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Analog models of gravity have been motivated by the possibility of investigating phenomena not readily
accessible in their cosmological counterparts. In this paper, we investigate the analog of cosmological particle
creation in a Friedmann-Robertson-Walker universe by numerically simulating a Bose-Einstein condensate
with a time-dependent scattering length. In particular, we focus on a two-dimensional homogeneous conden-
sate using the classical field method via the truncated Wigner approximation. We show that for various forms
of the scaling function the particle production is consistent with the underlying theory in the long wavelength
limit. In this context, we further discuss the implications of modified dispersion relations that arise from the
microscopic theory of a weakly interacting Bose gas.
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I. INTRODUCTION

In the theory of quantum fields in classical backgrounds,
some form of particle creation is typically expected when the
metric is time-dependent; a commonly cited example of this
is cosmological particle production in an expanding �or con-
tracting� universe �1,2�. It is possible to simulate the analog
of this process in a Bose-Einstein condensate �BEC� when
either the external trapping frequency is time-dependent
�3–7� or the scattering length �within the low momentum
approximation of the two-body interaction potential� is time-
dependent �8–10�. These treatments are often based on the
acoustic �i.e., hydrodynamic� approximation where it is as-
sumed that all excitations of the quantum field propagate as
phonons with the same speed of sound. Moreover back-
reaction of the excitations on the background field and
higher-order interactions between excitations are neglected
in the linearized theory.

In general, the correct description of the dynamics of a
BEC is a formidable problem due to the vastness of the
Hilbert space, even for a system of just a few interacting
atoms. In the lowest-order approximation, when all the
bosonic atoms occupy a single quantum state, the ground
state is well described by the Gross-Pitaevskii equation
�GPE�—in this case, the field operator is replaced by a mean-
field order parameter. Classical field methods �CFMs� extend
this formalism to include quantum fluctuations whereby the
dynamics of a multimode quantum field is approximated by

the trajectories of classical variables in phase space. One
such method is the truncated Wigner approximation �TWA�,
which is based on the Wigner representation of the density
matrix. The TWA has been investigated by a number of au-
thors �11–14� and more recently has been applied to a study
of condensate collisions �15,16�.

In this paper we investigate the dynamics of a homoge-
neous BEC in two spatial dimensions with a time-dependent
scattering length and, in particular, map this problem to a
Friedmann-Robertson-Walker �FRW� universe undergoing
an expansion. We compare the analytically calculated par-
ticle production from the acoustic approximation with the
results of numerical simulations based on the TWA. There
are several benefits to this approach. First, the TWA includes
the effects of vacuum quantum fluctuations by sampling the
Wigner distribution in the initial state. Secondly, the field
dynamics naturally include the nonlinear dispersion of the
Bose system—in a cosmological context, this represents Lor-
entz symmetry breaking of the effective spacetime, which
leads to necessary modifications of the standard hydrody-
namic theory. Finally, the numerical simulations include the
effects of back-reaction, which is difficult to otherwise in-
clude without resorting to higher-order methods such as the
self-consistent Hartree-Fock-Bogoliubov approach.

The outline of this paper is as follows. In Sec. II we show
how the acoustic metric leads to an emergent FRW universe
in a BEC, which leads to the prediction of quasiparticle pro-
duction as discussed in Sec. III. In Sec. IV these ideas are
formalized by the Bogoliubov theory for a BEC. In Secs. V
and VI, respectively, the preceding theory is used to quanti-
tatively predict quasiparticle production in the acoustic ap-
proximation, and in the more general case including “trans-
phononic” modes, for a number of specific FRW universe
models �17�. Section VII introduces the TWA, which we use
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to simulate the dynamics of the BEC consistently with these
scenarios. Section VIII presents the results of these simula-
tions, which are discussed in Sec. IX. Finally, in Sec. X we
conclude and discuss avenues for further work.

