the measurement of Fz, the atoms are prepared in
a coherent spin state oriented along x, i.e., the atoms are
pumped into an eigenstate of Fx. The values of the compo-
nents orthogonal to the mean spin, Fy and Fz, are unknown a
priori, and because of the commutation relation �Fy , Fz�
= iFx= iN, their standard deviations satisfy �Fy�Fz�N /2.
When there exists no correlation between the transverse
components, such as in a sample prepared by optical pump-
ing, �Fy =�Fz=�N /2. The atoms are placed in zero-

magnetic field. The probe is linearly polarized ��S� �=nx��. In-
tegrating the evolution equations, one obtains the following
input-output relations:

xout = xin + �Vsz
in, �14�

pout = pin, �15�

sy
out = sy

in + �Vpin, �16�

sz
out = sz

in. �17�

The operators have been normalized so as to have unity vari-
ance when they are in coherent states �x , p=Fy,z /�N /2 and
sy,z=Sy,z /�n�. It is clear that by measuring the fluctuations of
sy

out one acquires information about the fluctuations of p �Fz
is measured nondestructively via the Faraday rotation of the
probe polarization it induces�. The measurement is all the
more accurate that the vectorial coupling strength

�V = �V
��

4A�
�Nn

2
�18�

is large. One therefore conditionally squeezes the atomic ori-
entation. The variances of the transverse components after
the measurement-induced projection of sy

out can easily be
shown to be those of a minimal spin-squeezed state �29–31�

V��xout�sy
out� = 1 + �V

2 , V��pout�sy
out� =

1

1 + �V
2 . �19�

IV. TENSORIAL HAMILTONIAN

A. Single-pass interaction

Another interesting situation is the opposite case of a
purely tensorial Hamiltonian, in which �V=0. In practice,
the interaction involves several hyperfine excited states F�,
so that it is possible to choose the detuning such that the

various vectorial contributions vanish �F��F��V
F��� /�F��

�0, while the total tensorial contribution �F��F��T
F��� /�F��

does not. It is then possible to realize a conditional mea-
surement of the alignment in this particular situation. Let
us assume that the atoms are prepared in a coherent spin
state along z. The conjugate transverse components in
this case are �T2

2+T−2
2 � /�2 and �T2

2−T−2
2 � / i�2, since

��T2
2+T−2

2 � /�2, �T2
2−T−2

2 � / i�2�= iN. We normalize them as
previously: x= �T2

2+T−2
2 � /�N and p= �T2

2−T−2
2 � / �i�N� and

assume a circularly polarized probe: �S� �=nz�.
The result of the integration of Eqs. �12� and �13� can be

found in Ref. �6� and is recalled in Appendix B. It yields
input-output relationships involving complex spatiotemporal
modes for the fields and the atoms. For a thin medium
��T�1�, they lead to the following input-output relations:

xout = xin + �Tsy
in, �20�

pout = pin − �Tsx
in, �21�

sx
out = sx

in + �Tpin, �22�

sy
out = sy

in − �Txin, �23�

with a tensorial coupling strength given by

�T = �T
��

8A�
�Nn �24�

��F��T
F���F�� /8A�F���Nn if several excited states are in-

volved�.
The interaction is obviously not QND, since both compo-

nents of the spin are now modified by the field, and con-
versely. This arises from the fact that the effective Hamil-
tonian in this case, H��sxx+syp, is quite different from the
previous vectorial situation HX�szx, and now involves both
quadratures �Fig. 1�. As noted in �4�, this tensorial Hamil-
tonian corresponds to a linear coupling between two har-
monic oscillators which, when resonant, allows for efficient
quantum state transfer between atomic and light variables
and may be used in quantum memory protocols. As the cou-
pling strength �T is increased, xout and sy

out �and pout and sx
out,

respectively� coherently exchange their fluctuations, and it

x

y

z

atomic
orientation

light propagation
axis

x

y

z

atomic
orientation

light propagation
axis

a�+� -a
�-aa�+

Vectorial Hamiltonian Tensorial Hamiltonian

H s xz� H s x+x s py�(a) (b)
x �

FIG. 1. �Color online� �a� Four-level scheme leading to a vec-
torial effective Hamiltonian HX�szx. �b� Three-level � scheme
leading to a tensorial effective Hamiltonian H��sxx+syp.
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can indeed be shown that, when the collective coupling
strength �T is large, the field fluctuations are efficiently
mapped onto the atoms and vice versa �5,6�.

