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A unidirectional optical oscillator consists of an optical amplifier whose outgoing field is reinjected into the
incoming one by means of a ring cavity. We used recently a liquid crystal light valve as optical amplifier and
reported experimental evidence of cavity field oscillations. The light-valve provides a high gain and a wide
transverse size, activating a large number of cavity modes, both transverse and longitudinal. A mean-field
approximation along the cavity axis is not suitable for this system, thus we introduce a model which accounts
for the activation of different transverse and longitudinal modes and shows numerically that their interaction
generates three-dimensional spatiotemporal pulses localized along the cavity axis. The generation of these
pulses is experimentally verified.
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I. INTRODUCTION

A laser is a positive feedback optical amplifier. The active
medium with population inversion acts as the light amplifier
by means of stimulated emission and the cavity supplies the
feedback �1�. The two-wave mixing �2WM� in nonlinear
photorefractive crystals provides another mechanism of light
amplification �2� and has been intensively used to observe a
rich variety of spatiotemporal dynamics of the transverse
cavity modes �3�. Because of the limited transverse size of
photorefractive crystals, the number of activated modes is
relatively small, typically about few tens. Recently, we pro-
vided experimental evidence of optical oscillations with a
huge number of modes using a liquid crystal light valve
�LCLV� as the two-wave mixing device �4�.

In this paper we present the full derivation of the model
for the unidirectional optical oscillator based on the LCLV as
the gain medium. Experimental results, such as the three-
dimensional �3D� spatiotemporal pulses, are presented and
compared to the theoretical predictions. The model is derived
starting from the Maxwell equations for the light propagation
in the cavity and from the theory of the LCLV. The main
differences with respect to existing models of cavity oscilla-
tors �5–7� are due to the specific features of the gain medium.
Indeed, due to the large gain and transverse size of the
LCLV, a huge number of transverse and longitudinal modes
can be simultaneously activated, preventing the use of a
mean-field approximation along the cavity axis. Thus, our
model considers the effects of different longitudinal modes
and accounts for longitudinal variations of the cavity field.
We show that the field displays spatiotemporal pulses local-
ized in the transverse and longitudinal directions. Another
important difference with previous models for photorefrac-
tive ring cavities is the second-order nonlinear coefficient of
the refractive index; in photorefractive media it is generally
imaginary, but for the LCLV it is always real. This has im-
portant consequences on the saturation mechanisms and the
dynamical interplay among different modes.

In Sec. II, we give a brief description of the experimental
setup. In Sec. III, we introduce the equations for the LCLV

and the cavity field. In Sec. IV we analyze the model in the
one-mode approximation and recover the mean-field ap-
proximation in the limit of a suitably small number of
modes. In Sec. V, simulations are presented for a one trans-
verse dimension and a large number of modes, showing the
presence of a longitudinal pattern of the cavity field. In Sec.
VI, we report the experimental data and provide evidence of
longitudinal multimode effects. Finally, in Sec. VII we give
the conclusions. Five movies of both numerical and experi-
mental dynamics are available online �8�. Their description
will be given in Secs. V and VI.

II. DESCRIPTION OF THE EXPERIMENTAL SETUP

The experimental setup is schematically represented in
Fig. 1. The LCLV is composed of a nematic liquid crystal
cell with one of the walls made of a slice, 1 mm thick, of the
photorefractive B12SiO20 �BSO� crystal �9�. An external ac
voltage of amplitude V0 is applied to the liquid crystal cell by
means of transparent electrodes deposited over the glass win-
dow and the external side of the BSO crystal. The BSO acts
as a transparent photoconductor, thus modulating the voltage
across the liquid crystals as a function of the intensity of the
light passing through the cell �10�. The overall effect is a
change of the refractive index n as a function of the imping-
ing light intensity I �Kerr nonlinearity�. In the first approxi-
mation n=nc+�I, where nc is the constant component and �
is the nonlinear coefficient accounting for the Kerr-type ef-
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FIG. 1. Experimental setup.
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fect. The advantages of the LCLV with respect to other non-
linear media are the high value of � and the large transverse
size �in our valve the cell area is 20�30 mm2�, allowing the
simultaneous amplification of a large number of cavity
modes, both transverse and longitudinal.

The LCLV is positioned inside a ring cavity consisting of
three high-reflectivity dielectric mirrors. A lens with focal
length f is inserted in the cavity in order to fulfill the stability
condition 4f �Lcav and have a discrete spectrum for the
transverse modes. The total length of the cavity is Lcav
=240 cm and the lens has a f =70 cm focal length. The
LCLV is pumped by a plane-wave optical beam provided by
a diode pumped solid state laser ��=532 nm� and propagat-
ing at an angle ��30 mrad with respect to the cavity axis.

The light amplification in the cavity is based on two-wave
mixing interactions in the liquid crystals �9�. The pump po-
larization is linear and parallel to the liquid crystal director
orientation, which is vertical. The pump induces in the liquid
crystal a homogeneous variation of the refractive index
n�r���, r�� being the transverse coordinates of the two-
dimensional layer. Because of inhomogeneous thermal fluc-
tuations of n�r���, a small fraction of light is scattered in the
direction of the cavity axis and, after a turn in the ring, it
adds to the pump field creating a small grating in n�r���. If
the losses in the cavity are sufficiently small, this grating
scatters a larger fraction of the pump field into the ring and
an exponential growth of the cavity field occurs, until satu-
ration effects become relevant. The spontaneously generated
cavity field is polarized along the vertical direction, since
only the extraordinary waves are amplified by the 2WM �9�.

The Fresnel number of the cavity, which is the ratio of the
diffraction limiting aperture to the area of the fundamental
Gaussian mode, is controlled by a diaphragm placed behind
the lens and can be changed from F=1 to approximately F
=500, which implies changing from a single transverse mode
oscillation to a regime where a huge number of modes are
interacting. The number of oscillating modes can be changed
also by varying the voltage V0 applied to the LCLV. Indeed,
V0 changes the uniform refractive index of the LCLV, thus it
acts directly on the frequency detuning between the cavity
field and the pump beam, which, as we will see in the fol-
lowing, is the main mechanism of mode selection.

For the purpose of visualization, a small fraction �4%� of
the cavity field is extracted by a beam sampler and, after
passing through a lens, is separated into three distinct optical
paths. Three charge-coupled device CCD cameras record the
transverse intensity distributions at three different planes,
chosen in such a way to image the cavity field at three dif-
ferent planes situated at different z coordinates along the
cavity axis.

III. THEORY OF THE MANY-MODE LIQUID CRYSTAL
OSCILLATOR

In Sec. III A we study the two-wave mixing interaction in
the LCLV and show that it provides an amplification mecha-
nism when one of the fields is much larger than the other
one. In Sec. III B, we complete the model of the liquid crys-

tal optical oscillator �LCO� introducing the equations for the
ring cavity feedback.

The model is derived by coupling the Maxwell equations
with a Debye relaxation equation for the refractive index in
the liquid crystal layer. We anticipate that we will end up
with two medium equations, one for the slowly varying com-
ponent of the refractive index, describing the self-interaction
of the cavity field, and one for the spatial grating, giving the
2WM mechanism of photon injection inside the cavity. The
dynamics of the refractive index depends on the field inten-
sity impinging on the photoconductor side of the LCLV, thus
the two medium equations are coupled to an evolution equa-
tion for the cavity field, which accounts also for the longitu-
dinal variations along the propagation direction. Because of
the large scale separation between the liquid crystal response
time and the light round-trip time in the cavity, the field
evolution is slaved to that of the refractive index. In Appen-
dix A we describe a numerical method that efficiently solves
the cavity field equation.

