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First order Doppler effects are usually ignored in laser driven trapped ions when the recoil frequency is
much smaller than the trapping frequency �Lamb-Dicke regime�. This means that the central, carrier excitation
band is supposed to be unaffected by vibronic transitions in which the vibrational number changes. While this
is strictly true in the Lamb-Dicke limit �infinitely tight confinement�, the vibronic transitions do play a role in
the Lamb-Dicke regime. In this paper we quantify the asymptotic behavior of their effect with respect to the
Lamb-Dicke parameter. In particular, we give analytical expressions for the frequency shift, “pulling” or
“pushing,” produced in the carrier absorption band by the vibronic transitions both for Rabi and Ramsey
schemes. This shift is shown to be independent of the initial vibrational state.
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I. INTRODUCTION

There is currently much interest in laser cooled trapped
ions because of metrological applications as frequency stan-
dards, high precision spectroscopy, or the prospects of real-
izing quantum-information processing �1�. The absorption
spectrum of a harmonically trapped �two-level� ion consists
of a carrier band at the transition frequency �0 and first-order
Doppler effect generated sidebands, equally spaced by
the trap frequency �T �see Fig. 1�. The excitation probability
of a given sideband, and thus its intensity, depends
critically on the so-called Lamb-Dicke �LD� parameter �
= ��kL

2 / �2m�T��1/2, with kL being the driving laser wave
number. If the LD regime is assumed ���1�, the intensity
of the kth red or blue sideband scales with �k �1–3�, k
=1,2 ,3 , . . ., so the number of visible sidebands diminishes
by decreasing �. It is then usually argued that in the LD
regime the absorption at the carrier frequency is free from
first order Doppler effect �3–5�. Of course this is only exact
in the strict Lamb-Dicke limit �=0, and for high precision
spectroscopy, metrology, or quantum-information applica-
tions, it is important to quantify the effect of the sideband
transitions in the carrier peak—in other words, the
asymptotic behavior, as ��0, of the frequency shift of the
carrier peak contaminated by vibronic �also called sideband�
transitions in which the vibrational state changes.1 The in-
verse effect, in which the sideband is shifted by a nonreso-
nant coupling to the carrier, has been previously studied in
the field of trapped-ion-based quantum computers �6,7�. To
get insight and the reference of analytical results, we shall
examine a simplified one-dimensional model, neglecting de-

cay from the excited state �resolved sideband regime �8��.
The shift dependence on the various parameters �duration of
the laser pulses, Rabi frequency �R, �T� will be explicitly
obtained making use of a dressed state picture and a pertur-
bation theory with respect to �. The cases of Rabi and Ram-
sey excitations will be examined separately since they may
be quite different quantitatively and have different applica-
tions as we shall see.

Notation and Hamiltonian

We consider a two-level ion, with ground ��g�� and ex-
cited ��e�� states and transition frequency �0=�e−�g, which
is harmonically trapped and illuminated by a monochromatic
laser of frequency �L. In a frame rotating with the laser
frequency, i.e., in a laser adapted interaction picture defined
by H0= 1

2��L�z, and in the usual �optical� rotating wave ap-
proximation �RWA�, the ion is described by the time-
independent Hamiltonian �9,10�
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1Even though several transitions contribute to a given peak, it is

named according to the dominant transition, thus we have a carrier
peak or kth sideband peaks.
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FIG. 1. Excited state probability of a trapped ion after a � pulse
has been applied. The ion is initially in the �g ,2� state.
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H = ��T�a†a + 1/2� −
��

2
�z +

��R

2
�ei��a+a†��+ + H.c.� ,

�1�

where �=�L−�0 is the frequency difference between the
laser and the internal transition �detuning�, �z= �e��e�− �g��g�,
�+= �e��g�, �−= �g��e�, and a ,a† are annihilation and creation
operators for the vibrational quanta.