II. EXPANDING UNIVERSE MODELS
IN BOSE-EINSTEIN CONDENSATES

Arguably, the most promising system for implementing
analog models of gravity is the BEC. This possibility was
first considered by Garay et al. �18,19� for acoustic black
hole geometries and further explored by Barceló, Visser, and
Liberati �20–22�. In particular, BECs have a number of de-
sirable features that are necessary to be part of the analog
model program, and more specifically for the subgroup of
analog models suitable for mimicking cosmological particle
production.

�i� Hydrodynamics. In the long wavelength limit, the
mean-field equations of motion for a BEC take the form of
classical hydrodynamics for a superfluid, which leads di-
rectly to the formulation of an emergent spacetime.

�ii� Quantum theory. Bose-Einstein condensation in
atomic vapors are weakly interacting systems, for which the
microscopic quantum theory is well understood. The elemen-
tary excitations of the system are given by the Bogoliubov
theory. The description for the excitations is valid beyond the
hydrodynamic approximation, and incorporates “trans-
phononic” physics, similar to many �not all� effective field
theories, where “trans-Planckian” physics is believed to
break Lorentz invariance.

�iii� Temperature. BECs in atomic vapors require tem-
peratures close to absolute zero so that in principle it may be
possible to observe cosmological particle production, with-
out the presence of �larger� thermal fluctuations that would
obscure the effect.

�iv� Experimental advances. Recent experimental ad-
vances for the control of ultracold atoms mean that BECs
can now be prepared and manipulated in many configura-
tions. Notably, the use of magnetic and optical traps can lead
to a variety of geometries, whereas using Feshbach reso-
nances it is possible to vary the interaction strength between
atoms, even by many orders of magnitude. With continued
advances the experimental realization of analog models
should soon be achievable.

A. Microscopic theory of the Bose gas

Bose-Einstein condensation is characterized by a macro-
scopic occupation of a single quantum state, typically the
ground state of the system. This quantum degeneracy is
achieved at very low temperatures where the de Broglie
wavelength becomes comparable to the interparticle spacing.
In the second-quantized formalism, the effective Hamil-
tonian for a dilute Bose gas is

Ĥ = Ĥ0 + ĤI, �1�

where the single particle Hamiltonian is

Ĥ0 =� dx�̂†�x��−
�2

2m
�2 + Vext�x���̂�x� �2�

and the interaction Hamiltonian is

ĤI =
U

2
� dx�̂†�x��̂†�x��̂�x��̂�x� . �3�

Vext�x� is any external potential �e.g., from a trap� and the
two-body potential has been approximated via a contact po-
tential U=4��2a /m in terms of the s-wave scattering length

a, valid in the cold collision regime. The field operator �̂�x�
annihilates a boson at position x and obeys the usual equal
time commutation relations

��̂�x,t�,�̂�x�,t�� = ��̂†�x,t�,�̂†�x�,t�� = 0,

��̂�x,t�,�̂†�x�,t�� = ��x − x�� . �4�

The corresponding Heisenberg equation of motion for the
field operator is

i�
��̂�x,t�

�t
= ��̂,Ĥ� = �−

�2

2m
�2 + Vext + U�̂†�̂��̂ . �5�

Without further approximations, this equation cannot be
solved for a realistic system since the Hilbert space becomes
prohibitively large, even for a system of just a few atoms.

For the case of a weakly interacting Bose gas, and for low
temperatures T�Tcritical, a very useful approximation arises
from the fact almost all the atoms reside in a single quantum
state, so the system occupies only a fraction of the available
quantum states. In this case it is useful to write

�̂�x,t� = ��x,t� + ��̂�x,t� , �6�

where ��x , t�= ��̂�x , t�	 is a mean-field term �the condensate
wave function� and ��̂�x , t� is that part of the quantum field
associated with quantum and thermal fluctuations, with
���̂�x , t�	=0. This is known as the Bogoliubov approxima-
tion. This description itself may be treated with varying lev-
els of approximation. In the very simplest approximation
fluctuations are neglected altogether, and the resulting equa-
tion, known as the Gross-Pitaevskii equation �GPE�, is given
by

i�
���x,t�

�t
= �−

�2

2m
�2 + Vext�x� + U
��x,t�
2���x,t� . �7�

This equation provides a description of the condensate in
terms of a classical field.