A. The LCLV as a light amplifier

Let r��, z be the transverse and normal coordinates of the
liquid crystal layer, respectively. The origin of z is positioned
at the entrance side of the liquid crystal layer. In a wide
range of parameters, the LCLV is characterized by a nearly
constant coefficient �. Thus, for a constant impinging light
intensity I�r���, the uniform refractive index is n�r���=nc

+�I�r���. Because of the finite relaxation time � and the
charge carrier diffusion in the photoconductor layer, for
time-dependent I the refractive index obeys the following
relaxation equation:

�ṅ�r��,t� = �− 1 + l0
2��

2 �n�r��,t� + �I�r��,t� + nc, �1�

where l0 is the diffusion length of the charge carriers �11�.
Let the impinging light be the superposition of a strong

pump beam and a weak one with wave numbers k�p and k�c,
respectively. The angle � between them is small and they are
nearly orthogonal to the LCLV. We take a plane pump wave
and write the overall electric field as follows:

E�r�,t� = Epei�k�p·r�−�pt� + Ec�r�,t�ei�k�c·r�−�pt� �z 	 0� , �2�

where Ep is a constant amplitude and Ec is slowly varying in
time and space with respect to the carrier ei�k�cr�−�p·t�, with
�p�c �k�p � �c �k�c�.

The light intensity arriving at the photoconductive side of
the LCLV is

�E�r�,t��2 = �Ep�2 + �Ec�r�,t��2 + �Ep
*Ec�r�,t�e−iK� �·r� + c.c.� ,

�3�

where K� ��k�p−k�c, which is nearly parallel to the liquid crys-
tal layer. The first two terms generate a slowly varying re-
fractive index, whereas the last one produces a grating with

wave number K� �. If the spatial spectral width of Ec is suffi-

ciently smaller than �K� ��, the refractive index can be decom-
posed as
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n�r��,t� = ñ + n0�r��,t� + �n1�r��,t�e−iK� �·r�� + c.c.� , �4�

where ñ�nc+�Ip is a constant term, Ip��Ep
�in��2 being the

pump intensity at the entrance of the LCLV �z=0�. Replacing
this equation into Eq. �1�, we obtain the equations for the
envelope fields n0 and n1,

�ṅ0 = �− 1 + l0
2��

2 �n0 + ��Ec
�in��r��,t��2, �5�

�ṅ1 = �− c1 − 2il0
2K� � · �� � + l0

2��
2 �n1 + �Ep

�in�*Ec
�in��r��,t� ,

�6�

where Ec
�in��r�� , t� is the cavity field at z=0 �entrance side of

the LCLV� and c1�1+ l0
2�K� ��2.

Now, we must evaluate the outgoing fields. If the higher
scattering orders are negligible, the main effect of the modu-
lation of the refractive index consists in coupling Ep and Ec.
A photon in the pump beam can scatter into the cavity field
and vice versa. However, if �k�p�d�n1� is not much smaller than
2
, multiple scatterings into higher orders occur and a pho-
ton can acquire a transverse wave number which is a mul-

tiple of K� �, as schematically depicted in Fig. 2. Because of
the high gain of the LCLV, we must account for these higher
order scatterings and write the field in the liquid crystal as
follows:

E�r�,t� = ei�ñk�p·r�−�pt� �
m=−�

�

Em�r�,t�e−imK� �·r� �z � 0� , �7�

where m is the order of the scattered wave. At z=0, E0

=Ep
�in�, E1=Ec

�in� and the other components are zero. Note that
we have multiplied the wave number k�p by the uniform re-
fractive index ñ.

In order to fulfill the continuity condition of E and its
derivative at the boundary between regions with different
refractive index, we should account for reflections. However
their effect can be included in the overall losses, which we
neglect for the moment. The electric field E in the liquid
crystal satisfies the equation

�2E�r�,t� −
n2�r��

c2

�2E�r�,t�
�t2 = 0. �8�

We assume that the component Ec is nearly constant with
respect to the optical frequency and neglect the time depen-
dence of the components Em �adiabatic approximation�. Fur-
thermore, the small thickness of the liquid crystal layer and

smallness of n0 and n1 enable us to neglect the diffractive
terms �2Em and the squares n0

2 and n1
2. Since only the first

scattering orders are relevant, we can assume the vectors

k�p−mK� � nearly parallel to k�p in the terms with the gradient
of Ec. With these approximations, Eq. �8� becomes

�Em�r��,z�
�z

= ik �
l=−1

1

nlEm−l�r��,z� , �9�

where k��k�p���k�c�. The eigenmodes are Em
�s��r���

=F�s��r���eism, where s� �0,2
� and F is a complex function.
The corresponding eigenvalues are

��s��r��� � ik �
l=−1

1

nl�r���e−ils. �10�

The general solution of Eq. �9� is

Em�r��,z� = 	
0

2


dsF�s��r���e��s��r���zeism. �11�

For z=0, E0=Ep
�in�, E1=Ec

�in� and the remaining components
are zero, thus we have that

F�s��r��� =
1

2

�Ep

�in� + Ec
�in�e−is� . �12�

By performing the integration in Eq. �11�, we find the out-
going fields of Ep and Ec,

Ep
�out� = ein̄0
J0�2�n̄1��Ep

�in� − i
n̄1

*

�n̄1�
J−1�2�n̄1��Ec

�in�� , �13�

Ec
�out� = ein̄0
J0�2�n̄1��Ec

�in� + i
n̄1

�n̄1�
J1�2�n̄1��Ep

�in�� , �14�

where Jl are the Bessel functions of order l and where we
have introduced the rescaling of the refractive indices

kdnl → n̄l. �15�

In general, when there are many input fields El
�in�, the

outgoing fields are

El
�out� = ein̄0�

m
�i

n̄1

�n̄1�
m

Jm�2�n̄1��El−m
�in� . �16�

The limit �n̄1�1 corresponds to the first diffraction order,
where photons undergo at most only one scattering process.
In this limit, Eqs. �13� and �14� become �with �Ep

�in��� �Ec
�in���

Ep
�out� � eikn0dEp

�in�, �17�

Ec
out�r��� � eikn0d�Ec

�in��r��� + ikn1dEp
�in�� , �18�

where J1
2�2k�n1�d���k�n1�d�2 is the grating diffraction effi-

ciency in the limit of small n1.
Equations �5�, �6�, and �14� are the first ingredients of the

optical oscillator model. They give the dynamics of the out-
going field Ec

�out� as a function of Ec
�in�. In the following sec-

tion, we consider the effect of the cavity and evaluate Ec
�in� as

a function of Ec
�out�.