However, since the atomic variables evolve during a
single-pass “tensorial” interaction, it is a priori not well-
suited for QND measurements. Nevertheless, it is still pos-
sible to perform a conditional measurement of the alignment
by using two ensembles a and b �or by making two succes-
sive passes in one ensemble� with opposite mean orienta-
tions, such that Hint� �xa+xb�sx+ �pa+ pb�sy and �xa+xb , pa

+ pb�=0. As will be detailed in the following sections, this
restores the QND character of the interaction. The physical
interpretation is that both field quadratures are written onto
the atoms in each ensemble, but, because of the opposite
orientations, their contributions cancel out, leaving the total
alignment components unchanged, while the field still carries
out information about both atomic alignment components.

B. Double-pass interaction

We first consider the double-pass geometry depicted on
Fig. 2. A quarter-wave plate is inserted between the cell and
the mirror, its neutral axis being aligned along x. We assume
that the same pulse successively propagates back and forth in
the atomic ensemble, with no temporal overlap. This is dif-
ferent from the situation of Refs. �32,33�, where the pulse
interacts with itself in the atomic medium, so that the non-
linear coupling allows for unconditional squeezing. We also
note that similar ideas have been proposed for quantum
memories and squeezing generation in Ref. �34� in the case
of a purely vectorial Hamiltonian. In �34�, the second pass is
used to couple the second quadrature of light to the atoms.
Again, the tensorial situation is quite different, since the
Hamiltonian directly couples the two quadratures of light to
the atoms. However, due to the sxx+syp form of the Hamil-
tonian, in order to perform a QND measurement of the align-
ment, one has to compensate for extra precession terms,
which can be successfully done with a double-pass.

The double-pass interaction subsequently leads to

xout� = xin, �25�

pout� = − pin + 2�Tsx
in, �26�

sx
out� = sx

in, �27�

sy
out� = sy

in − 2�Txin. �28�

The measurement of sy
out� �sx

out�� projects xout� �pout�� in a

state with reduced variance V��xout��sy
out��=V��pout��sx

out��=1
−4�T

2 +o��T
2�. For a moderate value of �T=0.35, these vari-

ances are �0.5, significantly smaller than the standard quan-
tum limit. A rigorous derivation of the conditional variance,
including the terms of order �T

2 in the input-output relations
�20�–�23�, can be obtained from the exact results of Eqs.
�B1�–�B4� and leads to exactly the same conditional vari-
ance. The measurement of x performed this way is fully
QND only for small values of �T, and will only result in a
limited squeezing in principle. We now turn to a situation
allowing for a QND measurement of the alignment for any
value �T.

C. Double-cell interaction

Alternatively, a single-pass interaction can be performed
with two atomic cells having opposite orientations—as in
�11�—in order to entangle the alignment components of two
atomic ensembles. As shown in Fig. 3�b� the light pulse
propagates through two ensembles �a� and �b� prepared with
opposite orientation �Fz

a�=−�Fz
b�=N, so that the input-output

relationships now read

�xa + xb�out = �xa + xb�in, �29�

�pa + pb�out = �pa + pb�in, �30�

sx
out = sx

in + �T�pa + pb�in, �31�

sy
out = sy

in − �T�xa + xb�in. �32�

If the probe pulse duration is much longer than the time
required to propagate through the two cells, the pulse inter-
acts simultaneously with the two ensembles. In this experi-
mentally accessible situation, the previous relations hold to
any order in �T, and the measurement is perfectly QND.
Similar to the vectorial situation, measuring sy

out squeezes the
variance of xa+xb to 2 / �1+2�T

2�. Note that one has �xa

+xb , pa+ pb�= i�Fz
a+Fz

b�2/N=0, since the two ensembles
have opposite orientations. It is therefore possible to squeeze
not only the fluctuations of xa+xb, but also those of pa+ pb.
As can be seen from Eq. �31�, sending a second pulse and
detecting sx

out instead of sy
out allows for squeezing pa+ pb,

atomic orientation
quater-wave
plate

miror

z

�+ polarized
probe pulse

to detectors

beamsplitter of
reflection ~ 1

FIG. 2. �Color online� Schematic of the double pass configura-
tion proposed to perform a QND measurement of a collective
atomic alignment.

atomic
orientation

z

�+ polarized
probe pulse

atomic
orientation

FIG. 3. �Color online� Schematic of the double ensemble con-
figuration proposed to perform a QND measurement of a collective
atomic alignment.