B. Establishing the analogy

It is now well established that effective spacetimes
emerge from the microscopic theory of BECs in the long
wavelength limit �20,23�. In particular, the analogy between
curved spacetimes and BECs can be revealed starting from
the mean-field description of condensates, given by the GPE
�7�. The complex order parameter ��x , t� can be written in
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terms of a real density and phase �i.e., the Madelung repre-
sentation� as

��x,t� = �n�x,t�ei��x,t�. �8�

Substituting this into Eq. �7� and equating real and imaginary
parts leads to the pair of equations

�n

�t
+

�

m
� · �n � �� = 0 �9�

and

�
��

�t
−

�2

2m

��n
�n

+ Vext + Un +
�2

2m
����2 = 0. �10�

Linearizing about the fields n and � by setting

n → n0 + n̂1,

� → �0 + �̂1, �11�

Eqs. �9� and �10� then lead to

�n̂1

�t
=

�

m
�n̂1 � �0 + n0 � �̂1� , �12�

�
��̂1

�t
+ Ũn̂1 +

�2

m
� �0 · ��̂1 = 0, �13�

where we have only retained terms up to first order in n̂1 and

�̂1, and where we have defined the operator Ũ by

Ũn̂1 � �U −
�2

2m
D̃2�n̂1. �14�

Here the differential operator D̃2 has been introduced, which
to first order, takes the form

D̃2n̂1 = −
1

2
n0

−3/2��2�n0�n̂1 +
1

2�n0

�2
 n̂1

�n0
� . �15�

The operator D̃2 gives the first order correction from the
inclusion of the quantum pressure term. Identifying the back-
ground velocity for the irrotational field as

v = �/m � �0 �16�

and combining Eqs. �12� and �13� yields a second-order dif-
ferential equation for the perturbed phase, which can be writ-
ten in the compact form �20,23�

�	�f	
�
�̂1� = 0, �17�

where we have introduced the symmetric matrix

f	
�x,t� = � f00
] f0j

. . . . . .

f i0
] f ij � , �18�

with components �24�

f00 = − Ũ−1,

f0j = − Ũ−1v j ,

f i0 = − viŨ−1,

f ij =
n0

m
�ij − viŨ−1v j . �19�

Note we have used the standard nomenclature where the
Greek indices run from 0 to d and the Roman indices from 1
to d for d spatial dimensions.

In the acoustic �or hydrodynamic� approximation the

quantum pressure term is neglected. In this case D̃2 is set to
zero �17� can be written more simply as

1
�− g

�	��− gg	
�
�̂1� = 0, �20�

where g	
 is the effective covariant metric tensor �with de-
terminant g� given by

g	
�x,t� = 
n0

c
�2/�d−1��− �c2 − v2� ] − v j

. . . . . .

− vi ] �ij
� . �21�

We have used the fact that the speed of sound in a conden-
sate is given by

c2 = Un0/m . �22�

The equation for the phase fluctuations �20� is formally
analogous to the dynamics of a massless and minimally
coupled scalar field in a curved space-time �1�. It is worth
emphasizing that although the external potential Vext does not
explicitly appear here, the field equation still depends on Vext
implicitly, as the background geometry is determined by the
stationary solutions of the GPE �7�.

In the acoustic approximation all collective excitations
behave as sound waves with the usual linear “relativistic”
dispersion relation

� = ck; �23�

the quanta of excitations are thus phonons. An interesting
consequence of Bogoliubov theory in Bose-Einstein conden-
sates is that in general the excitation spectrum displays non-
linear dispersion �see Sec. IV�, being linear �i.e., phononic�
for low 
k
 and becoming quadratic �i.e., free-particle-like� at
large 
k
. When nonlinear dispersion is incorporated into ana-
log models of gravity it is equivalent to breaking Lorentz
invariance �23,25,26�. We will return to this point in Sec.
III B, and discuss the implications of this for the analog
model in a companion paper �17�.