Ep

Ec

in

in

K
+2

-1

+1

0

kp

kc

kc - ks = (m-1) K
(m)

FIG. 2. Multiple scatterings from the refractive index grating;
ks

�m� is the wave vector of the m order scattered beam.
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In order to illustrate that the LCO can provide an ampli-
fication of Ec, we consider the limit �n̄1�1 and suppose that
the incoming field Ec

�in� is much slower than n1. Thus, n1

follows adiabatically Ec
�in� and can be eliminated. Neglecting

the spatial derivative in Eq. �6�, we have that n1

��Ep
�in�*Ec

�in� and from Eq. �18�,

Ec
out�r��� � eikn0d�1 + i�kd�Ep

�in��2�Ec
�in�. �19�

Since �1+ i�kd�Ep
�in��2�=�1+ ��kd�2�Ep

�in��4 is greater than 1,
the LCLV acts as a light amplifier of the field Ec

�in�. Indeed,
from Eq. �19� we derive the usual expression for the 2WM
gain in a thin medium �10�, that is, Ic�out� / Ic�in�=1
+ ��kdIp�2, where Ic= �Ec�2. It is interesting to note an impor-
tant difference between the LCLV and a photorefractive crys-
tal. In the latter one, � is generally an imaginary number
−i�, thus its amplification factor is 1+�kd�Ep

�in��2, i.e., linear
in � and for some values smaller than 1. Conversely, in the
LCLV the amplification factor is quadratic in � and always
greater than 1, as already pointed out in Ref. �10�.

B. Field propagation and amplification in the ring cavity

In the preceding section, we have evaluated the outgoing
fields from the liquid crystal when two nearly parallel light
beams are injected into the LCLV and shown that the device
amplifies linearly the weaker field Ec. Now we study the case
where this amplifier is inserted in a ring cavity, which rein-
jects the field Ec

�out� into Ec
�in�. When the cavity losses are

smaller than the LCLV gain and for suitable cavity detun-
ings, a spontaneous growth of Ec is triggered by small ther-
mal fluctuations of the refractive index, giving rise to cavity
oscillations. In Eq. �14� the field Ec

�out� is a function of Ec
�in�

and nk. By solving the field equation in the ring, we express
the reinjected field Ec

�in� as a function of Ec
�out�, thus eliminat-

ing the Ec
�out� dependence in Eq. �14� and closing the model.

We assume Ep
�in� constant in space and time. The cavity

field in vacuum satisfies the equation

��2 −
1

c2

�2

�t2Ec�r�,t�ei�k�c·r�−�pt� = 0. �20�

The carrier must be a continuous function along the ring,
thus

�k�c��Lcav − d� + ñ�k�c�d = 2
N , �21�

where N is an integer number to be chosen in such a way that
the condition �k�c��k=�p /c is satisfied. Note that ñ is the
uniform refractive index, which depends on the working
point of the LCLV through the applied voltage V0 and the
input pump intensity Ip.

If the loss rate is much larger than 1/�, we can use also in
this case the adiabatic approximation and neglect the time
derivative of Ec. In the paraxial approximation we neglect
the second derivative in z of Ec and have

�Ec�r��
�z

= � i

2k
��

2 + i��/cEc�r�� , �22�

where ����p−c�k�c� is the frequency detuning of the Ec
carrier with respect to the pump and depends on Ep by means
of ñ. By linearizing Eq. �21� we have

�� = ��c + ñ
�pd

Lcav
, �23�

where ��c depends on the cavity configuration and the sec-
ond term is the contribution of the uniform refractive index
ñ=nc+��Ep

�in��2.
The evolution operator through a distance L is

ei��L/cÂ�L� � e�iL/2k���
2 +�i��L/c�. �24�

In analogy with quantum mechanics, we define an operator
which describes the field evolution when it passes through
the lens. The vacuum evolution operator i

2k��
2 is analogous

to the inertial operator of a nonrelativistic particle, which
corresponds classically to the Hamiltonian 1

2k p��
2 . This classi-

cal limit is equivalent to the geometrical optics limit of the
Maxwell equations. A ray can be considered as the trajectory
of a particle with momentum p�� and transverse coordinate
r��. In our case, z corresponds to time. For rays parallel to the
cavity axis, p�� is zero. The corresponding equations of mo-
tion are

dr��

dz
=

1

k
p��, �25�

dp��

dz
= 0. �26�

Their integration from z=z0 to z1 gives linear equations
whose coefficients are the ABCD matrix elements of the ray
transfer matrix �12�

�1 �z1 − z0�/k
0 1

 �27�

�here we take the angle between the cavity axis and the ray in
rad�k unit�. A lens modifies the direction of rays, i.e., the
value of p��. This effect can be described by the equations

dr��

dz
= 0, �28�

dp��

dz
= − �r��, �29�

integrated over a length dL. They correspond to the Hamil-
tonian �r�

2 /2. Since parallel rays are focused at the focal
distance f , we find that dL�=k / f . Thus, the field evolution
through the lens is described by the operator

B̂�f� � e�−ik/2f�r�
2

, �30�

apart from an unimportant phase factor.
The overall evolution operator through the ring cavity is
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Ĉ � �1/2ei�ŜsmÂ�Lcav − L1�B̂�f�Â�L1� , �31�

where L1 is the distance between the LCLV and the lens,

�1−�� is the fraction of lost photons in a round trip, and Ŝ is
the specular operator, sm being the number of mirrors of the

cavity. Ŝ exchanges r�� with −r�� and obviously commutes

with Â and B̂. The phase detuning � depends on ñ as �see Eq.
�23��

� = �c + kdñ , �32�

where �c is set by the cavity. The field Ec
�out� evolves through

a round trip to ĈEc
�out�=Ec

�in�, and from Eq. �14� we obtain the
equality

Ĉein̄0
J0�2�n̄1��Ec
�in� + i

n̄1

�n̄1�
J1�2�n̄1��Ep

�in�� = Ec
�in�, �33�

with Ĉ the cavity operator defined in Eq. �31�. When solving
for Ec, we obtain

�1 − D̂�Ec
�in��r��� = ĜEp

�in�, �34�

where

D̂ � Ĉein̄0J0�2�n̄1�� �35�

is the operator describing the mutual coupling between the
cavity modes, accounting also for losses due to scattering out
of the cavity axis, and

Ĝ � Ĉein̄0
in̄1

�n̄1�
J1�2�n̄1�� �36�

is the operator accounting for the two-wave mixing process
of photon injection inside the cavity. Since the eigenvalues

of D̂ are complex numbers with modulus smaller than 1,

�1− D̂�−1 can be written as a Taylor series, then we have the
following solution for Ec

�in�:

Ec
�in��r��� = �

s=0

�

D̂sĜEp
�in�. �37�

Equations �5�, �6�, and �37� constitute our model. The first
two equations describe the dynamics of n0 and n1 and con-
tain the cavity field Ec

�in�, given by the last equation as func-
tion of the refractive indices. Equation �37� has a simple
physical interpretation. The first term with s=0 gives the
field scattered by the liquid crystal into the cavity with
Ec

�in�=0 and its subsequent evolution through a round trip.
The other terms are the contribution of this field after s re-
turns to the LCLV. Because of the cavity losses, this series
converges and can be approximated by a finite number of
terms. The relative error with N terms is of the order of �N/2,
thus with �=0.8 and 40 iterations the relative error is about
1%. In Appendix A we show that it can be further reduced
when the value of Ec

�in��t−dt� at the previous time t−dt is
used as an estimate of Ec

�in��t�. The evolution given by the

cavity operator Ĉ can be numerically implemented by means
of fast Fourier transforms.

