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We examine the collective quantum dynamics of photons and atoms driven by Raman transitions inside a
low-Q cavity. At short times, we show that most of the Stokes photons can be captured by a single time-
varying field mode. We determine an approximate analytical form of the mode function and construct a
single-mode effective Hamiltonian. The model allows us to address the structure of the photon-atom state
explicitly. In particular, we indicate that photons and atoms exhibit a form of photon-atom squeezing during the
initial stage of the evolution.
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I. INTRODUCTION

Investigations of cavity quantum electrodynamics �cavity
QED� in the last few decades have explored many intriguing
phenomena of strongly coupled photons and atoms inside
electromagnetic cavities �1�. In addition, a variety of mecha-
nisms of controlling quantum states in cavities have been
discovered for applications in quantum computations and
quantum communications. One of the most widely employed
processes is Raman coupling in which �-type three-level
atoms emit or absorb Stokes �or anti-Stokes� photons by in-
teracting with an external pump pulse. In early studies of
cavity QED models, the quantum dynamics of various Ra-
man couplings in ideal cavities has been studied �2�. If cavity
field leakage is included, a single-atom system can serve as a
deterministic source of single photons, and it has been dem-
onstrated experimentally �3–5�. Recently, applications of
cavity QED with an ensemble of �-type atoms have attracted
considerable interest. With suitable combinations of Raman
�or double Raman� interactions inside optical resonators, it is
possible to manipulate squeezed light operators �6�, en-
tangled states of atoms �7�, and optical Fock states �8� and to
achieve interfacing between collective atomic excitations
and single photons �9�.

In this paper we investigate the quantum-state structure of
photons generated by N�1 atoms via Raman scattering in-
side a leaky cavity. Unlike the single-photon single-atom
problem �10�, a full description of �pure� photon-atom state
vectors becomes difficult as the number of atoms increases.
The main challenge is the involvement of infinitely many
frequency field modes when the cavity is not ideal. Even for
the case with a few photons emitted, it could be quite tedious
to express the multiphoton state vector in a frequency mode
basis. However, knowledge of state vectors is important to
determine the full quantum statistics, and the amplitudes in
frequency modes would determine the spatial-temporal fea-
tures of the field propagating out of the cavity.

Indeed, the same difficulty also occurs in collective spon-
taneous emission problems in free space. We have recently
analyzed the superradiance problem in the Dicke limit �11�
and found that the radiation from N�1 atoms can be opti-
mally captured by several dynamical pulse modes �12�. The
key feature of these dynamical mode functions is that their

spectral amplitudes could change with time as the system
evolves. Such a flexibility enables us to represent the state
vector of photons in a much simplified manner, while keep-
ing the same information as in the frequency-mode basis. In
addition, if the time is not too long and the initial state is a
vacuum, then the field is sufficiently described by a single
dynamical mode. This interesting effect is general for linear-
ized systems at short times, and it is independent of the fre-
quency dependence of the atom-field coupling.

The main purpose of this paper is to formulate a dynami-
cal mode model to describe the collective Raman scattering
in the bad-cavity regime. Consideration of low-Q cavities is
known to have some interesting applications in generating
nonclassical states of atoms �13�. In our study, the cavity
provides a well-defined output field channel that allows us to
treat the field effectively in one dimension. In addition, since
a bad cavity having a relatively large cavity linewidth can
support a broad frequency range of vacuum noise, atomic
transitions can roughly follow the exponential decay rule as
in free space �14�. We can then make a comparison with
results found in the free-space superradiance problem �12�.
As an application, we will apply our model to study the
buildup of a strong correlation between photons and atoms at
short times. Such a correlation manifests as a form of
squeezing, and hence it may serve as a resource for applica-
tions such as quantum teleportation.