Equation �20� is the massless Klein-Gordon equation. The
metric �21� has the signature ������ and so the effective
spacetime represents a Lorentzian geometry. It is interesting
to note that an effective “relativistic” wave equation �for ex-
citations in the condensate� arises from the equations of mo-
tion for a nonrelativistic fluid �27,28�.

The hydrodynamic �i.e., long wavelength� description of a
BEC is commonly believed to lead to an effective field
theory �EFT� for curved spacetime in the same sense that
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classical gravity is expected to emerge as the low-energy
EFT of a full theory of quantum gravity �29�. �The analog
gravity EFT arising from a BEC does not impose a strict
cutoff and so includes so-called trans-phononic physics
�26,30–33�—we return to this point in Sec. III B�. However,
it should be noted that the emergent spacetime is itself em-
bedded in a low-energy EFT for the Bose system; here the
cutoff is determined by the validity of replacing the two-
body interaction potential by an effective potential that is
characterized by the s-wave scattering length. In practice, the
cutoff is enforced by the use of a projector in mode space.

We further emphasize that the above analogy only holds
for massless spin-0 particles; in general, it is possible to
modify the formalism to include massive modes at the ex-
pense of dealing with a more complex configuration, e.g., a
two-component BEC �26,30–35�. Moreover, it is possible to
develop an analog model of gravity for spin-one fields, e.g.,
in dielectric media �36�.

C. FRW analog model

Time dependence can enter the metric tensor �21� in any
of the parameters n0, c, and v. We focus on the case where
the background flow is zero �v=0�, and the system is homo-
geneous with a density n0 that is constant through space.
With this choice of parameters the effective metric �21� be-
comes

g	
 = 
n0

c
�2/�d−1��− c2

] 0

. . . . . .

0 ] �ij
� . �24�

This represents a Friedmann-Robertson-Walker spacetime
�8,9�. �Technically, a k=0 spatially flat FRW spacetime.�
Such spacetime geometries are conformally flat, and at any
particular time the spatial geometry is simply that of Euclid-
ean three-space. The time dependence is contained entirely
in the speed of sound given by

c�t�2 =
U�t�n0

m
=

4��2

m2 n0a�t� , �25�

with atoms of mass m, scattering length a, and number den-
sity n0. We introduce the dimensionless scaling function b�t�
so that the interaction strength �or, equivalently, the scatter-
ing length� has the time dependence

U�t� � U0b�t� , �26�

where U0=U�t0� at an initial time t0; therefore we take
b�t0�=1. From Eq. �25� the time dependence of the speed of
sound is thus

c�t� = c0b�t�1/2. �27�

In practice a variation in the interaction strength is possible
by using a Feshbach resonance �8,37,38�. If b�t� is decreas-
ing with time we have an expanding universe model,
whereas if b�t� increases with time we have a contracting
universe model. The line element for the FRW universe we
have described is given by

dseff
2 = 
0

2�− c0
2b�t��dt2 + b�t��−1dx2� , �28�

where we have introduced the conformal factor


0
2�n0,c0,d� = 
n0

c0
�2/�d−1�

, �29�

which is independent of space and time, as well as the
dimension-dependent exponent

� =
d − 2

d − 1
. �30�

It is useful to introduce X the expansion of the universe
between two times t0 and tf in the following way:

X = b�tf��−1. �31�

Please note that one can always without loss of generality
choose b�t0�=1. In d=2 spatial dimensions we get

X = b�tf�−1, �32�

as the overall expansion of the universe between t0 and tf.
In what respect do we have an expanding universe, given

that the condensate is contained in a physically fixed volume
V? A decrease in the scattering length corresponds to a de-
crease in the the speed of sound propagating in the conden-
sate; therefore any acoustic excitations will propagate with
decreasing speed in the condensate as time passes. To an
observer at rest in the effective spacetime, a decrease of the
speed of sound is thus indistinguishable to an isotropic ex-
pansion of the spatial dimensions. In this sense, Eq. �24�
corresponds to the notion of a spacetime undergoing an ef-
fective expansion.