Note that the thickness of the liquid crystal layer is a
parameter of the model. With the rescaling of the refractive
indices kdnl→ n̄l, it can be absorbed by �̄, defined as

�̄ = kd� . �38�

In this way, we have eliminated in Eq. �37� the dependence
on d.

IV. ANALYSIS OF THE MODEL

In the linear regime the cavity field grows exponentially
above a threshold value of the pump intensity, until satura-
tion terms become relevant. In Sec. IV A we analyze the
model for the LCO in the one-mode approximation evaluat-
ing the threshold value and identifying the saturation mecha-
nisms. In Sec. IV C we recover the familiar mean-field equa-
tions under suitable conditions.

A. One-mode approximation

We assume that only one longitudinal, one transverse
mode of the cavity is nearly resonant and undergoes oscilla-
tions. This condition can be experimentally obtained by set-
ting a diaphragm inside the cavity and by closing it in such a
way that only the fundamental transverse mode is selected.
The selection of the longitudinal mode takes place through
the frequency detuning with respect to the pump field, as it
follows from the analysis below. In the one-mode approxi-
mation the operator equation �34� is replaced by the scalar
one

Ec
�in� =

in̄1

�n̄1�
�1/2ei��0+n̄0�J1�2�n̄1��

1 − �1/2ei��0+n̄0�J0�2�n̄1��
Ep

�in�, �39�

where �0 is the phase acquired by the cavity field in a round
trip, i.e., �0c /Lcav��0 is the frequency detuning of the cav-
ity mode with respect to the pump field. Let us assume that
the eigenmode is smooth with respect to the diffusion length
l0 and neglect the derivative terms in Eqs. �5� and �6�, which
become

�
n̄0

dt
= − n̄0 + �̄�Ec

�in��2, �40�

�
n̄1

dt
= − c1n̄1 + �̄Ep

�in�*Ec
�in�. �41�

We now linearize Eqs. �40� and �41�, in order to study the
stability of the stationary solution n̄0= n̄1=0 and find the
threshold condition for the cavity oscillation. The first equa-
tion gives �dn̄0 /dt=−n̄0, thus we can take n̄0=0 and consider
only the second equation, which yields

�
n̄1

dt
= �− c1 + �̄Ip

i�1/2ei�0

1 − �1/2ei�0
n̄1 � c2n̄1. �42�

The threshold condition is Re�c2��0, i.e.,

− c1 − �̄Ip
sin �0

1 + � − 2�1/2 cos �0
� 0. �43�

The second term is an odd function of �0, is zero at �0=0,
and has a maximum at
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�0
M = − sgn��̄�asin

1 − �

1 + �
. �44�

With �0=�0
M, the threshold value of �̄Ip is minimal and given

by

��̄�Ip
thr =

1 − �

�1/2 c1. �45�

As noted in Sec. III A, � is imaginary in photorefractive
crystals, thus the real part of c2 is even and has a maximum
at �0=0. Conversely, in LCLV the overall gain is always
negative for �0=0, since there is a phase mismatch between
the triggering grating n1 and the grating generated by the
feedback field. With regard to this consideration, note that in
Eq. �19� the outgoing field Ec

�out� is equal to the incoming one
plus a contribution with phase detuning 
 /2, when n0=0.

For cavities with very small losses, �0
M is much smaller

than 1, thus for Ip of the order of Ip
thr the threshold condition

becomes

ch

c1
� − 1 −

�̄Ip

c1

�0

�2 + �0
2 � 0, �46�

where ��1−�1/21. In Fig. 3 we report ch /c1 as a function
of �0 /� for �̄Ip /�c1=8. The dashed lines represent the reso-
nant modes and have a negative �0, whereas the dotted lines
are the subthreshold modes. For high negative detuning the
gain decreases and becomes negative, because of the phase
mismatch among the cavity fields with different number of
round trips �in other words, the terms in the series of Eq. �37�
sum up to zero because of destructive interference effects�.

It is interesting to note that the imaginary part of c2 gives
a phase rotation of n̄1 and, consequently, of Ec. Thus, the
cavity field has a phase drift with respect to the pump Ep.
The corresponding frequency difference, called pulling �13�,
is always negative and for �1 equal to

�pull = −
1

�

�̄Ip�

�2 + �0
2 . �47�

At the threshold and for �0=�0
M,

��pull
thr � �

c1

2�
, �48�

i.e., it is of the order of the relaxation rate of n1.
The complex variable n̄1 can be specified by its real am-

plitude n̄A and phase �1, as follows:

n̄1 � n̄Aei�1. �49�

The evolution of n̄A and n̄0 is independent of �1, thus the
one-mode system is fully described by only two variables.
For a higher number of modes, in general the phases cannot
be eliminated. When many modes are simultaneously oscil-
lating in the cavity, the phase dynamics may become very
complex and can lead to the formation of spatiotemporal
pulses confined in the three space directions, as we will see
later.

B. Saturation and nonlinear effects

In the linear regime and above threshold, the cavity field
grows exponentially until saturation becomes relevant. There
are two mechanisms for saturation: �1� the change of the
detuning, carried out by the slow evolution of n0, �2� the
pump depletion, due to the multiple scatterings of the pump
beam �see Fig. 2�.

As we will show in Sec. V, the first mechanism is domi-
nant when �0 is sufficiently small. In this analysis the sign of
�̄ is not important, however for the sake of simplicity we
assume it to be negative, as occurs in the LCLV. When the
cavity field increases, n̄0 undergoes a negative drift �Eq.
�40��. We have shown that in the linear regime the gain is
sensitive to the phase �0. If the nonlinear terms are retained,
the overall phase shift after a round trip is �0+ n̄0, according
to Eq. �39�. Thus the effect of n̄0 is to drift the phase and to
reduce the amplification factor Re�c2�, until it becomes nega-
tive and n̄1 begins to decrease. For different values of the
parameters, the system can undergo oscillations or relax to-
ward a stationary state.

The pump depletion provides another mechanism of satu-
ration. The function J0 is decreasing for small �n̄1� and in this
range J1 is convex, thus the amplification factor is further
reduced by multiscattering processes and pump depletion, as
expected. We neglect these extra contributions and assume
that J0�2�n̄1���1 and �n̄1 / �n̄1��J1�2�n̄1��� n̄1. With these ap-
proximations, we have from Eqs. �39�–�41� that

�
n̄0

dt
= − n0 +

�̄Ip�nA
2

1 + � − 2�1/2 cos��0 + n̄0�
, �50�

�
n̄A

dt
= �− c1 −

�̄Ip�1/2 sin��0 + n̄0�
1 + � − 2�1/2 cos��0 + n̄0�

n̄A. �51�

The state n̄A= n̄0=0 is a stationary solution. Other stationary
states must satisfy the equations

−
�̄Ip

c1
=

1

�1/2

1 + � − 2�1/2 cos��0 + n̄0�
sin��0 + n̄0�

� G��0 + n̄0� ,

�52�

-12 -8 -4 0 4 8 12
δ0/γ

-4

-2

0

2

c h/
c 1

amplified modes

FIG. 3. ch /c1 as a function of �0 /� for �̄Ip /�c1=8. The dashed
lines represent the amplified modes of the cavity. The dotted lines
are the subthreshold ones. Note that �̄ is taken positive. For �̄	0,
the �0 /� axis is reversed.
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n̄A
2 = −

sin��0 + n̄0�n̄0

c1�1/2 . �53�

In Fig. 4 we report the phase diagram in �0 and ��̄�Ip /c1,
for �̄	0 and �=0.85. The continuous curve represents the
solutions of Eq. �52� for n̄0=0 and above it the zero field
state is unstable, as previously shown. The minimum is at
�0=�0

M and takes the value ��̄�Ip
thr /c1. �0

M and Ip
thr are defined

by Eqs. �44� and �45�, respectively. It is clear that Eqs. �52�
and �53� have two solutions when Ip� Ip

thr. Conversely, no
solution exists if Ip	 Ip

thr and the system decays always to-
wards the zero cavity field state. This case corresponds to the
subthreshold region below the dotted line in Fig. 4. Note that
by changing the value of � the boundaries between the dif-
ferent regions can be modified, however, the existence of the
regions remains unaffected.

