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We investigate theoretically the magnetic spin-flip transitions of neutral atoms trapped near a superconduct-
ing slab. Our calculations are based on a quantum-theoretical treatment of electromagnetic radiation near
dielectric and metallic bodies. Specific results are given for rubidium atoms near a niobium superconductor. At
the low frequencies typical of atomic transitions, we find that BCS theory greatly overestimates coherence
effects, which are much less pronounced when quasiparticle lifetime effects are included through Eliashberg
theory. At 4.2 K, the typical atomic spin lifetime is found to be larger than 1000 s, even for atom-
superconductor distances of one 1 �m. This constitutes a large enhancement in comparison with normal
metals.
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I. INTRODUCTION

Over the last few years, enormous progress has been
made in magnetic trapping of ultracold neutral atoms near
microstructured solid-state surfaces, sometimes known as
atom chips �1–4�. The atoms can be manipulated through
variation of the magnetic confinement potential, either by
changing currents through gate wires mounted on the chip or
by modifying the strength of additional radio-frequency con-
trol fields. These external, time-dependent parameters thus
provide a versatile method of atom manipulation, and make
atom chips attractive for various applications, including atom
interferometry �5–10�, quantum gates �11–14�, and coherent
atom transport �15�. In addition, the atoms may be used as a
sensitive probe of the electromagnetic properties of the sur-
face in the neV �MHz� energy range. For example, they can
image surface currents in a normal metal �16� or vortices and
flux noise in a type-II superconductor �17�.

On the other hand, the proximity of the ultracold atoms to
the solid-state structure introduces additional decoherence
channels, which limit the performance of the atoms. Most
importantly, Johnson-Nyquist noise currents in the dielectric
or metallic surface arrangements produce magnetic-field
fluctuations at the positions of the atoms. Upon undergoing
spin-flip transitions, the atoms become more weakly trapped
or are even lost from the microtrap �18,19�. Typically, the
spin-flip transition frequencies for magnetically trapped
alkali-metal atoms are in the submegahertz range, and the
radiation-atom coupling is therefore strongly enhanced by
being in the near-field regime �20–22�. For atom-surface dis-
tances of the order of 1 �m, the atom lifetime typically
drops below 1 s, which constitutes a serious limitation for
atom chips. It was shown in Ref. �22� that, in order to reduce
the spin decoherence of atoms outside a metal in the normal
state, one should avoid materials whose skin depth at the
spin-flip transition frequency is comparable with the atom-

surface distance. For typical experimental designs using met-
als such as copper or gold, however, the atom-surface dis-
tances are precisely in this range �18,19�.

Superconductors could reduce the magnetic noise level
significantly and thereby boost the spin-flip lifetimes by
many orders of magnitude. Indeed, superconducting atom
chips have already been fabricated and tested �23,24� with
the aim of realizing controllable composite quantum sys-
tems. Previous estimates of the lifetime enhancement relative
to a normal-metal surface have given factors of tens �22� or
millions �25�, depending on the theoretical approach. Scheel
et al. �22� considered the energy dissipation in the supercon-
ducting state resulting from the modified quasiparticle dis-
persion, whereas Skagerstam et al. �25� considered the
screening of the current fluctuations by the superconductor.
The two approaches are difficult to compare, since they ig-
nore the strong modification of either the imaginary part �22�
or the real part �25� of the optical conductivity in the super-
conducting state. The question of how to describe the prob-
lem properly led to some dispute �26,27�.

In this paper, we resolve the dispute and present a scheme
for the proper description of magnetic spin-flip rates in atoms
on a superconducting atom chip. Our analysis is based on
three descriptions of superconductivity. We start with the
two-fluid model �25�, and then progress via the Bardeen-
Cooper-Schrieffer �BCS� theory �28� to a more elaborate
framework, the Eliashberg theory �29�, which we find is
needed for a proper description of this problem. For typical
spin-flip frequencies on a chip �1 kHz–10 MHz�, we point
out that the BCS theory significantly overestimates the opti-
cal conductivity and hence gives too high a value for the
spin-flip rate. A realistic calculation of the conductivity �30�
requires further elaboration, in the framework of the Eliash-
berg theory, to include lifetime effects of the quasiparticles
due to phonon scattering. This results in a reliable estimate
of the spin-flip rate, which ends up not far from the two-fluid
result of Skagerstam et al. �25�. We conclude that supercon-
ducting surfaces can be used to achieve low spin-flip rates in
an atom chip, with lifetimes exceeding 1000 s for Rb atoms
at 1 �m from a Nb surface at 4.2 K.*ulrich.hohenester@uni-graz.at
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We have organized our paper as follows. In Sec. II we
present the three models for the description of superconduct-
ors. Although there is already a vast literature on supercon-
ductivity, including many textbooks �31–33�, we give next a
brief account of these approaches, mainly to make the paper
as self-contained as possible. We discuss the basic assump-
tions of the two-fluid model, the appearance and shortcoming
of the coherence peak in BCS theory, and the description of
quasiparticle damping and formation within the framework
of Eliashberg theory. In Sec. III we present our results for the
lifetime of an atom placed in the vicinity of a semi-infinite
niobium sample. We compare the different approaches and
discuss their respective advantages and disadvantages. Fi-
nally, we summarize our results in Sec. IV.