CVIKLINSKI et al. PHYSICAL REVIEW A 76, 033830 �2007�

033830-4



leaving the alignment of the two ensembles entangled. The
expected value of entanglement obtained is �EPR=�2�xa

+xb�+�2�pa+ pb�=4/ �1+2�T
2�4. Note that the result is the

same as in the vectorial situation of �11�, but the physical
situation is rather different, since the tensorial situation re-
quires a double pass for the alignment measurement to be
completely QND.

V. ATOMIC NOISE AND EXPERIMENTAL
VALUES FOR 87Rb

A. General Hamiltonian and nonzero
frequency noise measurements

For a single pass and in the case of a nonzero �V, the
input-output relations read to first order in �V ,�T

xout = xin + �Tsy
in − �V

�2n/Npin, �33�

pout = pin − �Tsx
in + �V

�2n/Nxin, �34�

sx
out = sx

in + �Tpin − �V
�2N/nsy

in, �35�

sy
out = sy

in − �Txin + �V
�2N/nsx

in. �36�

In the double-pass geometry described in Sec. IV B, the vec-
torial contributions cancel out and Eqs. �25�–�28� are left
unchanged, so that the alignment can still be conditionally
squeezed in this scheme. In the double-cell configuration, the
vectorial contributions to the field evolution �Faraday rota-
tion� naturally cancel out, but the vectorial contributions to
the atom evolution �light shifts� do not. However, a z-aligned
magnetic field with Larmor frequency �L=−��� /8A���VSz

can compensate for these light shifts.
Another experimentally relevant issue is the measurement

of the Stokes parameters fluctuations. Technical noise is in
general smaller than the quantum fluctuations of light only
for higher-frequency components �typically above 0.1–1
MHz�. It is therefore important to consider whether the
schemes proposed in Sec. IV B and Sec. IV C can be ex-
tended to nonzero frequency noise measurements. In the
double-cell configuration, it can easily be done by means of
a z-aligned magnetic field. The Larmor precession couples x
and p, but in the frame rotating at 2� �� is defined by ��
=�Bz, where � is the magnetic moment of the ground level
and Bz the magnetic field value�. The input-output relations
�29�–�32� then remain unchanged when making the substitu-
tion x→ �x�2�=x cos�2�t�+ p sin�2�t�, p→ �p�2�

= p cos�2�t�−x sin�2�t�, etc. It is thus possible to measure
in a QND manner the atomic operators x2� and p2� through
their imprints on the sidebands components of Sx or Sy. Un-
fortunately, this technique cannot be used in the double-pass
configuration, since the magnetic field would have to be re-
versed between the first and the second pass, which is not
very realistic experimentally. However, if measurements of
the Stokes operators at nonzero frequency are more easily
shot-noise limited, it was shown in �10� that strong spin-
squeezing could still be obtained experimentally in a zero-
magnetic field �and so zero-frequency� situation.

B. Atomic noise considerations

We now discuss the intrinsic limitations brought by spon-
taneous emission noise in the tensorial Hamiltonian case. For
the sake of simplicity we study the case of a 1→0, 1 tran-
sitions, with atoms oriented along z. Using the Heisenberg-
Langevin evolution equations and the quantum regression
theorem, we obtain for a 1→0 transition �for which
�V=−1/2, �T=−1, and �T=�V

�2��0�

xout = xin�1 − �a + ��afx + �0sy
in − �0� n

N
pin −

�

��2
�0sx

in,

�37�

pout = pin�1 − �a + ��afp − �0sx
in + �0� n

N
xin −

�

��2
�0sy

in,

�38�

sx
out = sx

in�1 − �p + ��pfsx
+ �0pin − �0� n

N
sy

in −
�

�
�0xin,

�39�

sy
out = sy

in�1 − �p + ��pfsy
− �0xin + �0� n

N
sx

in −
�

�
�0pin,

�40�

with �a=−��0� /���n /N, �p=−��0� /���N /n and fx,p, fsx,sy
standard vacuum noise operators with variance unity.

