PHYSICAL REVIEW A 76, 033829 (2007)

Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin

pulses in negative-index media

Vito Roppo, Marco Centini, Concita Sibilia, and Mario Bertolotti
Dipartimento di Energetica, University of Rome La Sapienza, Via Scarpa 16, Rome, Italy

Domenico de Ceglia, Michael Scalora, Neset Akozbek, and Mark J. Bloemer

Charles M. Bowden Research Facility, RDECOM, US Army Aviation and Missile Command, Redstone Arsenal, AL 35803, USA

Joseph W. Haus
Electro-Optics Program, University of Dayton, Dayton, Ohio 45469-0245, USA

Olga G. Kosareva and Valery P. Kandidov
International Laser Center, Physics Department, Moscow State University, Moscow 119992, Russia
(Received 1 May 2007; published 26 September 2007)

The present investigation is concerned with the study of pulsed second-harmonic generation under condi-
tions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In
positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding
the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propa-
gates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is
“captured” and propagates under the pump pulse. We find that the origin of the double-peaked structure resides
in a phase-locking mechanism that characterizes not only second-harmonic generation, but also x®) processes
and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small
pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although
multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-
matched component is always generated, even under conditions of material phase mismatch: This component
is anomalous, because the material does not allow energy exchange between the pump and the second-
harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are
indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phe-
nomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the
phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the
same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency
is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and
the forward-moving, phase-locked pulse appear to be part of the same pulse initially generated at the surface,
part of which is immediately back-reflected, while the rest becomes trapped and dragged along by the pump
pulse. These pulses thus constitute twin pulses generated at the interface, having the same negative wave
vector, but propagating in opposite directions. Almost any break of the longitudinal symmetry, even an ex-
ceedingly small x? discontinuity, releases the trapped pulse which then propagates in the backward direction.
These dynamics are indicative of very rich and intricate interactions that characterize ultrashort pulse propa-
gation phenomena.
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INTRODUCTION

In 1961, with the generation of the second harmonic light
using a beam from a ruby laser, Franken and his collabora-
tors experimentally discovered second-harmonic generation
(SHG), and so nonlinear optics was born [1]. Since then,
SHG has become one of the most investigated and discussed
nonlinear optical processes. Although the conversion effi-
ciency reported at the time was quite small, the advent of
phase-matching techniques [2,3] has made it possible to sig-
nificantly boost SHG conversion rates. Countless, detailed
theoretical studies of SHG have appeared since the seminal
work by Armstrong et al. and Bloembergen et al. [4] in 1962.
In fact, during the past four decades the study of SHG has
mushroomed and evolved to the point that nonlinear y?
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processes are among the best understood nonlinear optical
phenomena.

In more recent times, the study of second order processes
has also been concerned with optical solitons, or localized
electromagnetic pulses that can propagate long distances in
nonlinear media without undergoing shape changes. Al-
though solitons had originally been associated with cubic
(x®) nonlinear media, they are now also achieved in qua-
dratic materials [5]. Because the primary reason to investi-
gate SHG has consistently been the achievement of efficient
frequency doubling, the emphasis has been on phase-
matched interactions between the fundamental and the
second-harmonic beams. Phase matching (PM) is a condition
that essentially requires conservation of linear momentum
that also facilitates energy flow from the pump to the second-
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harmonic signal. However, it is a condition that does not
generally occur naturally, and so the literature abounds with
contributions that contain techniques and stratagems that at-
tempt to circumvent a naturally occurring phase mismatch, in
order to bring the interacting waves closer to ideal, phase-
matched conditions [2,6-24].

The systematic study of nonlinear propagation phenom-
ena at or very near phase-matching conditions has resulted in
relatively few studies of SHG and related propagation phe-
nomena in a phase mismatched (PMM) environment. In fact,
from time to time workers have been confronted with situa-
tions where, in addition to the usual second-harmonic beam,
a second component was observed. For example, the general
solution for SHG from a boundary layer discussed in Refs.
[4] is revealed as being composed of a reflected signal, and
two forward propagating components, one displaying a
k-vector that is a solution of the homogeneous wave equation
(i.e., the expected wave vector at the second-harmonic fre-
quency), and the other a k-vector that is the solution of the
inhomogeneous wave equation, equal to twice the pump
wave vector. Shapiro [25] in 1968 noted: “SHG spectra con-
sisted of two parts: A part matched across the breadth of the
laser fundamental...and a portion which remained fixed in
frequency and coincided with the laser fundamental peak.”
The author thus appreciated that there were two SH compo-
nents, but did not elaborate further on his findings.

In 1969, in a mathematical treatment Glenn [26] provided
a general solution of the SH field that also showed two con-
tributions, one arising as a surface term, traveling with the
characteristic group velocity expected at the second har-
monic frequency, and a second component that instead ap-
peared to travel with the group velocity of the fundamental
beam. These findings notwithstanding, workers’ attention re-
mained focused on efficient energy conversion schemes, via
the implementation of quasi-phase-matching [27].

In 1987, Manassah et al. [28] theoretically showed that, in
the weak conversion efficiency regime and in the presence of
group velocity dispersion, the second-harmonic signal was
characterized by a double-peaked structure. The effect was
attributed to an interplay between y? and x® processes, and
self- and cross-phase modulation that occurred during the
interaction. Then, in 1990, Noordam er al. [29] reported that
under conditions of a phase and group velocity mismatch,
the second-harmonic signal indeed displayed two prominent
features. In their words: “This letter is... the first report on
the observation of double-peak shapes due to group velocity
difference between the fundamental and the generated sec-
ond harmonic.”