It is not straightforward to define either an apparent or
event horizon in the model considered here as the system is
homogeneous, and the background velocity is therefore the
same �i.e., zero� everywhere. This is further complicated by
the fact that the causal structure of the effective spacetime
should be determined by the maximum signal velocity �i.e.,
group velocity�, which is effectively infinite here owing to
the super-phononic modes in a BEC. Alternatively, analog
models where the background velocity depends on the radial
position �e.g., when the trapping potential is switched off and
the condensate is free to expand� have been studied in Refs.
�3–7�. In the present situation, where the scale factor aFRW�t�
or equivalently b�t� contains all the geometric structure for
the spacetime, it is necessary to perform the usual analysis in
terms of cosmological horizons to determine the overall
causal structure of the spacetime �39�.

D. Two-dimensional model

To facilitate the numerical calculations required by the
classical field simulations that we present in Sec. VIII, we
continue with d=2 spatial dimensions. The reduced mode
space for d=2 greatly decreases the computation time, but
still leads to a satisfactory description of the system. In par-
ticular, we expect the extension of the numerical simulations
to d=3 to lead to qualitatively similar results �40�. Moreover,
while it has been shown �6,7� that for d=2, a condensate
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undergoing free expansion leads to a scalar field equation
that does not depend on the scaling factor in comoving co-
ordinates �41�—so that in this case there can be no particle
production—as we will see, the present model for a
�2+1�-dimensional FRW universe leads to a scalar field
equation that does allow particle production.

For 2+1 spacetime dimensions, ��2�=0 and the line-
element simplifies to

dseff
2 = 
n0

c0
�2

�− c0
2dt2 + b�t�−1dx2� . �33�

A further time transformation is not required as laboratory
time and proper time �for a comoving observer� are of the
same form. Although Eq. �33� includes a time- and space-
independent conformal factor, this does not affect the dy-
namics of the field �in this case the mode functions need to
be normalized for consistency with the Bogoliubov theory�.
The scaling factor aFRW�t� for a FRW universe that is famil-
iar from cosmology is related to b�t� by

aFRW�t� = b�t�−1/2 �34�

for d=2. �We always explicitly specify the FRW subscript
for the cosmological scale factor so that this quantity is not
confused with the s-wave scattering length a.�

The reduction of the model to two dimensions requires a
modification to the nonlinearity that appears in the GPE �7�,
and therefore also the resulting field equation �17�. To see
this, we assume the transverse z dimension is tightly con-
fined with the trap lengths satisfying Lz�Lx, Ly, and further
that the Lz�� for the transverse dimension where � is the
healing length of the condensate. The scattering is still deter-
mined by the three-dimensional scattering length so that this
is called a quasi-two-dimensional geometry. However, the
system remains in the ground state of the transverse dimen-
sion because the energy required for transverse excitations is
much larger than for longitudinal excitations. The wave func-
tion is then separable as ��x , t�=��x ,y , t���z�. Assuming the
condensate is homogeneous in the z direction, the GPE can
be rewritten as

i�
���x,y,t�

�t
= 
−

�2

2m
�2 + Vext���x,y,t�

+ U2D
��x,y,t�
2��x,y,t� , �35�

where the effective nonlinearity is U2D=U /Lz. This does not
affect the form of the resulting calculations for particle pro-
duction, but should be noted when we determine suitable
parameters for our simulations in Sec. VII F. �Note that be-
cause we are changing the atomic interactions by several
orders of magnitude during the proposed experiment, this
will also affect the transverse trapping.�

III. FIELD QUANTIZATION
AND PARTICLE PRODUCTION

The field �̂1�t� is quantized using the plane wave mode
expansion

�̂1�x,t� =
1

�V
�
k

�b̂keik·x�k�t� + b̂k
†e−ik·x�k

*�t�� , �36�

where b̂k and b̂k
† are the annihilation and creation operators,

respectively, for the quasiparticle modes.
In flat �Minkowski� spacetime we can associate the posi-

tive and negative frequency solutions of Eq. �20� with anni-
hilation and creation operators, respectively. In curved space-
time, this association is not always possible as different
observers experience different vacua; in the language of gen-
eral relativity, the spacetime need not have a �globally de-
fined� timelike Killing vector field so that the positive fre-
quency solution is not necessarily unique and typically is not
an eigenfunction of �t. A consequence of this is that the

“natural” choice of a Fock vacuum according to b̂
0	=0 de-
pends in general on the choice of coordinates; that is, the
measurement of particle content in curved spacetime is said
to be “observer dependent.”