For the 1→1 transition, one has �V=−3/4 and �T=3/2,
so that �T=−�V

�2��1 and similar equations can be derived.
Choosing the detunings such that �0=�1�� /2 cancels the
vectorial terms finally yields the following input-output rela-
tionships

xout = xin�1 − �a + ��afx + �sy
in +

��
�2

sx
in,

pout = pin�1 − �a + ��afp − �sx
in +

��
�2

sy
in,

sx
out = sx

in�1 − �p + ��pfsx
+ �pin + ��xin,

sy
out = sy

in�1 − �p + ��pfsy
− �xin + ��pin,

with �a= ��� /2��n /N�1/�1−1/�0�, �p= ��� /2��N /n�1/�1

−1/�0�, and ��=−��� /4��1/�1+1/�0�. One retrieves
beamsplitter-like relations for the losses, similar to those of
�8�. �p simply describes absorption of the probe caused by
spontaneous emission: The probe field is damped by a factor
�1−�p, and some uncorrelated vacuum noise ��pfsx,sy

is con-
sequently added, as for the propagation through a beamsplit-
ter with transmission �1−�p. �a describes the symmetrical
process for the atoms: The probe, because of spontaneous
emission, induces optical pumping toward a z-aligned coher-
ent spin state �which is similar to mixing the probe with
some vacuum�. A difference with the vectorial situation is the
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presence of small contamination terms ���. They also corre-
spond to optical pumping processes which tend to align x
and p along sx and sy. To minimize the effect of spontaneous
emission noise, one has to choose n�N in order to have
�a��p, as in Ref. �8�. Finally, the total spontaneous emission
contribution in the double-pass or double-cell configurations
is finally obtained by doubling �a, �p, and �� in the above
equations.

C. Experimental values for 87Rb

Based on these considerations, we discuss the values of
squeezing or entanglement that can be expected in experi-
ments with 87Rb. We assume an interaction on the D2 line
with the atoms in the F=1 ground state. For room tempera-
ture vapor cells, taking into account the Doppler broadening,
no detuning allows for completely canceling �V. On the con-
trary, for cold atoms with negligible Doppler broadening, �V
can be canceled for a probe laser blue-detuned by �0
=38 MHz from the F�=0 excited level �red-detuned by 34
MHz from F�=1 and 191 MHz from F�=2�. For typical
values for the density and volume �1011 cm−3 and 0.5 mm3�
of a cold atom cloud produced using a magneto-optical trap
�the latter being switched off during the measurement�, lead-
ing to N=0.5�108 and taking a pulse of intensity 1 �W and
duration 0.5 �s containing n�0.5�108 photons �saturation
parameter �10−3, considering a cross section A=1 mm2�,
the previous calculations predict �T�−0.42 and �−5 dB of
squeezing in the quantum fluctuations of T2

2+T−2
2 or T2

2

−T−2
2 . Higher values of �T �and hence higher squeezing val-

ues� can be reached for longer probe pulses, provided that
the duration of the pulses remains smaller than the relaxation
time of the Zeeman coherence, or by the use of a dipole trap
to increase the optical depth �14�. For these parameters, in a
double-pass or double-cell configuration, �a=�p=0.14 and
���10−4 �the contribution of the F�=2 level is �30 times
smaller than those of the F�=0, 1 levels, and is not consid-
ered�. As the fluctuations are predicted here to be reduced by
a factor smaller than �1/0.14, the noise added by spontane-
ous emission can be neglected.

For the sake of comparison, we now discuss the relative
strengths of tensorial and vectorial conditional measure-
ments. In atomic vapors close to room temperatures, the de-
tuning is usually chosen bigger than the Doppler broadening
in order to avoid absorption �11�. It implies that the detuning
has to be large as compared to the hyperfine structure and,

since one has �F��F��T
F�=0 for alkali atoms, it means that

�T��F��F��T
F� /�F� �0, i.e., the effective Hamiltonian is then

almost purely vectorial. This situation is obviously much
more favorable for orientation than for alignment squeezing.

However, for a Doppler-free medium, it is possible to
reduce the detuning while maintaining a small absorption. In
this case, as can be seen from Fig. 4, both �T and �V �and
hence alignment and orientation squeezing� may have similar
values. To compare these values, we consider the case of a
purely tensorial Hamiltonian �i.e., �V=0, obtained for �0
=38 MHz and �0=13.2�, and the case of a purely vectorial
one �i.e., �T=0, obtained for �0=222 MHz and �0=77�. In
the first one, for the experimental parameters given above,

�T=−0.42, �V=0, and �p=�a=0.14, whereas, in the second,
�T=0, �V=0.03, and �p=�a=0.01. This shows that the com-
mon idea that the vectorial coupling strength is bigger than
the tensorial one is not necessarily true for cold atom
samples when the hyperfine structure is taken into account.