We determine the stability conditions for the two nonzero
stationary states above the threshold Ip

thr. We linearize Eqs.
�50� and �51� around the two stationary solutions and find the
eigenvalues

�± = −
B̄

2�Ā
±

�B̄2 + 4Ān̄0c1�4c1 + 2Ā cot��0 + n̄0��

2�Ā
,

�54�

where Ā� �̄Ip	0 and B̄� Ā−2c1n̄0. n̄0 is one of the two
nonzero solutions of Eq. �52�. The product An̄0 being posi-
tive, the stability condition Re��±�	0 is satisfied if

Ā − 2c1n̄0 	 0,

4c1 + 2Ā cot��0 + n̄0� 	 0. �55�

The second inequality is satisfied if and only if 0	�0+ n̄0
	�0

M. Thus, the solution with higher overall phase shift is
always a saddle node. The other one is stable if the first

inequality is satisfied. The values of ��̄�Ip /c1 and �0 with Ā
−2c1n̄0=0 are given by the following parametric equations:

�0 = q + G�q�/2,

��̄�Ip
thr/c1 = G�q� ,

0 	 q 	 �0
M , �56�

and they are represented by the dashed line in Fig. 4. Above
it the system has a stable solution with nonzero cavity field.
Thus, we have identified five distinct regions. The subthresh-
old region is below the dotted line, where only the zero field
solution is stationary and every trajectory moves towards it.
The �I–IV� regions are characterized by two additional sta-
tionary states with nonzero field; one of them is always a
saddle node. In region I the other state is stable and the zero
field configuration is unstable. In region II there is no stable
solution and the system has a stable limit cycle. The transi-
tion from region I to region II takes place through a Hopf
bifurcation. In region III only the zero field is a stable solu-
tion. However, it is possible that in a subset of this region the
system has a stable limit cycle, as shown in Sec. V. In this
case we have a bistability between a fixed point and a limit
cycle. In region IV the system is bistable with two stable
fixed points. These different situations will be studied nu-
merically in Sec. V, where we will consider also the multi-
scattering processes and pump depletion.

C. Mean-field approximation

In the preceding section we have shown that near thresh-
old the activated modes have a frequency detuning �0 in a
narrow interval around � / tc, tc�Lcav/c being the cavity
round-trip time. In this section we set the system in this
interval and obtain under suitable conditions the mean-field
equations.

In Appendix B, we evaluate the frequencies of the cavity
modes, that are �Eq. �B13��

�p,q,l = ���p + q� + ��l , �57�

where �� and �� are the frequency spacings of the transverse
and longitudinal modes, respectively, and p, q, l are non-
negative integer numbers.

The phase factor of a cavity eigenmode after a round trip
is �see Eq. �31� and �B12��

Frt � e−i���p+q�tc+i�, �58�

where � is given by Eq. �32�. In Sec. IV A, we have seen that
slightly above threshold only the modes which have

Frt � e−i�ctc/2 �59�

are activated. If �ctc1, this implies that �����p+q�tc

−��mod 2
�1. If the 2WM device has a sufficiently small
transverse dimension, only the transverse modes with small
p and q are activated, thus

����p + q�tc − ��  1, �60�

once we assume ���2
. In the limit of kd�n0,1�1, we have

the following approximation for D̂:

0 0.2 0.4 0.6 0.8
δ0

0

0.5

1

1.5

2

|α|
I p/
c 1

0 0.1 0.16

0.2

subthreshold region

(I) (II)

(III)

(IV)(III)

FIG. 4. Phase diagram in �0 and ��̄�Ip /c1, for �̄	0. The zero
field configuration is the only stationary solution below the dotted
line, whereas two additional solutions are present above it. Above
the continuous line the zero field solution becomes unstable. At the
left of the dashed line, one of the two additional solutions is stable,
whereas the other one is always a saddle node. The inset shows a
magnification of the bistable region �IV� close to threshold.
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D̂ � 1 −
�cLcav

2c
+ i� −

iCdtc

2
��

2 +
iCltc

2
r�

2 + ikdn0, �61�

where Cd and Cl are defined in Appendix B. Similarly, we

approximate Ĝ with ikdn1 and obtain from Eq. �34� the fol-
lowing:

�−
�cLcav

2c
+ i� −

iCdtc

2
��

2 +
iCltc

2
r�

2 + ikdn0Ec = − ikdn1Ep.

�62�

In the limit of f →�, we have �Appendix B�


 ic2

2�p
��

2 + �i
�c

Lcav
−

�c

2
 + i

�pd

L
n0�Ec = − i

�pd

L
n1Ep,

�63�

which is the time-independent equation of the cavity field in
the mean-field approximation and for a plane cavity �6�. It is
clear that this approximation is broken when the nonlinear
medium has a large transverse dimension and the approxima-
tion of Eq. �60� is no more appropriate.

V. NUMERICAL SIMULATIONS

In this section we report some numerical simulations of
the LCO model. In Sec V A we integrate the one-mode equa-
tions �50� and �51� and consider the �I–IV� regions, identified
in the preceding section. In Sec. V B we study the multimode
case and show that the interference among the cavity modes
generates spatiotemporal pulses.

A. One-mode simulations

In the simulations of the one-mode system we have fixed
the following parameters: �=0.15 s, �=0.85, and c1=2.58.
In Fig. 5 we report the dynamics of �n̄0� and �n̄1� for �̄Ip /c1
=0.3 and �0=0.1 �region I�. The dotted line is the stationary
value of n̄0. Note that �n̄1� reaches the local maxima when
�n̄0� crosses the dotted line, i.e., when the coefficient on the
right-hand side of Eq. �51� is zero. During the transient time
the refractive indices undergo damped oscillations around
the stationary state. This implies that the argument of the

square root in Eq. �54� is negative and the eigenvalues �± are
complex with the real part negative.

For smaller �0 and Ip we observe that n̄0 collapses towards
its stationary value without oscillations. In this case the ar-
gument of the square root is positive and the eigenvalues are
real and negative. This occurs, for example, with �0=0.05
and �̄Ip /c1=0.19.