Let us denote by �g ,n� ��e ,n�� the state of the ion in the
ground �excited� internal state and in the nth motional level
of the harmonic oscillator. In general, the Hamiltonian �1�
will couple internal and motional states. The 	�g ,n� , �e ,n�

states form the “bare” basis of the system, i.e., the eigen-
states of the bare Hamiltonian HB=H��R=0�. The energy
levels corresponding to the bare states are given by

	g,n = En +
��

2
,

	e,n = En −
��

2
, �2�

with En=��T�n+1/2� being the energies of the harmonic
oscillator. These bare energy levels are plotted in Fig. 2 �dot-
ted lines� �9,10� as a function of the detuning. They are de-
generate when �= ±k�T, k=0,1 ,2 , . . ., but the degeneracies
are removed and become avoided crossings when the laser is
turned on �see Fig. 2 �solid lines��. At these avoided cross-
ings transitions will occur between the involved �bare� states,
which are nothing but the mentioned carrier �k=0� and side-
band �k
1� transitions �1�. The splitting at each crossing
gives the coupling strength of a given transition �10�, and the
dynamics of the system is then governed essentially by the
reduced two-dimensional Hamiltonian of the involved levels.

Apart from these resonant transitions, off-resonant effects
will also take place since, strictly speaking, the system is not
two-dimensional. In particular, near the atomic transition
resonance ���0�, there will be a finite probability, although
small, of exciting higher order sidebands, which tends to
zero in the LD limit ��→0�. In this paper we study how
these off-resonant effects behave within the LD regime,
when � is made asymptotically small but not zero. In par-
ticular, we study how these effects affect the excited �inter-
nal� state probability, shifting the position of the central reso-
nance, which is crucial in fields such as atom interferometry
�11� or atomic clocks with single trapped ions �12�, where
tiny deviations from the Doppler-free form of the probability
distribution could affect the accuracy of the measurements.
Possible effects for state preparation in quantum-information
processing are also studied.

II. FREQUENCY SHIFT

In precision spectroscopy experiments, the measured
quantity is usually the excited �internal� state probability Pe,
regardless of the vibrational quantum number n. If a general
state of the trapped ion has the form

���t�� = �
n=0

�

�gn�t��g,n� + en�t��e,n�� , �3�

the excited state probability Pe will be given by

Pe = tr�������e��e�� = �
n=0

�

Pe,n, �4�

where Pe,n= �en�t��2 is the probability of finding the �e ,n�
state. In principle, the sum is over the infinite number of
available vibrational quantum states, but it can be simplified
if the LD regime is assumed. In this regime the extension of
the ion’s wave function is much smaller than the driving
laser wavelength ��1, and it is possible to expand the
Hamiltonian �1� in powers of �,

HLD = ��T�a†a + 1/2� −
��

2
�z +

��R

2

��1 + i�a + i�a†��+ + H.c.� , �5�

which only couples, in first order, consecutive motional
states. Then, if the ion is initially in the vibrational level
n0, only consecutive levels n0±1 will be coupled in a first
order approximation. In other words, only carrier, first blue,
and first red sidebands will give appreciable contributions
to Pe���0�. It is thus possible to keep only the n0

and n0±1 vibrational states and restrict our study to
the six-dimensional subspace spanned by the
	�g ,n0� , �e ,n0� , �g ,n0±1� , �e ,n0±1�
 bare states. The excited
state probability �4� can then be approximated by

Pe � Pe,n0−1 + Pe,n0
+ Pe,n0+1 �6�

in the LD regime. For all numerical cases examined, we have
checked that adding further vibrational levels and using the
Hamiltonian �1� leads to indistinguishable results with re-
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FIG. 2. Bare ��R=0, dashed line� and dressed ��R /�T=0.3,
solid line� energy levels �in arbitrary units� as a function of the laser
detuning. A not too small LD parameter �=0.4 has been intention-
ally chosen in order to highlight the higher order avoided crossings.
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spect to the six-state model if the LD condition is satisfied.
For an infinitely narrow trap ��→0�, only carrier transi-

tions are driven �i.e., transitions in which the vibrational
quantum number is not changed� and the central �carrier�
peak of the excited state probability is exactly at atomic reso-
nance, i.e., at �=0. The generation of blue and red sidebands
will affect this distribution shifting the central maximum by
�, where � is the detuning that satisfies the maximum condi-
tion

dPe

d�


�=�

�  d

d�
�Pe,n0−1 + Pe,n0

+ Pe,n0+1�
�=�

= 0 �7�

and defines the “frequency shift” in the following sections.
This frequency shift can be understood as the error in deter-
mining the center of the resonance, i.e., the position of the
maximum excitation. It will be shown that the position of
this maximum, rather than coinciding with the line center,
varies periodically with the trap frequency �T when the side-
bands are taken into account.