In the years that followed, the phenomenon was again
reported theoretically and experimentally. The high-intensity
regime and the relatively high conversion efficiencies (up to
3.5%) however required that the interaction be placed in a
context of competing second and third order processes [30].
Su et al. [31] introduced additional theoretical and experi-
mental evidence that a purely second order process could
lead to a double-peaked structure in the time domain profile
of the second harmonic beam. The effect was attributed to
induced group velocity dispersion (GVD), under conditions
of negligible group velocity mismatch (GVM). As the pump
and SH beam copropagate, they argued, the pump is able to
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impress its dispersive properties on the SH pulse, a process
that may be viewed as induced effective dispersion.

Also recently, the double-peaked structure in the SH sig-
nal was discussed theoretically in the context of femtosecond
pulse propagation in a birefringent nonlinear material, under
phase-mismatched conditions [32]. In that study, the authors
used a finite difference time domain (FDTD) method to solve
Maxwell’s equations in the presence of a material disconti-
nuity that separated vacuum from a nonlinear medium. The
result suggested that the SH signal splits into two compo-
nents, one that travels at the pump’s group velocity, and a
second component that walks off, consistent with all previ-
ous predictions and observations of the phenomenon.

The present investigation is concerned with the study of
pulsed SHG under conditions of phase and group velocity
mismatch, and low conversion efficiencies and pump inten-
sities, primarily in negative index materials. In positive index
materials (PIMs, nonmetallic), we generally find qualitative
agreement with all previous reports regarding the presence of
a double-peaked second harmonic signal, and a SH pulse that
propagates at the pump’s group velocity. Instead, our results
provide additional insight into the dynamical aspects and the
interpretation of the phenomenon, in that we find that the
origin of the double-peaked structure resides in a phase-
locking mechanism that characterizes not only SHG, but also
X(S) processes, for example, as shown in [33], where the
phase-locking mechanism was first discussed in the context
of intense field propagation and filamentation in the atmo-
sphere. We find that the two peaks consist of a first peak that
quickly phase-locks to the pump pulse and propagates under
the pump envelope at the pump’s group velocity, and a sec-
ond component that propagates with the characteristic group
velocity of the second-harmonic frequency, which we refer
to as the normal component. At low intensities, the normal
component propagates at the nominal group velocity given
by linear material dispersion. Although we leave the details
for future work, at relatively high intensities pulse separation
can occur faster because the group velocity of the normal
pulse also appears to be affected by the intensity of the inci-
dent field.

One point worthy of note is that the phase-locking mecha-
nism that we describe occurs for arbitrarily small pump in-
tensities. For this reason we believe it is not a soliton effect,
which usually relies on a threshold mechanism [5,34-38]. In
[38], for example, the effect is discussed at length within the
context of continuous wave beams, diffraction, and associ-
ated spatial soliton formation, in both seeded and unseeded
cases. The authors in fact coined the term “beam locking” to
distinguish the phenomenon from other solitonlike effects
that occur in ¥ media [38]. In our case, we find that once
the normal component separates, the phase-locking is com-
plete, the interaction between the waves ceases, and in the
absence of pump focusing [33] the energy of the second
harmonic pulse clamps.

In recent years, there has been a growing interest in arti-
ficially engineered metamaterials using subwavelength con-
ducting resonant elements that exhibit unusual properties, in-
cluding negative index of refraction [39]. Negative index
metamaterials can be realized when both the electric permit-
tivity and magnetic permeability are negative [40]. However,
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known natural materials do not posses such a property. For
example, at optical frequencies metals exhibit a negative per-
mittivity, whereas the magnetic permeability is of order
unity. The so-called split ring resonator (SRR) by Pendry
[41] was shown to exhibit a negative magnetic permeability,
thus paving the way for a negative index material. Negative
index materials have been demonstrated in the microwave
regime [42] where the fabrication of the resonant elements is
relatively easy. There is now an effort to make negative in-
dex materials in the optical regime [43]. Encouraging devel-
opments in negative index materials have already been made
in the near infrared [44]. Despite the fact that there have
already been a number of studies done on nonlinear optics in
negative index materials [45,49,57], many properties and ef-
fects remain to be explored.

The case of phase-matched, pulsed, relatively efficient
SHG in negative index materials (NIMs) in the presence of
realistic absorption has been studied previously [46]. In [46]
it was noted that the forward-propagating pump pulse, which
was tuned in a negative-index region, could be exactly
phase-matched to the backward propagating SH signal, tuned
in a region of positive index. We presently focus our atten-
tion on the dynamics of low pump intensity, phase-
mismatched SHG. Although we realize that in the optical
domain NIMs are still mostly mathematical constructs, at
least in terms of a uniform, continuous medium, and that the
precise origin of a x® will have to be determined, we nev-
ertheless report a phase-locking phenomenon similar to what
occurs in PIMs, but with much more interesting dynamical
characteristics. For instance, unlike PIMs, backward SHG
from an air-NIM interface can be as intense, relatively speak-
ing, as the forward-generated SH signal. A spectral analysis
reveals that the phase-locking phenomenon causes the for-
ward moving SH signal to experience the same negative in-
dex as the pump pulse, even though the generated SH signal
is tuned to a frequency where the index of refraction is posi-
tive. The subsequent introduction of a physical boundary
with vanishingly small index discontinuity, e.g., the pulse is
made to cross from a nonzero x® region into a region free of
nonlinearities, is enough to cause the phase-locked SH pulse
to be released, and to begin a journey in the backward direc-
tion. Our analysis thus shows that the backward-generated
pulse and the forward-moving, phase-locked pulse appear to
be part of the same pulse initially generated at the interface,
part of which immediately exits the structure, while the rest
becomes trapped and dragged along by the pump pulse.
These pulses thus constitute twin pulses generated at the in-
terface, having the same negative wave vector, but propagat-
ing in opposite directions, as revealed by a break in the trans-
lational symmetry of the material.