Figure 6 is the same as Fig. 5, but with �0=0.25 �region
II�. The solid and dashed lines are �n̄0� and �n̄1�, respectively.
In this case there is no stable point and the dynamics be-
comes oscillatory after a transient time. Note that n̄1 has
maxima of the order of 0.15, thus the multiscatterings and
pump depletion give relevant contributions. The dotted line
is n̄0, evaluated including the Bessel functions in the dynami-
cal equations. With this correction there is still a stable limit
cycle, but the oscillation amplitude is smaller.

In the preceding section we have shown that in region III
only the state with zero field is a stable stationary state.
However, for some values of the parameters this state coex-
ists with a stable limit cycle. In Fig. 7�a� we report �n̄1� as a
function of time for �̄Ip /c1=0.21 and �0=0.2 �region III�. At
the initial time, �n̄1� is zero and stable. At a subsequent time
a small pulse with Gaussian temporal shape is added to the
pump field, centered at t=5 s and with the standard deviation

0

0.05

0.1

|n k
|

|n1|

|n0|

0 14.03.5 7.0 10.5t /τ

FIG. 5. �n̄0� and �n̄1� as functions of time for �̄Ip /c1=0.3 and
�0=0.1 �region I of Fig. 4�.

0

0.1

0.2

0.3

0.4

|n k
|

0 14.03.5 7.0 10.5t /τ

FIG. 6. The same as Fig. 5, but with �0=0.25 �region II�. The
solid and dashed lines are �n̄0� and �n̄1�. The dotted line is n̄0, evalu-
ated including the Bessel functions in the dynamical equations.

0

0.05

0.1

|n 1
|

0

0.04

0.08

|n 1
| (b)

(a)

0 16040 80 120t /τ

FIG. 7. �n̄1� as a function of time, for �̄Ip /c1=0.21, �0=0.2 �a�
and �̄Ip /c1=0.17, �0=0.13 �b�. In both cases a positive pulse and a
negative one are added to the pump at t=5 and 27 s, respectively. In
�a� �region III� we have bistability between a stable fixed point and
a limit cycle. In �b� �region IV� there are two stable fixed point.
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equal to about 0.1 s. The peak intensity variation is about
30% of Ip and is sufficient to make the zero field state un-
stable. This pulse carries the system into the stable limit
cycle. Finally a dark pulse of the pump field is generated at
t=22 s and the system goes into the original state. This simu-
lation has been performed including the multiscatterings and
the pump depletion. An identical behavior is obtained also
with the approximate equations �50� and �51�.

In region IV the system has two stable fixed points, as
shown in Fig. 7�b�. Also in this case we have added a posi-
tive and negative pulse to the pump field at different times,
but with �̄Ip /c1=17 and �0=0.13. After the first pulse the
system goes into the stable state with n̄1�0. After the second
pulse, it returns into the original state. Also, for this simula-
tion we have used in the equations the Bessel functions.
They slightly change the dynamics, but the qualitative be-
havior remains unchanged.

We have shown numerically the existence of different dy-
namical regimes, as identified in Sec. IV by means of Eqs.
�50� and �51�. The more precise inclusion of multiscatterings
and pump depletion effects change quantitatively the dynam-
ics and distort the boundaries of the regions in Fig. 4, mainly
for high �0, but the different regimes do not disappear. It is
evident that the corrections are more relevant when �0 is
larger, since n̄0 tends to counterbalance �0 so as to carry the
overall phase shift �0+ n̄0 to the value G−1���̄�Ip /c1� �Eq.
�52��, where the inverse of G is defined taking into consider-
ation only the left branch of the continuous curve in Fig. 4.
Note that the argument of the Bessel functions contains �n̄1�,
which increases by increasing n̄0 �Eq. �53��.

B. Multimode simulations

We consider the multimode theory previously introduced
for the configuration of the experiment discussed in the next
section. For the sake of simplicity, we study the case with
one transverse dimension. The cavity has a length Lcav
=240 cm, it is composed of three mirrors �sm=3� and a lens
with focal length f =70 cm. The pump beam is generated by
a diode pumped solid state laser ��=532 nm� with an inten-
sity of about 2 mW/cm2. The liquid crystal thickness d is
equal to 15 �m. We assume that the fraction of lost photons
in a round trip is 25%, i.e., �=0.75, and set c1=5.5, l0=3
�10−2, and �=0.15 s.

The frequency spacing of the transverse modes is given
by Eq. �B11� and in our case we have ��=96.9�106 s−1. If
L1=Lcav/2 and the liquid crystal is in the waist of the cavity,

the eigenstates of the operator Ĉ in Eq. �31� are the Hermite

functions Ēn�x�=Hn�csx�e−�cs
2x2/2�, where cs��Cd /Cl�1/4, Cd

and Cl being defined in Appendix B. If L1�Lcav/2, the

eigenstate is the evolved field En�e−�i/2k��L1−Lcav/2���
2
Ēn. The

corresponding phase shift after a round trip is �n��ho�1/2
+n�−
 /2+�, where �ho���Lcav/c=0.775 rad.

We have shown that a single mode can display different
dynamical regimes, depending on the phase shift of the field
after a round trip and on the pump intensity. The mode with
phase shift equal to �0

M has the maximal gain. If we set �
=�0

M +
 /2−�ho�1/2+N0�, where N0 is an integer number,

and the pump intensity is not too high, only the cavity mode
N0 is triggered. In Fig. 8, we report the spatiotemporal dis-
tribution of the cavity field intensity �Ec

�in��2, for N0=2 and
Ip=1.5Ip

thr. At the initial time the mode E2 grows and has
damped oscillations around a stationary nonzero value, as it
occurs in the one-mode case of Fig. 5. After a transient time,
higher modes are activated and a complex spatiotemporal
structure appears.

In order to clarify this behavior, we have decomposed the
cavity field in eigenmodes and evaluated the mode ampli-
tudes as a function of time. In Fig. 9 we report the squared
amplitudes of the cavity modes as a function of time. At the
initial times, only the mode 2 is dominant, subsequently its
amplitude decreases and seven other modes are activated.
Because of the large value of �ho with respect to �, adjacent
modes cannot be simultaneously activated, but this is pos-
sible for modes whose index distance is equal to 8, the cor-
responding phase shift difference being 8�ho�0.987�2
.
Note that the modes 51 and 59 are the first activated ones,
since the phase shift distance from the mode 2 is smaller than
that of the lower modes. The higher modes are suppressed
because of the spatial diaphragms inside the cavity. It is in-
teresting to note that the jump from the low mode 2 to the
higher ones is triggered by the growing n̄0, which modifies
the cavity detuning. This is another peculiarity of the LCLV
with respect to photorefractive crystals.

From Fig. 9 we see that there are eight predominant
modes, corresponding to the high intensity bands on the plot.
However, in the graph are plotted the square amplitudes of
the modes, so that even the modes represented by low levels

FIG. 8. Spatiotemporal intensity distribution of the cavity field
�Ec

�in��2 for �=�0
M +
 /2−�ho�1/2+2� and Ip=1.5Ip

thr.

FIG. 9. Squared amplitudes of the cavity modes for the dynam-
ics of Fig. 8.
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of intensity cannot be neglected and they indeed participate
to the dynamics. Thus, the total number of active modes is
approximately 60. An extension to a two-dimensional �2D�
model will lead to approximately 3600 active modes, which
is consistent with the huge number of modes observed in the
experiment.