In the following sections this shift will be calculated in
different excitation schemes, such as Rabi excitation �a
single pulse, which is used in atomic clocks as well as quan-
tum logic applications�, and Ramsey interferometry �two
pulses applied in atomic clocks and frequency standards�.

III. SINGLE-PULSE (RABI) EXCITATION

If an ion is prepared in ���ti�� at an initial time ti, the state
of the system at a later time tf will be given by

���tf�� = e−iH�tf−ti�/����ti�� = �
�

e−i	��tf−ti�/��	���	����ti�� ,

�8�

where �	�� �	�� are the �th dressed states �energies� of the
system, i.e., eigenstates �eigenenergies� of H. We will con-
sider first the case where a trapped ion is prepared in a given
state �g ,n0� at time ti=0 and illuminated by a single Rabi
laser pulse for a time �.

The partial probabilities are easily obtained by projecting
the �e ,n� state on the state of the system at time �,

Pe,n = ��e,n�������2 = �
�

e−i	��/��e,n�	���	��g,n0�2
�9�

�see an example in Fig. 1�. For an infinitely narrow trap ��
=0�, Pe��� is the well known Rabi pattern �solid line of Fig.
1�. For nonzero LD parameters, sidebands are generated at
integer multiples of the trap frequency �T �dotted line in Fig.
1�. To obtain analytical expressions for these partial prob-
abilities we shall follow the perturbative approach introduced
in �10�.

A. Perturbative analysis: “Semidressed” states

The perturbative approach in �10� consists of dividing the
Hamiltonian in Eq. �5� as

HLD = HSD + V��� , �10�

with

HSD = ��T�a†a + 1/2� −
��

2
�z +

��R

2
��+ + �−� ,

V��� =
��R�

2
�i�a + a†��+ + H.c.� , �11�

where HSD is a “semidressed” Hamiltonian, which describes
the trapped ion coupled to a laser field, but does not account
for the coupling between different vibrational levels. This
coupling is described by the term V���. Note that HLD re-
duces to HSD in the LD limit ��→0�, and V��� is a small
perturbation of HSD in the LD regime, ��1.

Within this perturbative scheme, dressed states and ener-
gies of HLD are obtained up to leading order in the LD pa-
rameter � in our six-dimensional subspace �see Appendix A�.

B. Excited state probability

With the expressions of the dressed energies �A4� and
dressed states �A5� of HLD, one finds, after some lengthy
algebra from Eq. �9�, that the probability of finding the ion in
the internal excited state after a laser pulse of duration � is
given, for the three relevant motional levels, by

Pe,n0−1 = n0
�2�R

2

�2��T
2 − �2�2��� − �T�� cos

��

2
sin

�T�

2

+ ��2 − ��T�sin
��

2
cos

�T�

2
�2

,

Pe,n0
= ��R

�
�2

sin2�t

2
+

�2�R
4

4�2 �2n0 + 1�sin
��

2

� sin��T� − ��/2�
��T − ��2 −

sin��T� + ��/2�
��T + ��2 � ,

Pe,n0+1 = �n0 + 1�
�2�R

2

�2��T
2 − �2�2��� + �T�� cos

��

2
sin

�T�

2

− ��2 + ��T�sin
��

2
cos

�T�

2
�2

, �12�

where ����R
2 +�2 is the effective �detuning dependent�

Rabi frequency.
These probabilities are different from the ones obtained if

counterrotating terms in Hamiltonian �5� are neglected after
applying a motional or vibrational RWA. In this case, instead
of a six-dimensional model, three two-dimensional models
are solved �1�, to yield