VI. CONCLUSION

We have shown how to perform a QND measurement of a
collective atomic alignment. This extends the possibility to
manipulate high-angular momentum components of a collec-
tive spin beyond the vectorial Hamiltonian interaction com-
monly used so far in experiments �7,10,11�. Noticeable
physical differences are found between the purely vectorial
Hamiltonian situation and the tensorial situation. In particu-
lar, if it had been noted in previous work �4,6� that the ten-
sorial situation may lead to coherent atom-field quantum
state transfer and storage, we have shown here that it also
allows for performing a QND measurement of the atomic
alignment, provided that two ensembles or two successive
passes are used. Substantial conditional squeezing values are
still predicted for realistic experimental situations with cold
atomic samples. We also note that these measurements can
be used to continuously control the atomic spin fluctuations
via feedback �10�. The different feedback mechanisms that
may be used to squeeze an atomic alignment will be pre-
sented elsewhere.

The authors would like to thank W. Gawlik for fruitful
discussions on precision atomic magnetometry.

APPENDIX A: POLARIZABILITY

The polarizabilities �V
F� and �T

F� are given by

�V
F� =

3�2J� + 1�
2�2F� + 1��2J + 1��−

2F − 1

F
�F−1

F� −
2F + 1

F�F + 1�
�F

F�

+
2F + 3

F + 1
�F+1

F� � ,

F’=0 F’=2F’=1

�V

�p

�T

�0

FIG. 4. Vectorial and tensorial coupling strength, �V �dotted�
and �T �dashed�, and amplitude of the noise added to the probe �p

�plain� as functions of the normalized detuning �0=�0 / �� /2� be-
tween the probe and the F=1→F�=0 transition of 87Rb D2 line.
The experimental parameters are detailed in Sec. V C. The inset
zooms on the detuning area where the Hamiltonian is purely
vectorial.
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�T
F� = −

3�F + 1��2J� + 1�
2�2F� + 1��2J + 1�� 1

F
�F−1

F� −
2F + 1

F�F + 1�
�F

F�

+
1

F + 1
�F+1

F� � ,

where �F�
F is Kronecker’s symbol. The resonant cross section

between two levels with an isotropically populated ground
state is

�F� = �2 level
2�2J + 1��2F� + 1�

3
�J� 1 J

F I F�

2

,

with �2 level=3�2 /2�. The commutators between the irre-
ducible tensorial operators Tq

k are �24�

�Tq1

k1�Fg�,Tq2

k2�Fg�� = �
K,Q

�− 1�K+2Fg��2k1 + 1��2k2 + 1�

�� k1 k2 K

Fg Fg Fg

�k1k2q1q2,KQ�

��1 − �− 1�k1+k2+K�TQ
K�Fg� .

APPENDIX B: TENSORIAL SITUATION: SOLUTIONS
OF THE EVOLUTION EQS. (12) and (13)

We assume a single-pass interaction with �V=0, as in Sec.
IV A. After changing the spatiotemporal frame �z , t�→ �z
=z , t= t−z /c� and making the system dimensionless �z , t�
→ �z=z /L , t= t /T�, the integration of Eqs. �12� and �13�
yields �6�

xout = xin − �T�
0

1

dz�
0

z

dz�xin�z��
J1�2�T

�z − z��
�z − z�

+ �T�
0

1

dt sy
in�t���

0

1

dz J0„2�T
�z�1 − t�…� , �B1�

pout = pin − �T�
0

1

dz�
0

z

dz�pin�z��
J1�2�T

�z − z��
�z − z�

− �T�
0

1

dt sx
in�t���

0

1

dz J0„2�T
�z�1 − t�…� ,

�B2�

and symmetrical equations for the fields

sx
out = sx

in − �T�
0

1

dt�
0

t

dt�sx
in�t��

J1�2�T
�t − t��

�t − t�

+ �T�
0

1

dz pin�z���
0

1

dt J0„2�T
�t�1 − z�…� ,

�B3�

sy
out = sy

in − �T�
0

1

dt�
0

t

dt�sy
in�t��

J1�2�T
�t − t��

�t − t�

− �T�
0

1

dz xin�z���
0

1

dt J0„2�T
�t�1 − z�…� ,

�B4�

where J0 and J1 are the standard first order Bessel functions
and the operators have been normalized so as to have unity
variances when in coherent states. At first order in �T, one
retrieves Eqs. �20�–�23�.
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