II. MODEL AND HAMILTONIANS

We consider a system of N three-level �-type atoms in-
teracting with a classical pump field and quantized Stokes
cavity fields in Raman configuration �Fig. 1�. The three
atomic levels �q� �q=1,2 ,3� have the corresponding atomic
energies �q, and the pump field frequency is �p. The cavity
has a nonzero leakage rate, and we will assume that different
quasimodes of the cavity are widely separated such that there
is only one quasimode with frequencies near the Raman
resonance ��c���p−�2+�1. However, the field associated
with the resonant cavity quasimode still consists of a con-
tinuous range of frequencies limited by the cavity linewidth.
Assuming that the atomic motion can be neglected and the
size of atoms cloud is small compared with the resonant
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wavelength, the Hamiltonian of the system is given by ��
=1�,

H =� dk�kak
†ak + 	

q=1

3

	
j=1

N

�q�q� j
q�

+ 	
j=1

N

��pe−i�pt�3� j
1� + H.c.�

+ 	
j=1

N � dk��kak�3� j
2� + H.c.� , �1�

where ak
† and ak are creation and annihilation operators for

the quantized field mode with frequency �k, and the integrals
are taken over all positive �k’s. The �p and �k are coupling
strengths proportional to their corresponding dipole transi-
tion matrix elements. Note that we have suppressed the po-
larization label for the field operators, and it is understood
that ak

† and ak refer to the polarization selected by the
�2�↔ �3� dipole transition.

For later purposes, it is convenient to introduce the cou-
pling strength between the atom and the quasicavity mode,
gc, which is related to �k �assumed Lorentzian� by �15�

�k =
gc

��c/	

�k − �c + i�c
, �2�

where �c is the cavity field leakage rate. In the ideal cavity
limit gc corresponds to the vacuum Rabi frequency between
the levels �3� and �2�.

The loss due to spontaneous decay in the upper level �3�
can be suppressed by choosing the detuning 
=�3−�1−�p
such that it is much larger than the Rabi frequencies associ-
ated with �1�↔ �3� and �2�↔ �3� transitions—i.e., 
��p, gc.

In this way, the upper atomic level �3� is hardly populated
and it can be eliminated adiabatically. This leads to the
Hamiltonian

H� =� dk�k�ak
†ak + 	

j=1

N ��1 −
��p�2




�1� j
1�

+ 	
j=1

N

��2 − hs��2� j
2� + 	
j=1

N � dk� �p�k
*



ak

†�2� j
1� + H.c.
 ,

�3�

where �k�=�k−�p, and hence the lower limit of the integral
is now −�p. For optical transitions, it is safe to extend the

limit to −�. The term hs is defined by hs=
gc

2


 ac
†ac with ac

�gc
−1��kakdk being a cavity-mode operator. Such a cavity-

mode operator is an average of field operators weighted by
the line shape of the cavity mode, and it is usually introduced
in leaky cavity systems �15� in order to describe the quan-
tized cavity field. Here the term hs corresponds to an ac Stark
shift due to the absorption and reabsorption of cavity photons
by atoms in the state �2�. Such processes in terms of bare
field-mode operators ak’s would mean the scattering of pho-
tons between different k’s. However, for bad-cavity systems
considered in this paper, the influence of hs can be ignored.
This is seen by the small average number of cavity photon
number 
ac

†ac� inside the cavity, and hence we can ignore hs

as an approximation �16�. In fact, as long as the last term of
H� is dominant—i.e., when the Rabi frequency �p controlled
by the pump field is stronger than gc—then the slight detun-
ing due to hs can be neglected. Consequently, the Hamil-
tonian �3� in the interaction picture reads

H� =� dk�
kJ+ake
−i�k�t + 
k

*ak
†ei�k�tJ−� . �4�

Here �k�=�k�+ ��p�2 /
+�2−�1 and 
k=�p
*�k /
 are defined.

The Ji are collective spin operators, Jz= 1
2	n=1

N ��2�n
2�
− �1�n
1��, J−=	n=1

N �2�n
1�, and J+=	n=1
N �1�n
2�, which obey

the usual angular momentum commutation relations. The ef-
fective Hamiltonian �4� is equivalent to the Dicke superradi-
ance model but the coupling here is controlled by the exter-
nal classical pump field as well as the cavity line shape.