The calculation of particle production follows the stan-
dard methodology �1,2�. We define “in” and “out” regions,
respectively, as asymptotically flat regions with t→−� and
t→ +�. �While the existence of asymptotically flat regions
cannot be assumed for cosmological models, it is certainly
possible to emulate this scenario in BEC experiments.� We
can write a mode expansion �36� for the in and out regions in
terms of mode functions �k

in or �k
out, respectively. Because

both sets of modes are a basis set for the field, they are
related by the Bogoliubov transformation

�k
out = �k�k

in + �−k�−k
in*. �37�

Note the spacetime has translational invariance as a symme-
try so the field �36� can be expanded in the same set of plane
wave modes eik·x for both the in and out regions, and there-
fore �−k=�k also. By convention the mode functions are
normalized according to the Klein-Gordon inner product. In
momentum space this takes the form

− iW��k,�k
*� = 1, �38�

where W�f1 , f2�= f1��t f2�− ��t f1�f2 is the Wronskian of two
functions f1 and f2.

For each asymptotic region the vacuum state is defined by
the requirement

bk
in
0in	 = 0,

bk
out
0out	 = 0. �39�

The in and out mode operators are also related by

bk
out = �kbk

in + �−kb−k
†in. �40�

The number of particles created is then given by the quantity

Nk
out = �0in
bk

†outbk
out
0in	 = 
�k
2. �41�

The standard procedure to calculate �k involves solving the
field equation �17� for the in and out regions by using Eq.
�37� with the appropriate boundary conditions.

It should be stressed that here particle production refers to
the production of �massless� quasiparticle excitations in the
Bogoliubov basis, that approximately diagonalizes the many
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body Hamiltonian �1� for the Bose gas. As Eq. �40� couples
modes of momenta k and −k this process is often referred to
as pair production and is associated with the formation of
squeezed states �42–46�.

1. Choosing a Fock vacuum

When the in and out regions of the expansion are not
asymptotically flat, a vacuum state cannot be unambiguously
defined for either case. However, clearly the procedure to
calculate particle production outlined above requires a choice
of Fock vacuum and, moreover, that choice should lead to
physically reasonable results. We therefore mention two
choices that have been developed to deal with this situation
�although there are many more�.

The instantaneous Minkowski vacuum. This is the state
that corresponds to the instantaneous diagonalization of the
Hamiltonian at a given time �and is therefore also the state
that minimizes the energy�. �This procedure is also known as
Hamiltonian diagonalization.� This choice may be problem-
atic in some cases as it can lead to situations of infinite
particle production even though the expansion may be
smooth and finite �2�.

The adiabatic vacuum. This approximation can be used
for modes that experience a sufficiently slow expansion and
is formulated in terms of the WKB approximation �1,47�.
However, the adiabaticity requirement means it has limited
applicability. In Sec. V C we calculate particle production for
the case of a de Sitter expansion, for which there are no static
regions—in this case we therefore utilize the instantaneous
Minkowski vacuum to calculate the Bogoliubov coefficients
at a given time during the expansion. Once the expansion has
stopped the final Bogoliubov coefficients unambiguously
correspond to physical particle production. The problem of
infinite particle production does not occur in this case, and as
we shall see from the classical field simulation results in Sec.
VIII, particle production is further suppressed for short
wavelength modes because of super-phononic dispersion.

2. Commutation relations

In addition to identifying an effective metric required to
make the analogy with quantum field theory in curved space-
time, another prerequisite is that in quantizing the field the
operators should be annihilation and creation operators in the
usual sense. That is, they should obey the correct commuta-
tion relations so that we can define quanta of the field in the
Fock basis. This has indeed shown to be the case for the
linear excitations of a BEC �48,49�, and also follows from
the discussion in Sec. IV A.