II. THEORY OF SUPERCONDUCTIVITY

A. Two-fluid model

The first successful attempt to account for the electromag-
netic properties of superconductors was due to London and
London �34�. They devised a phenomenological two-fluid
model that was able to explain many of the phenomena ob-
served in superconductors.

Within this model, one assumes that there are two types of
charge carriers, superconducting and normal, which react
differently to external electromagnetic fields. We write nn�T�
and ns�T� to denote the electron number densities in the nor-
mal and superconducting states at temperature T, with
nn�T�+ns�T�=n0 assumed to be constant. Although it does
not become obvious from the two-fluid model itself, the su-
perconducting carriers have to be associated with Cooper
pairs. At temperatures above the superconductor transition
temperature Tc, only normal carriers are present and
nn�T�Tc�=n0, while at zero temperature all carriers are in
the superconducting state, ns�0�=n0.

For the normal electrons, the response to a sufficiently
weak external electric field E is given by Ohm’s law jn
=�nE, with jn being the current density of the normal elec-
trons and �n the normal-state conductivity. For the supercon-
ducting current js, the London brothers introduced a new
relation

�
�js

�t
= E , �1�

where � is a constant whose value varies for different super-
conducting materials. This describes the dynamics of carriers
that are accelerated freely in an electric field. For a super-
conductor made up of free electrons �or indeed of free Coo-
per pairs�, the value of � would be m / �nse

2�, where m and e
are the single-electron mass and charge. In fact, this also
provides a useful estimate for real superconductors. Later in
the paper we will rewrite this relation in terms of the plasma
frequency �p, as ��1/ ��0�p

2�. As a consequence of the
London equation �1�, a static magnetic field can penetrate
into a superconductor only by a distance of order �L
= �� /�0�1/2 �31�. For this reason �L is called the penetration
depth or London length.

Consider an electric field oscillating as exp�−i�t�. The
response of the superconductor is given by

j = jn + js = ��n +
i

��
�E . �2�

Here, the expression in parentheses,

���� � ����� + i����� =
1

��0
� 2

	2 +
i

�L
2� , �3�

is known as the optical conductivity, though in this paper we
will be using it at radio frequencies. We have introduced the
skin depth 	= �2/�0��n�1/2 associated with the normal
charge density.

For the two-fluid model, Eq. �3� can be further simplified
by noting that the two contributions vary with temperature
only through the normal and superconducting charge densi-
ties. Thus, with �0 being the conductivity in the normal state
and �0 the � parameter at zero temperature, we have

���� 	 �0
nn�T�

n0
+

i

��0
�1 −

nn�T�
n0

� . �4�

For T
Tc, a suitable form for the temperature dependence
of the normal density is provided by the Gorter-Casimir ex-
pression nn�T�= �T /Tc�4n0 �35�.

B. Bardeen-Cooper-Schrieffer theory

Despite its success, the London theory has a number of
shortcomings. First, it is phenomenological and not based on
a microscopic model. Second, its predictions cannot account
for all experimental observations. A relevant example here is
its inability to account for the so-called coherence peak that
was first observed in nuclear magnetic resonance �NMR� by
Hebel and Slichter �36�. This peak is most pronounced at low
frequencies and is thus of importance for the analysis of spin
decoherence in superconducting atom chips. In order to un-
derstand its origin we introduce the theory of Bardeen, Coo-
per, and Schrieffer �BCS� �28�.