PROPAGATION METHOD

To model the dynamics of interacting short pulses we use
the models detailed in Refs. [46,47], which include two in-
dependent approaches that yield identical results: A fast Fou-
rier transform beam propagation method (FFT-BPM), and a
finite difference time domain (FDTD) method. For details
the reader may consult the references. However, for com-

PHYSICAL REVIEW A 76, 033829 (2007)

pleteness, here we provide the most salient features of the
FFT-BPM model that we use. We describe the fields as a
superposition of harmonics, as follows:

E= f(z [Ern(z,1) +c.c.]= f(z [S@w(z,t)ei“kﬂz“"()’) +c.c.],
(=1 =1

H= 92 [Ho(z,1) +c.c.]= 572 [ng(z,t)eie(koz‘wo’) +c.c.],
(=1 (=1

(1)

where € is a positive integer that denotes the €th harmonic,
ko=wq/c is the free space wave vector, and w, is the corre-
sponding carrier pump frequency. In Egs. (1), each harmonic
is expressed as the product of a generic envelope function
and oscillating factors that contain carrier wave vector and
frequency. The pump pulse (or pulses) are assumed to be
initially located in free space, and no assumptions are made
about the envelope functions. The nonlinear polarization and
magnetization that evolve inside the medium may also be
described in a manner similar to Egs. (1), each in terms of a
generic envelope function and carrier wave vector and fre-
quency. For second order nonlinear processes, we assume
nonlinear polarization and magnetization of the type Py
= Xf)Ez, and My = X;/ZI)Hz’ where Xf) and Xﬁ) are the respec-
tive electric and magnetic nonlinear coefficients, which in
turn are also allowed to be arbitrary functions of position.
The usual procedure then calls for the expansion of the non-
linear terms, and the collection of the various harmonics. For
example, retaining terms up to the fourth harmonic fre-
quency, the corresponding nonlinear polarization terms be-
come

Pol2:0) = 2X2NE Erw + EruCro+ Erulian+ )
Poo(z:0) = XP(EL + 261 E3 0+ 265 Eao+ ),
Pio(20) = 24N E e+ Enlan+ ),

Panz) = X(E3 +2EE30+ ). (2)

The nonlinear magnetization terms have similar form. It fol-
lows that Maxwell’s equations for the €th harmonic take the
following form [46,47]:

07545; ) &7‘(({‘;
U, = i€B(erz.6E05—Hez) = _(95
IPes
+ 4 l'gﬁlp((&; - ,
or
&H{)a . 675((5
P B Hes—Eea) = o
IM 5
+4m| il BM 15— , 3)
JT

where Qys= (9[(56(5)(5)]/(9(;|w0, Yea= (9[5#55(5)]/(7(5|w0, and
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the prime symbol denotes a derivative with respect to fre-
quency; together with .5 and wueg a;z and 7.5 are also
complex functions of frequency and of the spatial coordinate.
We have chosen \y=1 um as the reference wavelength, and
have adopted the following scaling: {é=z/\g is the scaled
longitudinal coordinate (thus in microns); 7=ct/\, is the
time in units of the optical cycle; B=27d is the scaled wave
vector; @=w/w, is the scaled frequency, and wy=2mc/\,
where c is the speed of light in vacuum.

The assumptions used to arrive at Egs. (3) may be sum-
marized as follows: (i) Second- and higher-order, linear ma-
terial dispersion terms are neglected; (ii) third and higher
harmonics are also neglected. As written, Egs. (3) provide an
accurate physical picture of the dynamics, including bound-
ary conditions and all orders of reflections, even for pulses
that are just a few wave cycles in duration [46,47].

To make sure that the approximations and assumptions
discussed in the previous paragraphs are indeed valid, we
also integrated Maxwell’s equations using a finite difference,
time domain algorithm similar to the one discussed in [48].
We then compared the solutions of Egs. (3) to the solutions
of the following set of equations [49]:

JE, 1| dH, OE* 4]
=-— —l+1}— B—t 24T, = egwlE,,
ot 80{& oA g g T 0 e

y Ty _ 2
+K, m o +1,K, = pow, H,.
(4)

In Eq. (4), J, and K, are the electric and magnetic current
densities, respectively, I, ,, are the corresponding damping
coefficients, and w, , are the respective electric and magnetic
plasma frequencies. The integration of Egs. (3) and (4) were
carried out for pulses whose durations varied from a few
optical cycles up to several picoseconds, with indistinguish-
able results in all cases investigated. In addition to having
more control over each term, Maxwell’s equations (3) are
written in a form that allows the use of the now classic fast
Fourier transform, beam propagation method [50], appropri-
ately modified to include all orders of reflections and feed-
back in the time domain [51]. We use a spectral method
primarily because it is easily implemented as it involves mul-
tiplication of linear operators; it is unconditionally stable,
with no known issues relating to phase or amplitude errors,
and thus not prone to the generation of any numerical arti-
facts; and it can easily be extended to the multidimensional
domain almost effortlessly [52,53].