These results clearly show that our model accounts in a
natural way for longitudinal modes and that the mean-field
approximation is inappropriate to describe the considered
system. It is valid when the phase shift differences of the
active modes are much smaller than 2
. The breakdown of
the mean-field approximation is due to both the particular
geometry of the cavity and the large transverse dimension of
the LCLV. Its consequence is a pattern structure of the cavity
field along the z axis, as shown in Fig. 10, where we report
the intensity distribution of the cavity field in the x-z plane.
Two movies of the dynamics in the x-z plane are available
�8�. The simulations in files “theory�1.mp4” and
“theory�2.mp4” have been performed for Ep=7Ep

thr and Ep
=5Ep

thr, respectively.

VI. EXPERIMENTAL RESULTS

The experiments were performed by using the setup
shown in Fig. 1. In Fig. 11 we show a sequence of instanta-
neous snapshots of the transverse intensity distributions
Ic�x ,y�, where x ,y are the coordinates in the transverse
plane, taken for a low Fresnel number, F=3, when the cavity
field consists of a small number of transverse modes around
a single longitudinal mode. A few low-order Gauss-Laguerre
modes alternate during the time. This behavior is similar to

dynamical regimes previously observed in photorefractive
oscillators �3�. In our model, the alternation between modes
is explained by the �0 shift due to the dynamics of n0. Fol-
lowing the slow evolution of n0, each single mode lasts for a
few seconds before changing to another one. Depending on
the control parameters, namely, the voltage V0 applied to the
light valve and the pump intensity Ip, the alternation may be
periodic or chaotic.

In the single mode regime, we have measured the fre-
quency detuning between the pump and the cavity field. This
is done by making the interference of the cavity field with a
reference beam having the same frequency of the pump. The
displacement of the interference fringes corresponds to a de-
tuning, of approximately 1 Hz, which is the same for the
different transverse modes and corresponds to the pulling
predicted by Eq. �48�.

In a second series of experiments, we have fixed a large
Fresnel number F=500, and we have investigated the dy-
namical behavior of the cavity for different V0 and different
pump intensities Ip. The experimental phase diagram is re-
ported in Fig. 12. Cavity field oscillations are in the larger
grey area. The darker and smaller area marks the region
where we observe spatiotemporal pulses �4�. The low V0
regimes are similar to those observed for low F, character-
ized by the alternation of low-order Gauss-Laguerre modes,
one pure mode at time. By changing V0 we change the uni-
form refractive index of the LCLV, thus the frequency detun-
ing between the fundamental Gaussian mode and the pump
field is varied. When V0 increases, the detuning also in-
creases, therefore out-of-axis emission is favored and a
larger number of modes comes into play �14�. As a conse-
quence, the transition to the high V0 regimes is accompanied
by the emission of high order and out-of-axis symmetrical
modes.

In Fig. 13 we show a regime where an intermediate num-
ber of modes are active. The cavity field oscillations are
characterized by the simultaneous presence of high- and low-
order transverse modes, sometimes belonging to different
longitudinal modes, as we can verify by making the interfer-
ence with a reference beam and by observing different fringe
displacements in different regions of the spatial pattern. In
Fig. 14 we show a regime with a large number of modes but
outside the region of existence of spatiotemporal pulses. Fig-
ure 14�a� displays a regime of high V0 and low Ip. In this
case the detuning is large, so that wide ring patterns develop

FIG. 10. Intensity distribution of the cavity field in the x-z plane
at t=3.5 s �a� and t=4 s �b�. Because of the activation of high order
modes, the field is inomogeneous along z and a mean-field approxi-
mation along the cavity axis is unsuitable. The lens is positioned at
z=1.3 m.

a) b) c) d)

FIG. 11. Instantaneous snapshots showing the low-order Gauss-
Laguerre modes alternating during the time for F=3; �a� TEM00, �b�
TEM10, �c� TEM11, �d� TEM06.

FIG. 12. Experimental phase diagram in the V0 versus Ip space;
G indicates the zone of low-order Gaussian modes whereas R marks
the region of wide ring patterns.
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with depletion of the oscillations close to the cavity axis.
Nevertheless, the number of active modes is large so that a
spatiotemporal chaotic dynamics takes place along the ring.
Figures 13�b�–13�d� correspond to a slight decrease of V0,
allowing for other longitudinal modes to come into play and
populate the central area of the pattern.

For intermediate values of V0 and Ip, a large number of
transverse and longitudinal modes are accepted even close to
the cavity axis, thus populating the whole size of the area
illuminated by the pump beam. In this regime, we observe
the formation of spatiotemporal pulses, appearing as large
intensity peaks over a lower amplitude and specklelike back-
ground. To investigate the dynamics of spatiotemporal pulses
we have fixed V0=20.3 V rms and Ip=2.0 mW/cm2 and we
have recorded several movies. The spatiotemporal pulses are
identified by applying on each frame a threshold of 3 times

the average intensity Īc calculated over the entire set of
frames in any experimental run.

The extension of the pulses in the z direction is investi-
gated by simultaneously recording the intensity distributions
at three different planes, located at z1 ,z2, and z3 distance with

respect to the entrance side of the LCLV. The three CCD
cameras recording the movies are driven by the same trigger,
whose delay time is negligible with respect to the liquid
crystal response time. We select z1=0, z2=5, and z3=32 cm.
The magnification ratio, the size of the window and the in-
tensity levels are the same for the three planes.

Three spatial profiles recorded at the three different planes
are displayed in Fig. 15. By reslicing the z2 movie along the
direction joining the two pulses, we obtain the spatiotempo-
ral plot shown in Fig. 16. It can be seen from Fig. 15 that at
z3 the two large pulses have disappeared whereas from Fig.
16 we see that the pulses have a limited temporal extension.
By taking the half-height width of the pulses with

Ic�x ,y ,z��3Īc and by averaging over more than 100 profiles,
we find that the transverse size of a pulse is 250±50 �m

a) b)

c) d)

FIG. 13. Instantaneous snapshots taken for an intermediate num-
ber of active modes: �a, b� V0=10 V, Ip=2.4 mW/cm2; �c, d� V0

=14 V, Ip=2.0 mW/cm2.

a) b)

c) d)

FIG. 14. Instantaneous snapshots taken for a large number of
active modes: �a, b� V0=25 V, Ip=1.3 mW/cm2; �c, d� V0=23 V,
Ip=1.3 mW/cm2.
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FIG. 15. �Color online� Spatial profiles of spatiotemporal pulses
recorded at z1, z2, and z3 for V0=20 V, Ip=2.0 mW/cm2. Colors,
from blue �minimal intensity� to red �maximal intensity�.
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FIG. 16. Spatiotemporal plot obtained from the z2 movie.
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whereas its average lifetime is around 0.5±0.1 s. As for the
longitudinal extension, by inspecting several movies taken at
different z3, we estimate it around 30 cm, which is consistent
with the results of the 2D numerical simulations.

Three experimental movies are available online �8�. The
first movie, recorded for V0=10 V and Ip=2.4 mW/cm2,
shows the alternation among a few low-order Gaussian
modes, all belonging to the same longitudinal mode. The
second movie was recorded for V0=14 V and Ip
=2.0 mW/cm2 and shows an increased number of transverse
modes corresponding to a few different longitudinal modes.
The third movie, recorded for V0=20 V and Ip
=2.0 mW/cm2, corresponds to a regime when a high number
of transverse and longitudinal modes are simultaneously
present.