Specifically, the bad-cavity regime that we are interested
in is defined by the condition �c��N

�pgc


 � ḡ, which means
that the collective Raman Rabi frequency is small compared
with the cavity-field leakage rate. Under this condition, the
transition rate between �1� and �2� can be estimated to be
ḡ2 /�c. Such a transition rate should be greater than the spon-
taneous Raman transition rate in free space, N� f�p

2 /
2

�where � f is the spontaneous decay rate of �3��, in order to
have the most photons emitted in the cavity. This requires the
atom-cavity coupling to be sufficiently strong so that gc

2

��c� f. Combining these conditions together, we will study
the system operating in the following regime:
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FIG. 1. �Color online� A schematic diagram of atomic levels and
the Raman coupling configuration.
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, �5�

which is a �Raman� generalization of the one-dimensional
atom regime previously discussed in the literature �17�.

III. DOMINANT DYNAMIC FIELD MODE

In this section we determine an expression of a dominant
field mode existing in a short-time domain. First, we employ
the Schwinger’s representation of angular momentum opera-
tors, J−=c†d and J+=d†c, where c and d are bosonic annihi-
lation operators associated with atoms in �2� and �1�, respec-
tively. The standard procedure of bosonizing J± at short
times is to replace d by �N so that J+→�Nc and
J−→�Nc†, since the number of atoms in the state �1� changes
little compared with N. Such an approximation is the same as
keeping the leading term of the Holstein-Primakoff expan-
sion of the angular momentum operators �18�. The main
problem of the approximation, however, is that the depletion
of atoms in the level �1� is completely ignored. To account
for the depletion effect dynamically, we treat d as a real
time-dependent amplitude r�t�, so that J+→r�t�c and
J−→r�t�c†. In this way, the effective Hamiltonian �4� is qua-
dratic:

H� = r�t� � dk�
kcake
−i�k�t + 
k

*c†ak
†ei�k�t� . �6�

Since r2�t� is interpreted as the average number of atoms in
the state �1� at time t, conservation of particle number re-
quires

r2�t� + 
c†c� = N , �7�

with r�0�=�N. This generalizes the standard bosonization
scheme with the depletion effect included.

Noting that the Heisenberg equations of motion of c and
ak are linear, the solution of ak�t� formally takes the form

ak�t� = ��k,t�c†�0� +� ��k,k�,t�ak��0�dk�, �8�

where ��k , t� and ��k ,k� , t� are some time-dependent coef-
ficients. From this relation, we define the normalized dy-
namical mode function u�k , t���−1�*�k , t�, where �2

=�dk���k , t��2, and the corresponding annihilation operator

b�t� � �−1� dk�*�k,t�ak�t� . �9�

Assuming that the initial field is in the vacuum state and all
atoms are in the state �1� �i.e., 
c†�0�c�0��=0�, then all the
emitted photons at time t are contained by the dynamical
mode. This can be seen by

� dk
ak
†�t�ak�t�� =� dk���k,t��2 = 
b†�t�b�t�� . �10�

In other words, all other field modes orthogonal to u�k , t�
remain in the vacuum state.

By solving the Heisenberg’s equation of motion for ak and
c in the bad-cavity regime, we obtain an analytical solution
of ��k , t� and r�t� consistent with the condition of particle
number conservation, Eq. �7�,

u�k,t� = �−1�
0

t

dt�r�t��e−i�k�t�+��t��, �11�

r�t� = e−��N+1�t� N�1 + N�
1 + Ne−2��N+1�t , �12�

where �= ��pgc�2 /
2�c and

��t� = ��
0

t

r2�t��dt� = ln ��1 + N�/�1 + Ne−2��N+1�t� ,

�13�

�−2 =
��1 + Ne−2��N+1�t�
N	�1 − e−2��N+1�t�

�14�

are obtained. In Fig. 2, we illustrate the shapes of u�k , t� at
various times. The resonance peak at �k�=0 is well developed
after one or two N�t. At nonresonance frequencies, both the
real and imaginary parts of u�k , t� are increasing oscillatory
as time increases.