gH, 1| GE, o H; K,
ot Mo X

0z

SECOND HARMONIC GENERATION

The usual treatment of phase-matched SH generation in
typical crystals follows this scheme: A plane wave at the
fundamental frequency o propagates with phase velocity
c¢/n(w) through a nonlinear y'* medium, and a signal is thus
generated at twice the temporal and spatial frequencies of the
pump. Because typically one is concerned with maximizing
the conversion efficiency of the process, it is desirable to
keep the two waves as close as possible to the phase match-
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ing condition. This simply means that the indices of refrac-
tion at the fundamental and second harmonic frequencies are
almost the same. In order to minimize pulse walkoff effects
due to unequal group velocities, normally one also chooses
the length of the nonlinear crystal to be much smaller than
the spatial extension of the incident field. The typical situa-
tion may be illustrated with the following example: A nano-
second pulse, whose spatial extension is approximately
30 cm, may be incident on a millimeter- or centimeter-long
crystal. However, if pulse length is comparable to the length
of the structure or shorter, steps may also be taken to achieve
so-called noncritical phase matching conditions, which occur
when the group velocities of the FF and SH fields are also
nearly matched, so that pulse walkoff effects are minimized.
A number of strategies such as pulse prechirping and focus-
ing may be adopted, and these and other techniques are sum-
marized in [54], for example.

In the examples that follow, we will investigate SHG un-
der conditions of normal material dispersion. The dispersion
models that we adopt are as follows: The PIM is assumed to
be composed of a standard dielectric material having a cer-
tain index mismatch between the FF and SH frequencies.
The actual index mismatch depends on the material, but typi-
cal values may vary by as little as 5% or less for dielectrics,
to 10—15 % or more for semiconductors, depending on how
close to the electronic band edge one tunes the fields. The
permittivity and the magnetic permeability of the NIM are
described by a standard, lossy Drude model [55]:

1
ew)=1-—"",
( ) 5(5+i’7€)
@) = 1 - 2o e (s)
(@ + i%y,,)

where @=w/w), is the normalized frequency, w,, and w,,
are the respective electric and magnetic plasma frequencies,
and ¥,=v,/ w,, and ¥,,= v,/ »,, are the corresponding elec-
tric and magnetic loss terms normalized with respect to the
electric plasma frequency. For simplicity, we assume that
W=, and y,=7,,, so that n(»)=e(®)=u(®). These con-
ditions can easily be relaxed in favor of a more general ap-
proach. The functions under consideration thus provide
n(@) <0 for ®<1, and n(@)>0 for @>1, as shown in Fig.
1. For additional details about the NIM model, the reader is
referred to Agranovich ef al. [55], Shadrivov er al. [56], and
Popov et al. [57], who have analyzed second harmonic gen-
eration at an interface between a positive index material and
a nonlinear, lossless NIM.

We now consider a variety of conditions that are designed
to mimic just as many situations. In all cases we tune the FF
pulse and the generated SH signal under phase mismatched
conditions. The losses in the Drude model were taken to
yield an absorption length larger than 1 mm, and for our
purposes losses may be neglected. The pulse then crosses an
interface that separates the medium from vacuum, and propa-
gates inside the material. The overall conversion efficiency
of the process is low, and so we focus our attention on the
dynamics of the interacting pulses. In the first situation,
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FIG. 1. (Color online) Real part of &, u, and n for the Drude
model with wp,=w®,,,- The tuning zones for the FF and the SH are
also indicated.

shown in Fig. 2, we consider a super-Gaussian pulse having
a spatial extension of approximately 50 microns, incident
from vacuum on a dispersive PIM. In the figure we are able
to clearly discern the typical spatial modulation that charac-
terizes the generated SH intensity due to the finite coherence
length, as the pulse samples the material. The coherence
length can be identified as the separation distance between
two adjacent peaks in the spatial interference pattern of the
SH field intensity. For this reason it is usually defined as the
length of material that maximizes SHG, i.e., L.,,~\/2dn. In
this particular example, the medium is described by the in-
dices of refraction n(2@)=2 and n(®)=1.8, so that for a
generated SH tuned at @=0.7 the estimated coherence length

0.6 2.0x10™
AIR PIM
0
S FF propagating __| 15x10™
. pulse
2 o4
&
>
= SH generated
m -13
2 pulse 1.0x10
]
'_
z
a 02
-
w 0.5x10™
w FF reflected pulse k
0 : \ 0
-80 -40 0 40

DISTANCE (um)

FIG. 2. (Color online) A super-Gaussian pump pulse—scale on
left axis—propagates into a positive index material having n(®)
=1.8 and n(2®)=2.0 at the fundamental scaled frequency @=0.7.
The assumed dispersion yields group velocities Vg’zc/ 3.27 and
V;"’zc/ 4.08. Part of the pulse is reflected at the interface, while
most of the SH signal is generated forward. We assume x®~3

X 1077 cm/statvolts, or ~1 pm/V.
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FIG. 3. (Color online) A Gaussian pump pulse—scale on left
axis—propagates into a positive index material having n(@)=1.47
and n(2@)=1.64 at the fundamental frequency @=0.84. The second
harmonic signal—scale on right axis—is characterized by a re-
flected pulse, and two forward-propagating pulses, one traveling at
the normal group velocity, which walks off and lags behind, the
other phase-locked, and located under the pump and traveling at the
pump’s group velocity. Here too ¥~ 1 pm/V, and absorption is
negligible.

is of order L.y, ~ 1.75 wm. From Fig. 2, the calculated spa-
tial modulation of the SH pulse indeed suggests a coherence
length L., ~ 1.75 pum. Because the FF and SH pulses do not
propagate far into the medium, the two pulses do not have
enough time to experience walkoff.