Pe,n+k = �n,n+k

fn
k 2

sin2 fn
k�

2
, �13�

where �n,n+k=�R�n�ei��a+a†��n+k� and

fn
k = ��� − k�T�2 + �n,n+k

2 . �14�

These simplified expressions for the excited state probabili-
ties give quite different frequency shifts as discussed later,
and do not add to one exactly at one particular value of the
detuning.
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C. Rabi frequency shift

We are interested in the behavior of Pe near resonance,
i.e., ��0. If only leading terms in � are kept and the maxi-
mum condition �7� is applied to the probabilities in Eq. �12�,
it is found that for a weak laser �“weak” meaning here that
���R /�T�1�, the frequency shift oscillates with the trap
frequency �T as

���� � �R�2�2f��R��sin �T� , �15�

with f��� being the function

f��� =
sin �

� sin � − 4 sin2 �
2

. �16�

The exact �numerical� frequency shift � is plotted in Fig. 3
�dashed line� as a function of the pulse duration time. The
numerical calculations have been performed with the full
Hamiltonian �1�, i.e., to all orders in the LD expansion, and
with a large basis of bare states �more than six�. Here, and in
all remaining figures, the numerical results or the analytical
approximation obtained in the LD regime are indistinguish-
able.

The upper and lower approximate bounds for the fre-
quency shift �solid lines in Fig. 3� are obtained at the bounds

of the fast oscillating term, i.e., replacing sin �T� by ±1 in
Eq. �15�,

���� � �R�2�2f��R�� . �17�

If the applied pulse is a � pulse ���=� /�R�, the leading
order contribution to the shift �15� vanishes and the next
order in � has to be considered. Under the �-pulse condition
there is some robustness against the shift error, reducing the
frequency shift to a pulling effect �i.e., a positive shift�,

����� � �R�2�3 cos2�T��

2
, �18�

which is not zero �see the inset in Fig. 3� except for the
values of �R that make the argument of the cosine a multiple
of � /2.

Remarkably, the general frequency shift �15� is indepen-
dent of the initial vibrational quantum number n0. This fol-
lows from the fact that the probability for the first red side-
band is proportional to the initial motional state n0 while the
first blue sideband is proportional to n0+1 �see Eqs. �12��.
When the maximum condition �7� is applied, the n0’s are
canceled. Moreover, the result is identical to the shift when
the ion is initially in the lowest vibrational state. In this case,
the frequency shift is just due to the first blue sideband �no
red sidebands exist� but n0=0. This particular case can be
solved exactly in a four-state model, without a perturbative
approach, giving the same results �see Appendix B�.

Note also that if the vibrational RWA is applied and the
simplified expressions for the probabilities of the excited
states �13� are used to compute the frequency shift, quite
different results are obtained �dotted line in Fig. 3�, with
particularly high relative errors near the �-pulse condition.

In quantum-information applications, the parameters �
and �R are usually higher than in frequency standards since
the speed of the operations is of importance, so that the shift
of the carrier peak may be much larger. We have collected
some typical numerical values in Tables I and II.

D. Fidelity for a � /2 pulse

The oscillations of the carrier peak shift with respect to
�T�, Eq. �15�, may affect other observables as well. As an
example we find similar oscillations in the context of quan-
tum state preparation. When applying a resonant � /2 pulse
to a trapped ion initially in the ground state the internal state
obtained for �=0 is
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FIG. 3. Numerically calculated frequency shift �dashed line� af-
ter a Rabi pulse of duration � with a fixed Rabi frequency of �R

=2�100 Hz and �=0.05. The solid lines represent approximate
upper and lower bounds for the shift and the dotted one the shift
obtained if the vibrational RWA is applied �using Eq. �13� for the
probabilities�. Usual Paul �rf� traps have motional frequencies of a
few MHz, but in this plot a trap frequency of �T=2�10 kHz has
been considered in order to distinguish the fast oscillations. A zoom
around the � pulse is shown in the inset.

TABLE I. Rabi one-pulse excitation �clocks and frequency standards�: for 199Hg+, � and � have been
calculated with �T /2�=10 MHz.