The time-varying field mode u�k , t� obtained above is
based on the bosonization of the J± operators. An interesting
question is whether u�k , t� can also be a good approximation
of the dominant mode for the full Hamiltonian �4�, particu-
larly when the time is beyond the linearization regime. To
answer this question, we compare u�k , t� with the leading
mode obtained by the atomic-dipole correlation function
method �12�. According to the formalism in �12�, the radia-
tion from N excited atoms in vacuum can be optimally pro-
jected onto a set of discrete field modes �fn�k , t�� defined by
the eigenequation

−0.02

0.03

−0.015

0.03

−0.03

0.03

−0.02

0.02

/γ

Nγt=3.0

Nω''k /γNω''k

−20 20/γN − 20 20

−20 20 − 20 20

ω''k /γNω''k

Nγt=2.0

Nγt=3.0

Nγt=2.0

Re{u}

Re{u}

Im{u}

Im{u}

(a) (b)

(c) (d)

FIG. 2. The real and imaginary parts of the mode function
u�k , t� �in units of 1 /�� as a function of �k� at dimensionless times
N�t=2 ��a� and �b�� and N�t=3 ��c� and �d�� for N=500 atoms.
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� W�k,k�,t�fn�k�,t�dk� = �nfn�k,t� , �15�

where the kernel W is related to the correlation function

W�k,k�,t� �
�k

*�k���p�2


2 �
0

t �
0

t

dt2dt1e−i�k�t2−t�

�ei�k��t1−t�
��0��J+�t2�J−�t1����0�� , �16�

and �n is the average photon number in the mode fn. In the
low-Q cavity limit where atoms experience a sufficiently
broad band of vacuum noise, the atomic dynamics would
follow the same form of the master equation �see Eq. �24��
appearing in free-space problems. We can then determine the
correlation function 
J+�t2�J−�t1�� via the quantum regression
theorem �12�. However, we should remark that this is justi-
fied only in the bad-cavity regime, since a sufficiently large
�c is required in order to provide a short memory time for the
Markovian approximation.

By performing numerical diagonalization of W�k ,k� , t�
�12�, we determine f1�k , t� corresponding to the largest
eigenvalue �1. Our numerical investigations indicate that �1
is significantly higher than other eigenvalues at short times,
which is consistent with the single-dominant-mode picture.
In addition, u�k , t� agrees very well with f1�k , t�. To
quantify the similarity, we examine the overlap integral
��f1

*�k , t�u�k , t�dk�2. For example, at the earlier time N�t=2
the overlapping is approximately 0.999 for N=500 atoms
and at a longer time N�t=6, the overlapping is about 0.981.
The good agreement between u�k , t� and f1�k , t� beyond sev-
eral N�t suggests that the validity regime of linearization can
be extended for the lowest-mode calculation. The nonlinear
nature of J± is mainly responsible for the generation of pho-
tons in higher modes.

IV. SINGLE-MODE INTERACTION
BY THE TIME-DEPENDENT
VARIATIONAL PRINCIPLE

Based on knowledge of the dynamical mode u�k , t� in Eq.
�11�, we can now construct a single-mode model that gener-
ates the dynamics of the system state vector approximately.
Let us consider a trial time-dependent state vector defined by

���t�� = 	
n=0

N

qn�t��n�F�N − n,n�A � �vac�X, �17�

where �N−n ,n�A denotes the collective atomic state with N
−n atoms in the atomic level �1� and n atoms in the atomic
level �2�, �n�F is the n-photon state in the mode u�k , t�, i.e.,

�n�F �
b†n

�n!
�0� , �18�

and �vac�X refers to the vacuum state of all field modes or-
thogonal to u�k , t�. It should be understood that Eq. �17� is an
approximation which ignores the contribution of a small
number of photons occupied in modes different from u�k , t�.
This is justified by the analysis in the previous section.