1. BCS ground state

BCS theory is based on Fröhlich’s observation �37� that
electrons close to the Fermi energy �F can attract each other
through the exchange of virtual phonons, and Cooper’s dem-
onstration �38� that due to this interaction the Fermi sea is
unstable against the formation of a certain kind of quasi-
bound pair. The attractive electron-electron interaction is
usually described by the pairing Hamiltonian �31�

Hp = 

k�

�kck�
† ck� − V


k,k�

�ck↑
† c−k↓

† c−k�↓ck�↑. �5�

Here ck�
† is the field operator for the creation of an electron

with wave vector k and spin orientation �, �k=�k−�F is the
single-electron energy �k measured with respect to �F, and V
is the strength of the attractive phonon-mediated electron-
electron interaction. The prime on the sum indicates that this
interaction has to be considered only for electrons with en-
ergy smaller than the Debye energy 
�D.

As a result of this coupling, electrons are promoted from
states below the Fermi energy to states above to form Cooper
pairs. This process comes to a halt when the increase in
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kinetic energy is no longer compensated by the reduction in
potential energy from the pairing. To model the phase tran-
sition associated with the formation of Cooper pairs, one
assumes that the interaction operator c−k↓ck↑ is practically a c
number bk

0, with small fluctuations about this value. One then
formally writes all pairs of operators in the form c−k↓ck↑
=bk

0 + �c−k↓ck↑−bk
0� and neglects the terms bilinear in the par-

enthetical quantities. The resulting mean-field Hamiltonian
can be diagonalized through a Bogoliubov transformation,

ck↑ = uk�k0 + vk
*�k1

† , c−k↓
† = − vk�k0 + uk

*�k1
† ,

where �k0
† and �k1

† create fermionic quasiparticles that are
linear superpositions of the bare electron states, and the co-
efficients uk and vk are chosen to diagonalize the Hamil-
tonian,

HBCS = 

k

�Ek��k0
† �k0 + �k1

† �k1� + const. �6�

Here, Ek= ��k
2 +�2�1/2 are the new quasiparticle excitation en-

ergies in the superconducting state, and �=V
k�bk
0 is the or-

der parameter or gap parameter. � has to be determined from
the numbers bk

0, which are the thermal and quantum averages
of

bk
0 = tr�e−�HBCSc−k↓ck↑�/tr e−�HBCS, �7�

where ��1/ �kBT�. Equation �7� is a self-consistency rela-
tion, since the values of bk

0 are hidden within HBCS through
its dependence on the quasiparticle energies Ek. Thermally
excited quasiparticles with energy Ek restrict the phase space
available for forming Cooper pairs and thereby reduce the
gap parameter �.

2. Coherence peak

The density of these quasiparticle states at energy E is
given by �31�

��E� = �N��F�
E

�E2 − �2
, E � � ,

0, E 
 � .

�8�

At zero temperature, no quasiparticles are excited and there-
fore the only way to deposit energy in the superconductor is
to break up Cooper pairs. Consequently, the real part �� of
the T=0 conductivity is strictly zero for electric field fre-
quencies below 2� /
. At nonzero temperatures, however,
many quasiparticles may be excited just above the gap be-
cause the density of states is so high there—indeed ��E�
diverges in Eq. �8� at E=�. This opens up a mechanism for
dissipation at low frequency. The corresponding �� involves
the density of quasiparticles, which is proportional to ��E�,
and the density of final states for absorption of a photon at
frequency �, which is proportional to ��E+
��. Integration
over E produces a logarithmically divergent conductivity
�����
�0 ln�2� /��. This enhancement, which was first ob-
served in nuclear magnetic resonance �36�, is known as the
Hebel-Slichter or coherence peak. This reasoning is sup-
ported by Mattis and Bardeen’s expression for the optical
conductivity �39�, which was computed with the random-

phase approximation and in the dirty limit, where scattering
by impurities reduces the coherence length to less than the
magnetic-field penetration length �L. This gives the same
logarithmic divergence of ����� at low frequency �32,40�. At
zero frequency, we note that �� has another singularity of 	
type, associated with the dc response of the superfluid.

For the submegahertz spin-flip transitions of magnetically
trapped ultracold atoms, the BCS theory thus predicts a
strong modification of the optical conductivity in comparison
to the frequency-independent value of Eq. �4� given by the
two-fluid model: ��=�0�nn /n0�.