Ion �T /2� � �R /2� �Hz� � /2� �Hz� Reference

40Ca+ �729 nm� 1 MHz 0.095 10–100 10−12–10−9 �13�
199Hg+ �282 nm� few MHz 0.035 10–20 10−14–10−13 �14,15�
88Sr+ �674 nm� 2.5 MHz 0.042 250–500 10−9–10−8 �16�
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��id� =
1
�2

��g� + i�e�� . �19�

The contamination due to the higher order sidebands for non-
zero � will make the real internal state differ from this ideal
state.

We now define the fidelity F as the probability of detect-
ing the ideal state �19�,

F = Pid = tr��������������id���id�� �20�

=
1

2�
n=0

�

�gn��� − ien����2 �21�

�see Eq. �3��, where the sum is, in principle, over the infinite
number of vibrational levels. It is plotted in Fig. 4 as a func-
tion of �=�R /�T. The fidelity is unity in the “ideal” �=0
case but smaller otherwise. This fidelity oscillates also with
the trap frequency, as it is observed in Fig. 4. If a � /2 pulse
is considered, we may rewrite the expression for the shift
�15� as

� � sin �T� = sin
�R�

�
= sin

�

2�
. �22�

The maxima of the sin �
2� function are marked with circles in

the abscissa.

IV. RAMSEY INTERFEROMETRY

We may also calculate the frequency shift due to the gen-
eration of higher order sidebands in a Ramsey scheme of two
separated laser fields �19�. In these experiments with trapped
ions, one ion prepared in the �g ,n0� state is illuminated with
two � /2 pulses ���/2=� /2�R� separated by a noninteraction
or intermediate time T. The state of the system at a time
2��/2+T, after the two laser pulses, in the same laser-adapted
interaction picture used before �H0= 1

2��L�z� is given by

���2��/2 + T�� = e−iH��/2/�e−iHBT/�e−iH��/2/��g,n0� , �23�

where HB=H��R=0� is the bare Hamiltonian governing the
dynamics of the system in the intermediate region. A simple
generalization of Eq. �9� for two separated laser pulses, gives
the probability for the different transitions,

Pe,n = �
�

�
j,k

�
�

e−i	���/2/�e−i	j,kT/�e−i	���/2/��e,n�	���	��j,k�

�j,k�	���	��g,n0�2
, �24�

with 	 j,n being the bare energies corresponding to the �j ,n�
bare states �j=g ,e� �see Eq. �2��. The excited state probabil-
ity distribution will be given again by Eq. �4� in the general
case, which is plotted in Fig. 5. It can be shown �Appendix
C�, that for weak lasers, the central maximum is shifted by

TABLE II. Rabi one-pulse excitation: Quantum information and quantum logic.

Ion �T /2� � �R /2� �kHz� � /2� �Hz� Reference

Ba+ �650 nm� 50 kHz 0.26 1.5–15 10−1–102 �17�
40Ca+ �729 nm� 2 MHz 0.03 5 10−5 �18�
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FIG. 4. Probability of detecting the ideal state ��id� as a function
of �=�R /�T for different LD parameters. The value of �R� is fixed
by the �resonant �=0� � /2-pulse condition. The circles shown in
the abscissa correspond to the maxima of the sin �

2� function, i.e.,
�= 1

4n+1 with n=0,1 ,2 , . . . .
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FIG. 5. Ramsey interference pattern for a noninteraction time
T=2� and for different LD parameters. An ion initially in the �g ,2�
state has been considered.
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��T� � �R�2�2� 2

2 + �RT
��cos

�TTt

2
sin

�TT

2

+ ��cos2�TTt

2
+ sin2�TT

2
�� , �25�

which is also independent of the initial vibrational quantum
number n0 and where Tt=2��/2+T is the total time of the
experiment �see Fig. 6�. In the T→0 limit, this expression
reduces to the one calculated for the Rabi case when a �
pulse is applied �see Eq. �18��. For nonzero intermediate
times T, the leading order in � in Eq. �25� may be written as

��T� �
2�R�2�2

2 + �RT
cos

�TTt

2
sin

�TT

2
, �26�

with approximate upper and lower bounds given by

��T� � ±
2�R�2�2

2 + �RT
�27�

�see again Fig. 6 �solid lines��.