A more interesting case develops when a short Gaussian
pulse is incident on the medium, and the resulting pulses are
allowed to propagate in a way that the GVM causes pulse
walkoff effects. This case is depicted in Fig. 3 for a pulse
tuned at @w=0.84. The incident electric field pulse is approxi-
mately 15 wave cycles in duration [full width at half maxi-
mum (FWHM)], with peak intensity of 1 W/cm?. The figure
shows that for sufficient propagation distances, one can
clearly identify several components: (i) Reflected pump and
SH pulses, (ii) a SH pulse that remains and propagates under
the pump, and (iii) a normal SH pulse that lags behind, that
walks off and propagates with the group velocity associated
with the SH frequency. In this situation, the FF pulse appears
to capture portion of the generated SH pulse. An almost iden-
tical situation develops in a nonlinear x*** medium for third
harmonic generation [33].

In trying to assess the intricacies of the dynamics, one
may look at the spectra of all propagating components. The
frequency spectrum shown in Fig. 4 is obtained by simply
monitoring the fields at some spatial location inside the me-
dium as a function of time, and by performing a Fourier
transform of that signal. Aside from an evident and inevi-
table degree of cross-phase modulation experienced by the
SH signal, the frequency spectrum does not yield any addi-
tional information. The spectrum of the generated SH pulse
is compared to the spectrum of a seed SH pulse having simi-
lar duration. On the other hand, an analysis of the k-space
power spectrum immediately yields valuable information. In
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FIG. 4. (Color online) Power spectrum of a generated, forward
propagating SH pulse in the presence of a second order nonlinearity
(red curve), near the second harmonic frequency 2@=1.68, assum-
ing n(@)=1.47 and n(2@)=1.64. The blue curve is the spectrum of
a seed pulse tuned at the second harmonic frequency, having similar
duration as the generated SH pulse. The figure shows that the sec-
ond harmonic pulse undergoes some degree of cross-phase
modulation.

Fig. 5 we depict the power spectra of the fields, and analyze
all the components for the snapshot corresponding to Fig. 3.
For the FF pulse (black curve), we identify the reflected
(~k,), and the forward propagating (k,n,) pulses. For the
SH signal (red curve), we have (i) a small, backward-
generated component (—k,,), (ii) the normal, forward-
moving component that walks off (k,,n,,,), and (iii) a phase-

10” 10
PIM phase locked

— — SH Kk
—— FF

o o
2k n
.
10

kZ(u ‘ |
10" ‘ l | 1o

k-space spectrum (a.u.)
=

-10 5 0 5 10 15 20
k [units of ko]

FIG. 5. (Color online) K-space power spectrum for the situation
depicted Fig. 3. For the pump (FF)—left axis scale—we identify (i)
the reflected component (k,=27®) and (ii) the component that
propagates inside the medium (k,n,). For the second harmonic
(SH)—right axis scale—it is possible to recognize (i) the reflected
component (k,,,), (ii) the component propagating inside the medium
that walks off, having nominal group velocity given by material
dispersion (ks ,n5,,), and (iii) the phase-locked component (2kn,,).
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FIG. 6. (Color online) Comparison of energy vs time diagram
for SHG under phase mismatched conditions, as follows: (i) Blue
curve, large group velocity mismatch (GVM), and (ii) red curve,
low GVM. In the first situation, pump duration (FWHM) is approxi-
mately 15 reference optical cycles and is tuned to @=0.6, with
n(@)=1.41 and V§'=c/2.5. For the SH we have n(2@)=1.52 and
Vzmzc/ 4.1. In the second case, the FF has the same duration, tun-
ing, and index of refraction, but V‘;=c/2.0. For the SH n(2®)
=148 and V;“=c/2.2.

matched component (2k,n,) that corresponds to the SH
pulse trapped under the pump. This pulse has a k-vector that
satisfies the phase matching condition: Ak=kj1,,—2k,n,,
=0, and is consistent with the predictions made in references
[4] for the quasimonochromatic case.

Ordinarily, the existence of a phase matched component
leads to efficient energy conversion. We show the SH energy
(Fig. 6) as a function of time for two phase-mismatched situ-
ations: (i) A case corresponding to the pulse depicted in Fig.
2, where pulse walkoff has not yet occurred (blue curve), and
(ii) the red curve, which describes the situation depicted in
Fig. 3, and is indicative of the energy clamping process.
Once the normal SH pulse separates, the SH energy quickly
settles to a constant, steady state value: The phase matched
components is actually phase-locked, a condition that pre-
vents energy exchange to occur. The phase-locking condition
is verified by monitoring the phase of the SH pulse as a
function of time, at different longitudinal positions. This is a
robust phenomenon that does not depend on any threshold
intensity or a particular phase mismatch, and the outcome is
also stable against the presence of absorption, which gener-
ally diminishes total propagation distances, and the kind of
nonlinearity [33]. In fact, using our model we report confir-
mation of the process for the case of a third order nonlinear-
ity and third harmonic generation reported in reference [33].
The energy exchange diagram shown in Fig. 6 suggests that
the interaction evolves into a relatively simple phase link
between the FF and the SH trapped pulse. It is apparent that
the resulting dynamics comes about as a result of a relation-
ship between the phases of the pulses, and not as a material
feature. The study of this effect in NIMs will shed more light
on the subject, and so we proceed with that in the next sec-
tion.
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FIG. 7. (Color online) A Gaussian pump pulse—black curve,
left axis scale—is tuned to @=0.84, and propagates into a negative
index material such that n(@)=-0.41 and n(2@)=0.64. The second
harmonic—red curve, left axis scale—has a reflected pulse, a
forward-propagating pulse that leads the way, and propagates at the
nominal group velocity for the second harmonic frequency, and a
phase-locked pulse that propagates at the group velocity of the fun-
damental pump field. ¥®=1 pm/V, and absorption is negligible.