C. Eliashberg theory

While the BCS theory incorporates the mixing of free
electron states through their coupling to virtual phonons, it
does not include the dissipative effects associated with the
emission and absorption of real phonons. This broadens the
quasiparticle states and softens the divergence of the conduc-
tivity at low frequency so that it is much less dramatic.

Phonon scattering converts the electron wave vector k to
wave vector k� at a rate 1 /�k, given by Fermi’s golden rule
as

1

�k
	

2�





k�

�gk,k�
� �2	��k − �k� − 
�q

���2n̄th�
�q
�� + 1� , �9�

where 
�q
� is the energy of a phonon in mode � with wave

vector q=k−k�, n̄th is the number of thermal phonons in the
mode, and gk,k�

� is the off-diagonal matrix element of the
electron-phonon interaction Hamiltonian. Since electron en-
ergies are typically two orders of magnitude larger than the
Debye energy, the phonon energies entering the Dirac 	
function in Eq. �9� can be safely neglected. This approxima-
tion leads one to define the dimensionless quantity

�2Fk��� = 

k�,�

�gk,k�
� �2	��k� − �F�	�� − �q

�� , �10�

known in literature as the Eliashberg function �33�. Thus, the
electron scattering rate at low temperatures can be conve-
niently written as

1/�k �
2�



�

0

�D

d� �2Fk����2n�
�� + 1� . �11�

In this expression, the Eliashberg function encapsulates all
the relevant information about the electron-phonon coupling
and the Fermi surface. The complex self-energy � resulting
from this coupling gives both the scattering rate that we have
just discussed, through 
 /�k=2 Im����k��, and the energy
shift Re����k�� of the electron.

There are two kinds of self-energy function in the descrip-
tion of a superconductor, usually labeled normal and anoma-
lous. The normal component has the same meaning as in an
ordinary metal, whereas the anomalous one is directly related
to the opening of the gap due to the formation of Cooper
pairs. These are closely related because the scattering rate
and distortion of the electron bands due to the electron-
phonon coupling depend strongly on the superconducting
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gap, and vice versa. This interdependence is accounted for
by the so-called Eliashberg equations, which must be solved
self-consistently �33�.

A powerful numerical implementation for the solution of
the Eliashberg equations has been developed by Carbotte,
Marsiglio, and co-workers �30,41–43�, where one first com-
putes the electron Green function in Matsubara space and
then performs an analytic continuation by means of an
iterative procedure. The real-frequency-axis Green functions
can be used finally to compute the optical conductivity
�30,43,44�, including not only electron-phonon interactions,
described above, but also the effects of elastic impurity scat-
tering.

D. Impurity effects

We conclude this section by briefly addressing effects due
to elastic impurity scattering. In conventional superconduct-
ors, impurities are deemed to be innocuous as a result of
Anderson’s argument �45,46�, which goes as follows. In the
normal state, the electrons can be described by wave func-
tions �n↑�r� and �n↓�r�, where �n is supposed to include the
effects of impurity scattering. The quantum number n re-
places the wave number k of the pure metal. In the pure
superconductor, the Cooper pair is composed of the states
�k , ↑ � and �−k , ↓ �. Anderson pointed out that the second of
these states is the first with momentum and current reversed
in time. In an impure superconductor the main contribution
to the pairing should be also between the time-reversed states
�n↑�r� and �n↓

* �r�. The pairing Hamiltonian �5� can thus be
expressed in terms of the new operators cn�

† and cn�
† , where

the interaction matrix element between two states becomes

Vnn� = V

k,k�

���n�k��2���n��k���2 = V . �12�

Owing to the completeness relation of the states involved,
the pairing Hamiltonian is not modified in the new basis �n.
For this reason, the superconductor properties such as, e.g.,
transition temperature, gap parameter, or quasiparticle den-
sity of states, are not significantly changed by the presence of
impurities.

The argument above applies not only to the BCS but also
to Eliashberg theory as long as the Eliashberg function
�2Fk��� has little dependence on the direction of k. This is
indeed the case for the conventional s-wave superconductors
we are considering. Moreover, any small anisotropy is ran-
domized by the impurity scattering, so it suffices in this work
to consider the average over all directions �2F���
= ��2Fk����.