V. DISCUSSION

We have obtained analytical formulas that quantify the
motional �sideband� effects in the carrier frequency peak of a
trapped ion illuminated by a laser in the asymptotic Lamb-
Dicke regime of tight confinement. Estimates of the impor-
tance of these effects for current or future experiments have
been provided in Tables I and II. The importance of the shift
discussed here depends greatly on the application and illumi-
nation scheme. Three different situations have been consid-
ered:

�a� In single pulse Rabi interferometry, long laser pulses
are, in principle, desired in order to obtain narrow transi-

tions, since the transition width is proportional to 1/�, but
this is limited by the stability of the laser and by the finite
lifetime of the excited state. Typical laser pulses are of the
order of milliseconds; that is, Rabi frequencies of tens to
hundreds of Hertz if � pulses �maximum excitation� are ap-
plied, which gives a frequency shift of 10−8−1014 Hz �see
Table I�. Currently, the most accurate absolute measurement
of an optical frequency has fractional uncertainty of about
10−16, but frequency standards based on an optical transition
in a single stored ion have the potential to reach a fractional
frequency uncertainty approaching 10−18 �11�. This means
that the frequency shift found here corresponds to fractional
errors of the order of 10−24–10−30 for typical optical transi-
tions, which is far beyond the 10−18 level so that the shifts
can be neglected in this context in the foreseeable future.

�b� This changes significantly for quantum-information
applications where fast operations are important and there-
fore the shifts are many orders of magnitude bigger even in
the Rabi scheme �see Table II�.

�c� Back to metrology, the shift in the Ramsey scheme is
more significant than in the Rabi scheme, because the illu-
mination times are much shorter and thus the Rabi frequen-
cies are correspondingly higher. In recent Ramsey experi-
ments with the 88Sr+ ion at 674 nm a trap with motional
frequency �T�2�2 MHz ���0.042� is driven by a laser
with Rabi frequency �R�2�16 kHz, which corresponds
to laser pulses of several �s �16�. Different intermediate
times T are used, ranging from T=� to T=10�. It is clear
from Eq. �27� that the frequency shift decreases as the non-
interaction times T increases. With these data, Eq. �27� gives
frequency shifts of ��2�1 mHz for T=�, which corre-
sponds to a fractional error of order 10−18. The effect is
therefore small today, but relevant for the most accurate ex-
periments in the near future.

We may also consider briefly the case of optical frequency
standards based on neutral atoms confined in an optical lat-
tice �24–26�. Using data from �26� �with longitudinal trap-
ping frequencies in the direction of the laser excitation� we
find a shift between 2�10−8 and 2�10−7 Hz. The
longitudinal trapping frequencies are much smaller
��100 kHz� than in Table I for ions, but the Rabi frequen-
cies are smaller too, so that the effect is finally also negli-
gible. Transversal frequencies are even smaller than longitu-
dinal ones, and in principle could play a role because of
imperfect laser alignment, but transversal sidebands do not
emerge from the noise in the experiment �26�.

Finally, a word is in order concerning the physical nature
and interpretation of the shifts studied here. They are obvi-
ously associated with motional effects induced by the laser
on the trapped ion, but they do not reflect energy level shifts.
Our frequency shifts are defined by the carrier peak displace-
ment of the excitation probability. This probability is calcu-
lated with a linear combination of dressed states, as in Eqs.
�9� and �24�. However, note that, while the eigenstates are
affected �corrected� by the laser coupling of motional states
characterized by the Lamb-Dicke parameter �, the energy
eigenvalues remain unaffected in first order in � �see Appen-
dix A�. Indeed, the exact calculations of the shift �based on
the general Hamiltonian �1� and converged with respect to
the number of levels� are reproduced by the approximations

10 20 30 40 50

ΩR/2π (kHz)

-10

5

0

5

10
δ/

2π
(m

H
z)