PULSED SECOND HARMONIC GENERATION
IN NEGATIVE INDEX MEDIA

For a case-study of pulsed, phase-matched SHG in NIMs
the reader is referred to Ref. [39]. Here we discuss the gen-
eral case where Ak # 0, and view the phase-matched case as
a special case. In Fig. 7 we show the E and H fields for a
generic snapshot after the FF crosses the air-NIM interface
such that the indices are given by n(@)=-0.41 and n(2®)
=0.64 at the FF @0=0.84. The condition €= u generally yields
almost no reflections for the FF, but it allows both forward
and backward pulsed SHG [39]. The figure shows that unlike
the pump, the E and H fields of the SH pulse separate inside
the medium. Typically, this is an indication that the effective
parameters € and w are no longer the same, just as it occurs
in ordinary PIMs. We note that in this case the normal SH
pulse that walks off enjoys a larger linear group velocity due
to the nature of the Drude dispersion, and so it leads the way.

In Fig. 8 we show the k-spectrum that corresponds to the
fields depicted in Fig. 7. Our model sets a negative index of
refraction for a normalized frequency w< 1, so if the pump
is tuned in the range 0.5 <® <1, then the SH always reads a
positive index (see captions of Fig. 1, 7, and 8 for details). In
Fig. 8 we recognize the following SH components: (i) A
reflected SH pulse with k-vector-k,,,; this is the pulse that is
generated at the interface and propagates backward in free
space; (ii) a forward-propagating pulse with k-vector k, 75,
this is the normal SH pulse that walks off and leads all
pulses; (iii) a phase-locked pulse having k-vector 2k,n,,. The
black curve centered at k,n, represents the k-space wave
packet of the forward-moving FF pulse. All three SH pulses
are generated at the interface, as revealed in Fig. 9, where we
monitor the total SH energy as a function of time. All com-
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FIG. 8. (Color online) K-space power spectrum of the situation
in Fig. 7. For the pump field—left axis scale—we have a forward-
propagating component characterized by a negative carrier wave
vector (k,n,). Pump reflections are negligible. For the second-
harmonic wavelength—right axis scale—we identify (i) the re-
flected component (—k,,,), (ii) the normal component that walks off
(kpi124), and (iii) the phase-locked component (2k,n,). We note
that the phase locking condition, 2k n,=k, 1, 1S in general to be
distinguished from the material phase matching conditions, 2kn,,

=k2wn2w'

ponents except the phase-locked pulse are found at the ex-
pected spectral positions. Two points are worthy of note: (i)
The SH phase-locked pulse is now characterized by a nega-
tive wave vector at twice the pump wave vector; (ii) this
pulse moves forward at the pump’s group velocity. Imprint-
ing the phase-locked pulse with a negative index of refrac-
tion results in local separation of the £ and H fields, and is
the adjustment needed in order to overcome the true disper-
sive properties of the medium at the SH frequency. In addi-
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FIG. 9. (Color online) Energy exchange diagram for the situa-
tion depicted in Fig. 6. The interaction occurs only during the time
under the arrow, which is the time it takes the pulse to cross the
interface.
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FIG. 10. (Color online) Same situation as in Fig. 6, except that
we are now using a semilogarithmic scale. The diagram spans 16
orders of magnitude to show a relative intensity that fills the void
between the phase-locked pulse and the backward propagating
pulse.

tion to causing no reflections, the condition &€=y is necessary
for the E and H fields to overlap. Therefore, from Fig. 7 one
may appreciate the fact that the £ and H fields separate as a
result of the phase-locking phenomenon. This separation
does not occur for the leading, normal pulse, which still
propagates in a NIM with complete E and H overlap.

The dynamics that we have described generally occur
only near the interface. Energy exchange stops quickly, with-
out obvious manifestations of spatial modulation of the SH
signal, as in Fig. 2. In Fig. 9 we show the SH energy as a
function of time, as the pump crosses the interface corre-
sponding to the situation depicted in Fig. 7. The result is a
lack of relaxation oscillations, and almost immediate energy
clamping. The arrow indicates the duration of the interaction,
or the time it takes the pulse to traverse the entry surface.

We also performed simulations where w,,# w,,,. In this
case there exists a range of frequencies where € and u have
opposite sign, and a gap forms [47]. However, since the FF
and the SH frequencies are both tuned out of the gap, there
are no qualitative differences between this case and the case
presently under consideration, namely w,,=w,,,. Additional
studies will further clarify both SH and TH behavior when
the fields are tuned near the gap or at a transmission reso-
nance.