Although impurities do not affect the pairing Hamil-
tonian, the scattering from impurities at rate � plays an im-
portant role in the electron transport because the normal con-
ductivity �0 is approximately inversely proportional to �. In
the two-fluid model and in BCS theory, ����� increases in
direct proportion to �0 as the scattering rate is reduced. In
Eliashberg theory, however, the situation is complicated by
the presence of the inelastic phonon scattering, which tends
to reduce the conductivity through the broadening of the den-
sity of quasiparticle states. As � is reduced, this effect be-

comes relatively more important, causing ����� to increase
more slowly than �0. In the calculations that follow, we will
allow � to be a variable in the optical conductivity �30,43� so
that we can explore this effect. We will find that this provides
a connection between the two-fluid and BCS results as well
as allowing us to make contact with real materials.

III. RESULTS FOR THE ATOM TRAPPING LIFETIME

We turn now to the spin-flip rate for an atom located in
vacuum near a superconducting slab, as illustrated in Fig. 1.
Following Refs. �21,22,25�, we consider a ground-state
alkali-metal atom, magnetically trapped in a weak-field-
seeking Zeeman sublevel. The noise in the magnetic field,
due both to vacuum fluctuations and to thermal currents in
the surface, induces transitions between the levels, making
the atomic spin change direction �spin flip� and ultimately
causing the atom to be lost from the microtrap.

As briefly outlined in the Appendix, the spin-flip lifetime
of an atom at position rA is directly related to the imaginary
part of the dyadic Green tensor G�rA ,rA ,�� of Maxwell’s
theory. The usual, free-space spontaneous emission rate is
determined by the vacuum contribution G0. For a typical
transition frequency of fA=�A / �2��=500 kHz, correspond-
ing to an energy of approximately 2 neV, this natural life-
time at zero temperature is �0�2�1025 s �22�, which can
safely be considered infinite. The dominant contribution to
the lifetime reduction comes from the magnetic-field fluctua-
tions induced by the Johnson-Nyquist noise in the dielectric
body. As shown in Fig. 1 and discussed in the Appendix, the
current noise translates through the Green tensors to a
magnetic-field fluctuation at the position of the atom.

For a thick superconducting slab described by an optical
conductivity in the limit ����������� and in the near-field
regime �L�z�2� /k, one calculates, using the results of
Ref. �25�, a spin-flip rate of

� �
1

�A
� �0�n̄th + 1��1 +

27

64���0�1/2k3z4

��

����3/2� .

�13�

Here �A is the spin-flip lifetime, �0 is the free-space decay
rate, n̄th is the mean thermal photon number at the transition

FIG. 1. �Color online� Schematic geometrical setup. A plane
metallic or superconducting slab lies parallel to the �x ,y� plane. The
atom with magnetic moment � indicted by the arrow is located in
vacuum at a distance z from the surface. The atom suffers sponta-
neous or thermally stimulated magnetic spin-flip transitions, as in-
dicated by G0 and G, thereby becoming more weakly trapped and
eventually lost. Johnson current noise �jj� within the penetration
depth � contributes to magnetic-field fluctuations at the position of
the atom.
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frequency �A, k=�A /c, and z is the atom-superconductor
distance. In the following sections we investigate the conse-
quences for this rate of using the expressions for the optical
conductivity ����=�����+ i����� obtained from a two-fluid
description, from BCS theory, and from Eliashberg theory.

A. Two-fluid model

To estimate the order of magnitude of these parameters,
we first consider the simple two-fluid model. Using the ex-
pression �3� for the optical conductivity, Eq. �13� reduces to
the expression �25�

� �
1

�A
� �0�n̄th + 1��1 + 2�3

4
�3 1

k3	2

�L
3

z4 � . �14�

We take Nb as a representative superconducting material
throughout. Table I shows a few values reported in the lit-
erature for the conductivity �0 of the normal state. We note
that the ultrapure niobium sample of Ref. �47� has a hundred
times higher conductivity than the films of Refs. �48,49�.
Through the simple Drude model �50�

�0 = �0�p
2� , �15�

we can relate �0 to an electron lifetime �=1/� due to elastic
scattering at impurities or defects. 
�p is the bulk plasmon
energy, which we set equal to 10 eV �48,50�. The corre-
sponding � values are given in the last column of Table I.
With an atomic transition frequency of 500 kHz, we obtain
for the ultrapure sample a normal-state skin depth of 	0
=�2/ ��0��0��16 �m and a value approximately ten times
larger for the films.

A rough estimate for the penetration depth of the super-
conductor at zero temperature is given by

�L = � �

�0
�1/2

� � 1

�0�0�p
2�1/2

=
c

�p
� 20 nm, �16�

where we have assumed that all electrons move freely. This
simple estimate is comparable to the BCS value of 35 nm
�51�, and to the experimental values of 46 nm for the ultra-
pure sample �47� and 90 nm for the niobium film in �49�.