By restricting Eq. �17� as the class of wave functions
approximating the state of the system, we apply the time-
dependent variation principle to determine the equation of
motion of qn�t�. This is achieved by minimizing the action

S =� dt
��t���i�t − H�����t�� , �19�

where qn�t� are variation parameters. The functional deriva-
tive leads to a set of linearly coupled first-order differential
equations

iq̇n�t� = 	
m=0

N

Mnm�t�qm�t� , �20�

in which the coefficients Mnm are recognized as the matrix
elements of the single-mode effective Hamiltonian Hef f; i.e.,
Eq. �20� is equivalent to the Schrödinger equation

Hef f���t�� = i�t���t�� . �21�

After some calculations, we obtain

Hef f = ��t�J+b + �*�t�J−b†, �22�

where

��t� =� dk
ku
*�k,t�e−i�k�t �23�

is the time-varying coupling strengths due to the evolution of
the mode. It should be noted that J± are retained in the ef-
fective Hamiltonian without bosonization; Hef f can somehow
capture the nonlinear behavior collective atomic operators.

In order to test the validity of the single-mode model �22�,
we compare the results with those obtained by the master
equation of the atomic density matrix �A. In the bad-cavity
limit, where the heavily damped cavity-mode amplitude fol-
lows adiabatically with the atomic dipoles, one can eliminate
the cavity field and obtain the master equation �19�

�̇A = ��2J−�AJ+ − J+J−�A − �AJ+J−� , �24�

which takes the same form as that which appears in the free-
space Dicke superradiance problem �20�. The only modifica-
tion is that the decay rate �= ��pgc�2 /�c


2 now depends on
the cavity properties. It should be noted that the derivation of
Eq. �24� has included all the field modes in the Hamiltonian
�4� and there is no single-mode approximation involved.

Let the atomic density matrix governed by the single-
mode Hamiltonian �22� be �A

�1�, and we compare it with the
solution of Eq. �24�. The fidelity between �A

�1� and �A is de-
fined by �21�

F = Tr���A�A
�1���A, �25�

which measures the similarity between the two density ma-
trices. Therefore F provides an indicator of the validity of
the single-mode dynamics. We performed numerical calcula-
tions of �A

�1� and �A for various parameters, and some of the
typical results are shown in Fig. 3. We see that F is close to
1 at early times �up to a certain break time tc�, indicating that
the single-mode theory can successfully recover the atomic

S. K. Y. LEE AND C. K. LAW PHYSICAL REVIEW A 76, 033809 �2007�

033809-4



dynamics. The break time tc depends on the number of at-
oms, N. In the case of 100�N�2000 atoms we have tested,
we observed that tc�2/N� when F�0.95. At longer times
t� tc, the appreciable decrease of F is a result of the pres-
ence of the second and higher modes, although the dominant
mode may still be approximated by u�k , t�.

V. PHOTON-ATOM SQUEEZING

The single-mode Hamiltonian �22� provides us with a
convenient way to address the structure of the system state
vector explicitly. As an application, we examine the time
development of photon-atom correlation. Since all atoms are
initially prepared in the state �1� in vacuum, the emitted num-
ber of photons and the number of atoms in the state �2� are
always equal. Such a strong number correlation is seen in the
state vector given in Eq. �17�. We remark that Eq. �17� is
already in the form of Schmidt decomposition, and hence the
presence of more than one nonzero qn in the summation in-
dicates the existence of photon-atom entanglement. One
could calculate, for example, the entropy −	n�qn�2 ln �qn�2, to
quantify the degree of entanglement. Here we will address
the quantum correlation from the squeezing properties of the
system. To this end, let us define the following quadrature
operators for atoms and photons:

X1 =
b† + b
�2

, X2 =
J+ + J−

�2N
, �26�

P1 =
i�b† − b�

�2
, P2 =

i�J− − J+�
�2N

. �27�

By the commutation relation

�X1 + P2,P1 − X2� = i�1 +
2Jz

N

 , �28�

the corresponding uncertainty relation reads

V�X1 + P2�V�P1 − X2� �
1

4
�1 +

2
Jz�
N


2

� D , �29�

where V�Ô�= 
Ô2�− 
Ô�2 is the variance of an operator Ô. We
define a system exhibiting photon-atom squeezing if either
V�X1+ P2� or V�P1−X2� is smaller than �D. If J±’s can be
treated as harmonic oscillator operators as in the linearized
regime, the photon-atom squeezing condition is reduced to
the familiar two-mode squeezing condition. Note that knowl-
edge of the dynamical field mode is important here in order
to define the field quadratures associated with squeezing.

In Fig. 4, we illustrate the squeezing behavior by plotting
V�X1+ P2� as a function of time. The curves are obtained
from the numerical solution of the Schrödinger equation
governed by the single-mode Hamiltonian �22�. At early
times, V�X1+ P2� decreases rapidly and it is smaller than �D;
i.e., the squeezing effect occurs. Such a result is understood
because J± are nearly bosonic, and hence Hef f is approxi-
mately the Hamiltonian of parametric down-conversion, giv-
ing the familiar result of two-mode squeezing,

V�X1 + P2� � exp�− 2�
0

t

��t��dt�� . �30�

However, at longer times, nonlinear effects due to J± will
become significant and the squeezing can be destroyed even-
tually. Our numerical calculations for 100�N�2000 atoms
indicate that there exists a characteristic time after which
V�X1+ P2� stops decreasing and becomes an increasing func-
tion of time �see Fig. 4�. It remains an open problem to
determine an analytical expression of the characteristic time.
Here our numerical investigation suggests that Eq. �30� holds
in the regime N�t�1.

VI. CONCLUSION

To summarize, we have formulated a single-mode model
to study the quantum dynamics of Raman scattering from N

0.95

1

0 1 3

F

2
Nγt

N = 100

N = 2000
N = 500

FIG. 3. �Color online� Fidelity of atomic density matrices ob-
tained from the single-mode model as compared with the numerical
solution of master equation �24�.

0

1

0 1 32

S

N = 100

N = 2000
N = 500

Nγt
FIG. 4. �Color online� An illustration of the time variation of the

ratio S=V�X1+ P2� /�D for N=100 �green dashed line�, N=500 �red
dash-dotted line�, and N=2000 �blue solid line�. The S�1 corre-
sponds to squeezing.
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atoms inside a bad cavity. The key part of our formalism is
employment of a dynamic field mode capturing the emitted
photons. Under the condition �5�, we determined the explicit
form of the mode function and constructed a single-mode
Hamiltonian by the time-dependent variation principle. By
comparing the atomic dynamics predicted from the master
equation �24�, we find that the single-mode model is valid at
times up to two to three N�t. We should remark that although
the master equation �24� provides information on the atomic
density matrix, it does not determine the full atom-field state
vector. With our single-mode approach, we can now access
the state vector of the system and study the quantum corre-
lation between atoms and photons within and beyond the
linear regime. An example of an application is provided re-
garding the squeezing properties of photon-atom states. We
have shown that a strong squeezing can be established in the
joint photon-atom quadrature fluctuations, but such a squeez-
ing behavior will diminish at longer times due to the nonlin-
ear behavior of atomic-dipole operators.

As noted in the previous section, the state vector �17�
indicates that photons and atoms are entangled as long as
there is more than one nonzero term in the summation. Such
an entanglement could be a useful resource for quantum tele-
portation, apart from the usual protocol based on two-mode
squeezed light �22�. This is because the squeezed photon-
atom states could in principle allow teleportation between
light and matter—for example, teleporting an unknown
quantum state of light to atoms for storage. In addition, we
also note that the generation of photon-atom squeezed states
is an intermediate step of generating temporally separated
entangled light pulses �23� if the atomic state can be mapped
to another light pulse by suitable excitation schemes. We
hope to address these applications with the idea of dynamical
modes in the future.
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