TWIN PULSES

In Fig. 10 we offer another rendition of Fig. 7, and show
the fields on a logarithmic scale that spans sixteen orders of
magnitude. The figure suggests a relationship between the
backward-propagating packet, and the forward-moving,
phase-locked pulse. A more detailed analysis, aided by a par-
allel development of the FDTD method outlined in Egs. (3),
shows that the phase-locked pulse is releasing light very
slowly in the backward direction, an action that creates an
umbilical cord and fills the void between the two pulses. We
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FIG. 11. (Color online) FF pulse—black curve, left axis scale—
and SH pulse—red curve, right axis scale—under four different
frequency tunings, near and at the phase matching condition at @
=0.7905. The closer one tunes to the phase matching condition, the
more the E and H fields overlap, and the more obvious the connec-
tion between the phase-locked and the reflected pulse becomes.

note no such link between the phase-locked pulse and the
normal forward-propagating SH component. To further em-
phasize this link, in Fig. 11 we show SHG corresponding to
four tuning conditions at and near the phase matching con-
dition, wpy;=0.7905. The figure suggests that when the phase
matching condition is satisfied, phase-locking and phase-
matching become indistinguishable, and the index of refrac-
tion of the phase-locked SH signal approaches and matches
the material value. Evidence for this is provided by the fact
that the degree of E and H field overlap increases as the
material phase matching condition nears. Furthermore, the
link between the pulses is now more evident, as it is clear
that we are dealing with a single, broad, backward-
propagating pulse, continuously generated under the enve-
lope of a forward-moving pump, as reported in Ref. [39]. A
similar effect occurs in ordinary PIMs, except that phase
matching is established in the forward direction, with similar
pulse broadening characteristics [29]. Thus one may view the
phase matching condition as a special case of the more gen-
eral features that relate the two pulses, which we refer to as
twin pulses. This choice of words will be further clarified in
the next section. The relation Ak=k,,—2k,=0 is thus estab-
lished by a portion of the generated SH pulse every time the
pump enters the medium, but energy exchange occurs only if
the material has the right features to also satisfy it. This is
clear from Fig. 12 where we depict the energy as a function
of time for the conditions reported in Fig. 11, as the phase
matching conditions are approached.

DISCONTINUITIES

We now examine further twin-pulse generation by intro-
ducing a small physical discontinuity inside the NIM, and
that is a simple ¥ jump (Fig. 13). Although this kind of
discontinuity may be considered small by any measure (we
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FIG. 12. (Color online) Energy exchange diagram for the situa-
tion depicted in Fig. 11.

choose ' ~1 pm/V, but the situation persists for arbi-
trarily small discontinuities), it does nevertheless provide for
a break in the translational symmetry of the system. Figures
13-15 form a before, during, and after sequence that sees the
FF and SH pulses interact with the above-mentioned discon-
tinuity. While the figures show that the pump continues on
unaffected, the SH is almost completely reflected. In fact,
crossing the interface generates a small, normal, forward-
moving SH pulse, which represents new energy (see Fig. 16).
Although we have chosen a small discontinuity to highlight
the degree of stability of the phenomenon, a more substantial
discontinuity, such as returning the pulse into vacuum also
leads to a similar result. Therefore, any discontinuity appears
to be enough to set the phase-locked pulse free from the FF
pulse, and to send it propagating backward (Fig. 15). Follow-
ing disengagement, the absence of a link with the pump re-
turns the phase-locked pulse to a normal, backward-
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FIG. 13. (Color online) A Gaussian pulse tuned to

@w=0.84—Dblack curve, left axis scale—propagates into a negative
index material having n(@)=-0.41n(@)=-0.41 and n(2@)=0.64,
just before a x? interface is crossed. The phase-locked SH pulse—
red and blue curves, right axis scale—propagates at the same group
velocity as the FF. y?'=1 pm/V, and absorption is negligible.
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FIG. 14. (Color online) The same pulses of Fig. 13 during the
x? interface crossing. Note that the FF pulse crosses undisturbed,
while the SH pulse is stopped as a second forward-moving SH
pulse begins to form to the right of the interface.

propagating trajectory: The E and H fields again overlap,
with matching spectral components (k-space) at their ex-
pected positions. Figure 16 shows that the interface crossing
causes the SH signal to gain a small amount of energy. We
can reasonably suppose that this energy arises only from the
new small, forward-propagating pulse pictured in Fig. 15,
and that the phase-locked pulse is simply released without
any further energy exchange.

We find that the process will repeat if we reestablish the
condition of ¥ >0 at a position downrange. That is, a new
phase-locked pulse is generated as the pump enters the re-
gion, and the process begins again. This dynamics suggests
that we may set up a NIM-grating such that the ) alter-
nates between a maximum and a minimum value (Fig. 17).
The calculations then suggest that continuous SH generation
is also possible, as depicted in Fig. 17 (inset). As the pump
pulse traverses the grating, phase-locked subpulses are gen-
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FIG. 15. (Color online) The same pulses of Fig. 13 after the x
interface crossing. The phase-locked pulse is now freely propagat-
ing backward with the group velocity dictated by material disper-
sion, and a forward-propagating SH pulse is also clearly visible.
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FIG. 16. (Color online) Energy exchange diagram for the situa-
tions depicted in Figs. 13—-15. SH gain occurs every time a y
interface is crossed, while between interfaces the energy of the SH
pulse clamps.

erated and are repeatedly sent propagating backwards in
regular fashion. Another interesting question relates to the
grating pitch. In Fig. 18 we show the SHG efficiency vs. the
period of the grating for three different situations: (i)
[2x 2 |null]; (i) [xX?]|-x?7; (i) [x? |null]. By null here we
mean a zero y'? coefficient. Although the behavior is similar
in all three cases, it is also evident that optimal conditions for
SHG may be sought and found.