VII. CONCLUSIONS

In conclusion, we have shown that a type of nonlinear
optical oscillator can be built by using a liquid crystal light
valve as the gain medium. We have developed a theoretical
model that takes into account the Kerr nonlinearity of the
medium as well as the two-wave-mixing mechanism of pho-
ton injection inside the cavity. At variance with the usual
treatments, where the mean-field approximation is used to
eliminate the z dependence of the field, our model keeps this
dependence, thus allowing for the formation of 3D patterns.
We have shown that the simultaneous presence of longitudi-
nal and transverse modes leads to the appearance of spa-
tiotemporal pulses, which is confirmed by numerical simula-
tions and experimental results.
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APPENDIX A: NUMERICAL EVALUATION OF THE
CAVITY FIELD

We have seen that the cavity field Ec can be evaluated as
the stationary solution of the cavity and the two-wave mixing
device, because of the slow dynamics of the liquid crystals.
Thus, Ec on the surface of the photorefractive crystal is adia-
batically slaved by nk and given by Eq. �37�. In this appendix
we present a strategy to efficiently reduce the numerical er-
rors due to the truncation of the series in Eq. �37�.

The operator D̂ has eigenvalues �k with modulus equal to
�1/2, � being the fraction of lost photons in each cavity round
trip. The series is convergent since �1/2	1 and can be ap-
proximated by a finite number N of terms.

Let us assume J0�2 � n̄1 � ��1 and J1�2 � n̄1 � �n̄1 / �n̄1 � � n̄1.
The root-mean-square error is

Erms
R �N� ��	 dr���

k
�
s=N

�

�k
sWk�2

	 dr���
k

�
s=0

�

�k
sWk�2 = �N/2, �A1�

where Wk are non-normalized cavity eigenmodes, such that

�kWk= ĜEp. For large cavity losses, a small number of terms
are necessary since many round trips of photons are improb-
able. Conversely, for high qualities of the cavity, many terms
of the series must be evaluated. For �=0.8 and 40 iterations
the relative error on Ec is about 1%. This error can be further
reduced if an estimate of Ec is known, as occurs in our
model. Equation �37� must be solved at every time step and
Ec�t� differs slightly from Ec�t−dt�, thus the previous value
can be used as an estimate of Ec�t�. The difference between
the exact Ec and the sum of the first N terms is

�
s=N

�

D̂sĜEp = D̂N�
s=0

�

D̂sĜEp = D̂NEc � �N/2Ec. �A2�

Thus,

Ec = �
s=0

N−1

D̂sĜEp + D̂NEc, �A3�

where the second term on the right-hand side is a small cor-

rection of the order of �N/2Ec. Let Ẽc=Ec+O�dt� be the value
estimated at the previous time step, then we have that

Ec = �
s=0

N−1

D̂sĜEp + D̂NẼc + �N/2O�dt� . �A4�

The second term reduces the relative error by a factor of the
order of dt. Furthermore, its evaluation increases only
slightly the computation time, as shown by the following
algorithm, used to solve Eq. �A4�:

K0 = ĜEp + D̂Ẽc,

K1 = D̂K0 + ĜEp,

K2 = D̂K1 + ĜEp, … ,

Ec � KN−1 = D̂KN−2 + ĜEp. �A5�

Thus, the error reduction strategy with Eq. �A4� requires to

evaluate merely the additional term D̂Ẽc in the equation for
K0. More precise algorithms are obtained by second-order

estimates of Ẽc. In our simulations, we achieved typical pre-
cisions of 10−6 with merely five terms of the series. The

operators D̂ and Ĝ can be easily evaluated by means of fast
Fourier transforms, which diagonalize the differential opera-
tors in the exponents.
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APPENDIX B: CAVITY EIGENMODES

In this appendix we evaluate the cavity eigenmodes with-
out the LCLV and with zero losses. They are the solutions of
the following eigenvalue equation:

ÛEk = e−i�kEk, �B1�

where �k is the phase shift of the eigenmode k after a round
trip and

Û � ŜsmÂ�Lcav − L1�B̂�f�Â�L1� . �B2�

Equation �B1� is equivalent to

ÛSĒk = e−i�kĒk, �B3�

where

ÛS � ŜsmÂ�Lcav/2�B̂�f�Â�Lcav/2� ,

Ēk = e�i�L1−Lcav/2�/2k���
2
Ek. �B4�

In order to find the eigenmodes, it is convenient to reduce the

operator ÛS to the exponential of a Hermitian operator. For
suitable values of the coefficients Cd and Cl, we have, apart
from a unimportant phase factor,

ÛS = e−itc��−Cd/2���
2 +�Cl/2�r�

2 �, �B5�

where tc�Lcav/c is the propagation time in one round trip.
The cavity with lens is equivalent to a harmonic oscillator
with frequency ��=�CdCl. We must evaluate Cd and Cl. In

the ray limit, the operators Â�Lcav/2�, B̂�f� and Ŝ correspond,
respectively, to the following ABCD matrices of the ray
transfer matrix analysis �see Sec. III B�,

A�Lcav/2� = �1 Lcav/2k

0 1
, B�f� = � 1 0

− k/f 1


S = �− 1 0

0 − 1
 . �B6�

Thus, the overall unitary operator ÛS is associated to the
following ABCD matrix,

US = �− 1�sm�1 −
Lcav

2f

Lcav

2k
�2 −

Lcav

2f


−
k

f
1 −

Lcav

2f
� . �B7�

On the other hand, the ABCD matrix US from Eq. �B5� is

US = � cos ��tc �Cd

Cl
sin ��tc

−�Cl

Cd
sin ��tc cos ��tc

� . �B8�

From these equations we find that

�� = sgn�hc���̄� −



tc
��− gc� , �B9�

where

hc � 1 −
Lcav

2f
,

gc � �1 −
Lcav

2f
�− 1�sm,

�̄� =
1

tc
asin��Lcav

f
�1 −

Lcav

4f
 , �B10�

and � is the Heaviside function. There are two interesting
cases: �a� the number of mirrors sm is even and f �Lcav/2;
�b� the number of mirrors is odd and Lcav/4	 f 	Lcav/2. In
both cases, Eq. �B9� reduces to

�� =
sgn�hc�

tc
asin�Lcav

f
�1 −

Lcav

4f
 . �B11�

�� goes to zero for both f →� �plane cavity� and f

→ �Lcav/4�+ �spherical cavity�. The eigenvalues of ÛS are

e−i�k = e−i���p+q�tc �B12�

and

�k = ����p + q� + ��l�tc, �B13�

where p, q, and l are integer numbers and �� �2
c /Lcav. The
two terms ���p+q� and ��l are the transverse and longitu-
dinal cavity frequencies. The corresponding eigenmodes are
the Gauss-Hermite functions or, equivalently, the Gauss-
Laguerre functions.

The product CdCl is equal to ��
2 and has been evaluated

by the diagonal elements of Eqs. �B7� and �B8�. The ratio
Cd /Cl can be obtained by the off-diagonal elements. In the
limit of f →�, Cd is obviously equal to Lcav/k and Cl is zero.
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