B. BCS versus Eliashberg theory

Now we discuss how the two-fluid estimates are modified
within the framework of BCS and Eliashberg theories. For

the BCS theory of niobium we use a zero-temperature gap
parameter of �=1.4 meV, corresponding to a transition tem-
perature of Tc=9.2 K and a Debye temperature of 
�D /kB
=275 K and we compute the optical conductivity by means
of the Mattis-Bardeen formulas in the dirty limit �39�.

For the implementation of the Eliashberg equations, we
have considered an �2F��� function calculated using linear
response theory �52� and norm-conserving pseudopotentials.
The electron-phonon matrix elements were calculated on a
323 wave-vector grid for both electrons and phonons. Our
result �not shown� is similar to that presented in Ref. �53�,
though with spectral features that are less pronounced, in
better agreement with the data of tunneling experiments. As
far as the calculated atomic spin-flip rates are concerned, we
do not find any significant difference between these two
�2F��� functions.

Figure 2 shows results for the real �Fig. 2�a�� and imagi-
nary �Fig. 2�b�� parts of the optical conductivity versus tem-
perature T. The solid lines show the results from BCS theory
in the dirty limit, the dashed lines are for the two-fluid
model, and the symbol series are for Eliashberg theory with
various values of the elastic impurity scattering rate �. In
Fig. 2�a�, the ����A� obtained from the two-fluid model de-
creases monotonically with increasing temperature because

TABLE I. Normal-state conductivity �0 measured on several
different samples of niobium. The approximate scattering times �
are obtained from the Drude model �15�. The corresponding plasma
frequency is �p�10 eV/
�1.5�1016 s−1.

Reference �0 ���−1 cm−1� � �fs�

Perkowitz et al. �48� 0.2 10

Pronin et al. �49� 0.25 13

Klein et al. �40� 0.85 43

Casalbuoni et al. �47� 20 1000 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

T / T
c

σ’
(ω

A
)

/σ
0

(a)two fluid
BCS
h− γ = 1 meV
h− γ = 10 meV
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0
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2
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6
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c

σ’
’(ω

A
)

/σ
0

(b)

FIG. 2. �Color online� Temperature dependence of �a� real part
����A� and �b� imaginary part ����A� of the optical conductivity,
normalized to the normal-state conductivity �0. �A=2�
�500 kHz is the atomic spin-flip frequency, and Tc=9.2 K is the
superconductor transition temperature. The different lines corre-
spond to the results for the two-fluid model �dashed line�, using
	0=16 �m and �L�0�=35 nm, BCS theory �solid line�, and Eliash-
berg theory �symbols� for three elastic impurity scattering rates �.
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of the decrease in the normal density nn�T�, whereas the BCS
and Eliashberg curves show an enhancement of ����A� at
temperatures immediately below the transition temperature
Tc. This is due to the coherence peak, which forms as a
consequence of the modified quasiparticle dispersion in the
superconducting state. The peak is most pronounced within
the BCS framework in the dirty limit. As we move away
from the dirty limit toward a clean superconductor, using the
Eliashberg theory with decreasing rates �, we observe that
the peak gradually disappears, in agreement with �54�. Thus
the Eliashberg theory interpolates between the two extreme
cases of the two-fluid model and the dirty limit of BCS
theory by varying the chosen value of �.

In Fig. 2�b� we show the imaginary part of the optical
conductivity. Again, the BCS result is according to the theory
of Mattis and Bardeen �39� for a dirty superconductor. Here,
too, we see that the Eliashberg theory with variable � pro-
vides a link between the two-fluid and BCS extremes. In the
low-frequency limit, the BCS result takes the analytical form

�BCS� ��� = �0
��


�
tanh

�

2kBT
, �17�

where � is the temperature-dependent gap parameter. We
note that this 1 /� dependence of �� is the same in all three
models. This is a consequence of the Kramers-Kronig rela-
tions, together with the fact that �� has a 	 singularity at �
=0 associated with the response of the superfluid to a dc
field.

We are using here a theory in which the material responds
locally to a field. Although this is not strictly so, nonlocality
can be incorporated empirically into the theory of the super-
conductor through a modified penetration depth �25�. The
effect of nonlocality on the atom-surface response is negli-
gible since the penetration depth is small compared with the
atom-superconductor distance.