SEMIANALYTICAL TREATMENT

It is possible to draw some conclusions about the phase-
locking mechanism based on the semianalytical treatment

1.0 2.5x10°°
120t SH ENERGY (arb. uni
(arb. units) = NIM
Z 08 2.0x10°®
=
=}
g
T 06 TIME (units of Ay/c) 1.5x10°
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Zz —
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-
w .
T 02 x®@ grating  {0.5x10°
0 - 0

-100 -75 -50 -25 0 25 50 75 100

distance [units of z/xo]

FIG. 17. (Color online) A Gaussian pump pulse propagates in-
side a NIM having a grating of x'? having a period of eight refer-
ence wavelengths, and alternating between values of zero and y®
=1 pm/V. n(®)=-0.41 and n(2@)=0.64 at the FF tuning of @
=0.84. Inset: SH energy vs time as the pump pulse plows through
the grating.
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FIG. 18. (Color online) SH energy as a function of grating pe-
riod for three different situations. Note that in all cases the maxi-
mum gain occurs for the same grating period, namely ~6.6 refer-
ence wavelengths.

described in reference [33]. Since we are dealing with NIMs,
we use a set of coupled nonlinear generalized Schrodinger
equations to describe the interaction between the FF and SH
pulses [58]. We write

GE, ik," PE, iBu.x”

= E E,,,
dz 2 o 2n, 7
0-'E2a) _ ikZa)H &ZEZa) lBMZwX(z) 2
- 2 Ews (6)
dz 2 o N

where k"=d(1/V,)/ dw is the group velocity dispersion coef-
ficient, and z and ¢ represent retarded coordinates that ride
with the wave. As written, Egs. (6) select the phase locked
FF and SH components that co-propagate at the same group
velocity, and neglects the SH pulse that walks off. The con-
ditions that are satisfied in the regime that we consider, a
pump field much more intense than the SH field, dictate the
pump amplitude be constant along z. We may further write
the complex field envelope functions in terms of phase and
amplitude as follows:

Ew,Zw = Aw,Zw exp(i¢w,2w) > (7)

and expand the second of Egs. (6), so that we have

Ay, 0,0, K P,
=-K - A"
oz ot ot 2 ot
(2)
- EAL s, - ). (S3)
&
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FIG. 19. (Color online) Time derivative of the phase (black
curve, right axis) at the observation point located at ¢~ 36 (mi-
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B \/g 052y = ). (8D)

In the retarded coordinate, we put dA,,/dz=d¢,,/dz=0. It
is possible to estimate numerically the temporal derivative of
the phase at any longitudinal position, and we find that
dpy/ dt=const<<1[1/s"], where s’ =\y/c is the normalized
time of magnitude 107'*s. It follows that ¢*¢,,/d*=0. In
Fig. 19 we show typical field profiles as functions of time at
an observation point inside the medium, obtained by inte-
grating Eqgs. (3). In the figure, the right axis depicts the de-
rivative of the phase, and it is evident that inside the pulse
(the region illustrated by the arrow) it is indeed a very small
constant number. Similar results are obtained at different ob-
servation points. We may also estimate *A,,/dt>=0 nu-
merically using similar arguments. We also find that the term
k"(0A,,/ 0t)(dy,/ f) is nearly three orders of magnitude
smaller than the last term in Eq. (8a). The equations then
reduce to

(2)
B S sin2, - ) =0, %)
&

K" AZw(aquw)z\/;
cos(2¢,, — =~ — |\ —. 9b
( d)m ¢2a}) BX(Z) A(zu ot u ( )
Equation (9a) allows the nontrivial solution only if 2¢,
—¢,,=0. This is the phase-locked condition for the SH
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pulse. This is consistent with Eq. (9b), because we are also
able to verify that (Agh,/dr)*\e/ u(k"As,l BYPA2)=1, so
that cos(2¢,— ¢b,,,) =1.

To conclude this section, we observe that the conditions
we have applied in the low intensity regime, namely that the
pump ad SH are constants in z, are similar to conditions that
one usually applies to seek soliton solutions. In negative in-
dex media, for example, simultons have been reported in
nonlinearly quadratic media, in a high intensity, strong cou-
pling regime [59]. Simultons are two-frequency waves that
copropagate in a given direction, that nevertheless resemble
the pump-SH pair of pulses that we have described above.
On the other hand, at low intensities solitons may not form,
and the two-color components may propagate in opposite
directions. Therefore, connections and similarities between
the basic phase-locking mechanism that we report here and
the phase-locking reported in the case of multicolor solitons
[5,59] in the high intensity regime are inescapable, and may
indeed provide the basis for further understanding these pro-
cesses.

CONCLUSIONS

We have analyzed pulsed SHG in ordinary and negative
index materials under phase mismatched conditions, and find
that a portion of the generated second-harmonic signal is
phase locked, trapped and dragged along by the pump pulse.
In the case of negative index materials, it turns out that the
trapped pulse and the pulse back-reflected at the interface
constitute a set of twin pulses having the same negative wave
vector but propagating in opposite directions as a result of
the trapping mechanism. Our work thus extends previous
investigations done in ordinary materials, and bridges the
gap with metamaterials by revealing exciting new dynamical
characteristics hitherto unknown. The experimental realiza-
tion of this phenomenon requires a relatively low loss nega-
tive index material in the infrared and optical frequency re-
gime. While such materials are not readily available yet,
recent developments in the fabrication of a negative index
metamaterial in the infrared regime are already encouraging.

These results thus constitute a first step toward better un-
derstanding of the dynamics of ultrashort pulse propagation
phenomena under phase mismatched conditions, followed by
a natural extension of our model to two dimensions. The
inclusion of transverse effects and the consideration of si-
multaneous, competing second and third order nonlinearities
thus constitute fertile ground for continued research.
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