FIG. 6. Exact frequency shift �dashed line� and approximate
upper and lower bounds �solid lines� as a function of the Rabi
frequency after a Ramsey � /2-pulse sequence with intermediate
noninteraction time T=5�. An ion trapped within the LD regime
��=0.04� with a motional frequency �T=2�2 MHz has been
considered.
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in which the eigenenergies remain unchanged, i.e., as in ze-
roth order with respect to �. The carrier peak shifts we have
examined may in summary be viewed not as the result of
energy-level shifts but due to dressed state corrections,
which affect the dynamics anyway. A consequence is their
dependence on the illumination time.
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APPENDIX A: PERTURBATIVE CORRECTIONS TO THE
SEMIDRESSED STATES

The semidressed Hamiltonian �11� is easily diagonalized,
with semidressed �i.e., zeroth order� energies and states
given by

	n,±
�0� = En ±

��

2
, �A1�

�	n,±
�0� � =

1
�N±

�� ± �

�R
�g,n� + �e,n�� , �A2�

N± being dimensionless normalization factors given by

N± =
�� ± ��2

�R
2 + 1 =

2�

�R
2 �� ± �� . �A3�

The dressed energies and states will be calculated by stan-
dard �time-independent� perturbation theory, with the pertur-
bation given by the coupling term V��� �see Eq. �11��. The
matrix elements connecting the semidressed states are given
in the LD regime by �10�

�	n,s
�0��V����	n�,s�

�0� � = i�s�
��

�NsNs�

��n��n,n�−1 + �n� + 1�n,n�+1�

�1 − �ss�� ,

where s and s� are shorthand notation representing the sign
�s ,s,�=±�. Perturbation theory provides expressions for the
dressed energies

	n,± = 	n,±
�0� + O��2� , �A4�

with no linear corrections, since the diagonal terms of the
matrix elements �A4� are zero. The dressed states �up to
linear terms in �� are given by

�	n−1,±� = �	n−1,±
�0� � ±

i��R
�n

− �T ± �
�	n,�

�0� � , �A5�

�	n,±� = �	n,±
�0� � ±

i��R
�n

�T ± �
�	n−1,�

�0� � ±
i��R

�n + 1

− �T ± �
�	n+1,�

�0� � ,

�A6�

�	n+1,±� = �	n+1,±
�0� � ±

i��R
�n + 1

�T ± �
�	n,�

�0� � . �A7�

APPENDIX B: FOUR-STATE MODEL, EXACT SOLUTION

If the ion is previously cooled down to its ground �g ,0�
state �e.g., via sideband cooling�, the problem becomes four-
dimensional, since no red sideband will be involved, and
analytical dressed states can be obtained without using the
perturbative treatment of Sec. III A. In this four-state model
the excited state probability will then read

Pe � Pe,0 + Pe,1 �B1�

within the LD regime. The expressions for the dressed
eigenenergies are given by

	s,s� = ��T + s
��s�

2
, �B2�

where s and s� are shorthand notation representing a sign
�s ,s�=±�. The �angular� frequencies �± are defined by �±

����T±��2+�2�R
2 , with ����R

2 +�2 as usual. Near �
=0, these �± are frequencies shifted to the blue and red with
respect to the trap frequency �T; they correspond to transi-
tions among the dressed levels and play an important role in
the carrier frequency shift as we shall see. The corresponding
dressed eigenstates can be written as a function of the bare
states,

�	s,s�� =
1

�Ns,s�
� i

�R
��T + s�� − s�s���g,0� +

��R

s�� − �
�g,1�

−
i

s�� − �
��T + s�� − s�s���e,0� −

i

s�� − �

��T + s�� − s�s���e,0� + ��e,1�� , �B3�

with Nss� being normalization factors. �Strictly speaking,
these states are “partially” dressed states in the sense that
they are eigenstates of a part of the full Hamiltonian.�

If the ion is assumed initially in the ground �g ,0� state and
is illuminated by a single laser pulse for a time �, the prob-
ability of �e ,n� is