As discussed in Sec. II B 2, the BCS coherence peak il-
lustrated by the solid line in Fig. 2�a� increases with decreas-

ing frequency, diverging as �→0. This behavior is greatly
suppressed when inelastic phonon scattering is taken into
account using Eliashberg theory �see also the discussion in
Sec. II D�, as plotted in Fig. 3. This figure shows the real part
of the optical conductivity ����� at 4.2 K with three values
of �, spanning the 10–1000 fs range of scattering times
given in Table I. The peak in Fig. 3 at 1 THz is the conduc-
tivity associated with the breakup of Cooper pairs. The
lower-frequency peak, which is the one of relevance here, no
longer diverges at low frequency but reaches a constant
value, shown inset in the figure for frequencies below
2 GHz. Here, as in Fig. 2, the value of �� is normalized to
the normal-state conductivity to remove most of the depen-
dence on �. Since the atomic spin-flip frequency is bound to
be in this low-frequency range, the Eliashberg results shown
in Fig. 2 apply to all cases of experimental interest. We recall
that the ��of the two-fluid model in Eq. �3� is also frequency
independent.

Finally, in Fig. 4�a� we show the spin-flip lifetime �A
=1/� �see Eq. �13�� as a function of temperature for an
atom-surface distance of 10 �m. The dashed line indicates
the results obtained from the two-fluid model of Ref. �25�.
The lifetimes obtained from Eliashberg theory �symbols� are
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FIG. 3. �Color online� ����� at 4.2 K as a function of frequency
for three elastic scattering rates �, as computed within the frame-
work of Eliashberg theory. The peak at zero frequency is attributed
to the condensate, and the peak at 1 THz to the breaking of Cooper
pairs. In the inset we show that the condensate peak saturates at low
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FIG. 4. �Color online� Spin-flip lifetime �A of a trapped atom
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smallest distance in �b� is 1 �m �with �A�5000 s for �
=1 meV/
�. For the calculation of �A we use Eq. �13� and the
optical conductivity computed within Eliashberg theory for differ-
ent elastic scattering rates �. The atomic transition frequency is
fixed at 500 kHz throughout. The dashed lines correspond to calcu-
lations performed with the two-fluid model and the parameters
given in Ref. �25� �London length �L=35 nm�.

HOHENESTER et al. PHYSICAL REVIEW A 76, 033618 �2007�

033618-6



smaller, but only by a factor of ten or less: the influence of
elastic scattering rates � on the spin-flip lifetime is not very
strong. This indicates that the quality of the niobium is not
critical. Surprisingly, we find that �A is smallest for the high-
quality sample with �=1 meV/
, highest for the intermedi-
ate value �=10 meV/
, and falls off again slightly for �
=100 meV/
. In Fig. 4�b� we show �A as a function of atom-
surface distance at 4.2 K �T /Tc=0.46�.

For an atom-surface distance of 1 �m we obtain for �
=1 meV/
 a lifetime �A�5000 s at a transition frequency of
�A /2�=500 kHz. Values for other distances can be obtained
directly from the z4 scaling of our central equation, Eq. �13�.
For other �low� frequencies, the lifetime given by Eq. �13�
scales approximately as �A

2 . This follows from the frequency
independence of �� for ��0 and the 1/� dependence of ��.

IV. SUMMARY

In this paper, we have resolved the controversy surround-
ing the appropriate use of model assumptions for the electro-
magnetic energy dissipation in superconducting materials.
We have discussed the three most common models of super-
conductivity, the two-fluid model and the BCS and Eliash-
berg theories, in ascending order of sophistication. The spin-
flip lifetime of neutral atoms trapped near a superconducting
niobium surface is predicted to be much shorter when treated
in the BCS theory than it is in the two-fluid model. However,
Eliashberg theory, which improves upon the BCS theory by
including the finite quasiparticle lifetime, predicts only
slightly shorter lifetimes.

The Eliashberg theory interpolates between the two-fluid
model and the BCS theory. For intermediate scattering rates,
corresponding to real samples, the simple two-fluid model
gives remarkably accurate estimates of the Eliashberg re-
sults. We have found that the lifetime depends only little on
the precise value of the impurity scattering rate �.