Pe,n = �
s,s�

e−i	s,s��/��e,n�	s,s���	s,s��g,0�2
, �B4�

which may be analytically calculated to give

Pe0 = ��R

2�
�2��cos

�+�

2
− cos

�−�

2
�2

+ ��T + �

�+
sin

�+�

2
−

�T − �

�−
sin

�−�

2
�2� , �B5�

Pe1 = ���R

2�
�2�� − �

�+
sin

�+�

2
+

� + �

�−
sin

�−�

2
�2

. �B6�

These are “exact” results within the LD and four-level ap-
proximations. The oscillations in Pe0 and Pe1 may thus be
viewed as interferences among the dressed states contribu-
tions and be characterized by frequencies �±.

Note also that the expressions �B5� and �B6� are valid for
lasers of arbitrary intensity. In particular, transitions to higher
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order sidebands, which in principle are off-resonant when
�=0, become important when the “Rabi resonance” condi-
tion �R=�T is fulfilled. In this case Pe1 reduces to

Pe1 �
1

4
sin2��Rt

2
, �B7�

which shows that terms, which are in principle off resonant
lead to resonant effects under certain conditions �see also
�10,20–23��.

Expressions �B5� and �B6� can be further simplified by
performing an expansion in the power series of the LD pa-
rameter. To leading order in �,

Pe0 � ��R

�
�2

sin2�t

2
�1 − ��t

2
��2�R

2

�T
2 cot

�t

2
� ,

Pe1 � ���R

2�
�2�A+ sin

��T + ��t
2

+ A− sin
��T − ��t

2
�2

,

with A±= ���
�T±� . Pe1�t� takes the form of a beating oscillation

with a fast frequency �T and a slow frequency �R.
The expressions for the excited state probability simplify

when the duration of the laser pulse is fixed. If a � pulse is
applied ���=� /�R� we have that

Pe0 � ��R

�
�2

, �B8�

Pe1 � ���R

2�
�2

�A+ − A−�2 cos2�T��

2
, �B9�

which, near atomic resonance ���0�, can be written as

Pe0 � 1 −
�2

�R
2 , �B10�

Pe1 � �2��R
4

�T
4 +

2�R
2�

�T
3 +

�2

�T
2�cos2���

2
. �B11�

With these expressions for the excited state probabilities, the
shifted position of the central resonance follows from Eq.
�7�: the central maximum in Fig. 1 is pulled to the right, to
higher frequencies, by

����� � �R�2�3 cos2�T��

2
, �B12�

the same result obtained in the general six-state model cal-
culation when a � pulse is applied �see Eq. �18��.

APPENDIX C: DERIVATION OF THE FREQUENCY SHIFT
IN THE RAMSEY CASE

From Eq. �24� and with the �approximate� dressed ener-
gies �A4� and dressed states �A5� obtained in Appendix A,
we may calculate the probabilities for the different �e ,n�
states. To leading order in the LD parameter and near atomic
resonance ��0, they are given by

Pe,n0±1 �
N�2

�1 − �2�2���2 cos
�TTt

2
+ � sin

�TT

2
�2

±
��

�T
�2 + T�R��cos

�TTt

2
+ � sin

�TT

2
�

�� cos
�TTt

2
+ sin

�TT

2
�� ,

Pe,n0
� 1 − � 1

�R
2 +

T

�R
+

T2

4
��2, �C1�

with N=n0 �N=n0+1� for the red �blue� sideband. The pres-
ence of the blue and red sidebands will shift the position of
the central resonance to a position satisfying the maximum
condition �7�. This gives a shift of

��T� � �R�2 �2

�1 − �2�2� 2

2 + T�R
��cos

�TTt

2
+ � sin

�TT

2
�

�� cos
�TTt

2
+ sin

�TT

2
� .

Keeping leading order terms in � if low intensity lasers are
assumed ��=�R /�T�1� gives the frequency shift

��T� � �R�2�2� 2

2 + �RT
��cos

�TTt

2
sin

�TT

2

+ ��cos2�TTt

2
+ sin2�TT

2
�� , �C2�

which is Eq. �25�.
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