Our numerical results based on the Eliashberg theory
show that the expected spin-flip lifetime for an atom placed
1 �m away from a 4.2 K superconducting planar niobium
surface exceeds several thousand seconds at an atomic tran-
sition frequency of 500 kHz. This is expected to scale
roughly as �A

2 and z4. Hence, superconducting surfaces pro-
vide an extremely low-noise environment for magnetically
trapped neutral atoms and thus have great potential for co-
herent manipulation of atoms.

Note added in proof: Recently we became aware of a
related paper arXiv:0706.1056 where the spin flip lifetime is
computed within BCS theory. These authors come to similar
conclusions regarding the BCS results. They do not go on to
consider the effect of quasiparticle damping on the coherence
peak, which influences the spin flip lifetime, as we have
shown here.
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APPENDIX: SPIN-FLIP LIFETIME

In this appendix we sketch briefly how to derive our basic
expression �13�. The derivation follows closely the general
framework of Refs. �20,21�. There is, however, a subtle point
regarding the fluctuation-dissipation theorem, which we shall
partly rephrase in the language of solid-state physics. In the
general framework developed by Welsch and co-workers
�55–57� one introduces Langevin noise operators with
bosonic commutation relations, in order to fulfill the linear
fluctuation-dissipation theorem. However, for calculating ex-
pectation values of bilinear operator products as in case of
the spin-flip lifetime, there is no particular need for such an
approach.

We consider an atom located in the vicinity of a dielectric
body, as depicted in Fig. 1, which is in a given magnetic
sublevel. The coupling to the magnetic-field fluctuations is
described through a Zeeman-interaction Hamiltonian in the
rotating-wave approximation. For a low-field-seeking atom,
the spin-flip transition is associated with an emission pro-
cess, and the transition rate is simply given by Fermi’s
golden rule �4,20�

� = 

�,�

�i����f��f ����i�

2 �B��rA,�A�B�

†�rA,�A�� . �A1�

Here � and � denote the Cartesian components, i and f are
the initial and final states of the scattering process, respec-
tively, � is the magnetic moment operator, and B�rA ,�� the
Fourier transform of the magnetic-field component with
positive frequency. The position of the atom is rA and �A is
the transition frequency.

Now we relate the spectral density of the magnetic field to
the current noise in the dielectric. In linear response theory,
we can use the Green tensor G of Maxwell’s theory to relate
the current j to the magnetic field B according to �21,56�

B�r,�� = �0� d3r�� � G�r,r�,��j�r�,�� , �A2�

with a corresponding equation for B†�r ,��. Thus, the spec-
tral density of the magnetic-field fluctuations is given by
convolving the spectral density �j��r ,��j�

†�r� ,��� of the cur-
rent fluctuations with Maxwell’s Green tensors, which de-
scribe how the field produced by the current fluctuation
propagates to the position rA of the atom �see Fig. 1�. In the
following we consider for simplicity only isotropic and local
dielectric media.

The calculation of �j���j†���� is a common problem in
solid-state physics �33�. For instance, in our present ap-
proach j could be the normal current jn or the supercurrent js
of the superconductor. To express the spectral density of cur-
rent correlations in terms of the optical conductivity, we first
note that ����� is related to the retarded current-current cor-
relation via ������=Re�0

�dt ei�t��j�t� , j†�0���, which is a

SPIN-FLIP LIFETIMES IN SUPERCONDUCTING ATOM… PHYSICAL REVIEW A 76, 033618 �2007�
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general result of linear response theory �58�. A common link
between the ordered and retarded current-current correlation
is provided by the spectral function ��t�= ��j�t� , j†�0���. Its
Fourier transform can be obtained upon insertion of a com-
plete set of states �m� with energy Em �33�

���� = �1 − e−�
��Z−1

m,n

e−�Em��m�j�n��2

� 2�	„� − �En − Em�/
… , �A3�

with Z being the partition function. From Eq. �A3� one im-
mediately obtains �j���j†����=���� / �1−e−�
��. The rela-

tion between the retarded current-current correlation and the
spectral density is given through the Lehmann representation
as ����=2������ �33�. Thus, the desired relation between
�j���j†���� and the optical conductivity reads

�j���j†���� = �n̄th�
�� + 1�2������ . �A4�

One finally uses the expression Im G= ��0 /��G��G*, which
follows directly from Maxwell’s equations �55,59�, to relate
the scattering rate �A1� to the imaginary part of the Green
tensor. The final equation �13� is obtained according to the
prescription given in Ref. �25�.
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