3. Relevant scales

There are two relevant scales for particle production in a
FRW-type analog model.

�1� Hubble parameter. Following Ref. �8� for the metric
�33� the Hubble parameter is given, for d=2, in terms of the
scaling function b�t� in laboratory time by

H �
ȧFRW

aFRW
= −

1

2

ḃ

b
. �42�

This quantity, which is time dependent in general, corre-
sponds to the rate of expansion for the universe. If H��k for

a mode frequency labeled by k the dynamics are Hubble
dominated and we expect the mode to be to be nonoscillat-
ing, whereas H��k implies the mode is oscillating and in
the adiabatic regime. In the latter case this is what cosmolo-
gists refer to as a parametrically excited mode. Clearly a
large value for H is favorable to particle production—
however, H cannot be made arbitrarily large as the approxi-
mations that lead to the effective field theory would then be
violated �8,50�.

�2� Healing length. In a BEC, the healing length is a dis-
tance over which localized perturbations in the condensate
tend to smooth out, and is given by

� =
�

�2mc
= �0b�t�−1/2. �43�

That is, if we define the crossover from phonon to free-
particle behavior for the Bogoliubov spectrum �62� as
�2kc

2 /2m�Un0 then kc=1/�. Modes for which k�1/� cor-
respond to collective excitations of the condensate �phonons�
and couple to the effective time-dependent curved spacetime
whereas modes with k�1/� are particlelike and are rela-
tively unaffected by the emergent spacetime geometry. Alter-
natively stated, the spacetime appears locally flat and time
independent to modes with sufficiently short wavelengths.

Particle production into a mode k then proceeds as fol-
lows. During expansion, while H��k and k�1/�, the mode
evolves nontrivially and particle production will certainly oc-
cur. As the expansion proceeds, particle production can
“switch off” for two reasons: Either the healing length in-
creases until the mode becomes particlelike and particle pro-
duction slows, ceasing altogether when k�1/� or, alterna-
tively, if the expansion slows, then after some time H��k so
that the field begins to oscillate relatively freely, and addi-
tional particle production also ceases. In either case, the
mode no longer evolves, and the occupation number of the
mode becomes constant.

In general, it can be difficult or impossible to analytically
solve the field equation �17� for the mode functions. More-
over, if the in or out region is not flat, there is no preferred
choice for the initial or final vacuum state. However, when
the field evolution is sufficiently slow—i.e., adiabatic—the
WKB approximation can be used to calculate particle pro-
duction �see Ref. �47�, and references therein�. It is worth
noting that this approach leads to a Planckian spectrum in the
lowest order approximation �1�.

4. A note on freezing

For our analog model of an expanding FRW universe, in
the acoustic approximation we have �k�t�=c�t�k, which de-
creases as the expansion proceeds �this is equivalent to the
usual notion of cosmological redshifting of modes that oc-
curs during inflation�. This means that depending on the form
of the expansion, a mode that is initially oscillating
�H��k� may enter a Hubble-dominated era �H��k� after a
sufficiently long expansion—this is the mechanism for freez-
ing of modes that is familiar from inflationary cosmology.
The term “freezing” does not necessarily imply that particle
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production ceases, but rather, that the mode no longer oscil-
lates.

The situation is quite different when nonlinear super-
phononic dispersion is included—in this case, the healing
length � also decreases for increasing time, which means that
a mode that was initially phononic will crossover into the
adiabatic free-particle regime for a sufficiently long expan-
sion. In this case therefore, the notion of freezing can only
occur in a transient regime that depends on the mode wave
vector k and the form of the scaling function b�t� �and there-
fore on the Hubble parameter also�. A more detailed discus-
sion can be found in Ref. �17�.

A. Acoustic approximation

In the acoustic approximation, the correspondence be-
tween the massless minimally coupled scalar field equation
for a FRW universe and the equations of motion for linear-
ized fluctuations in the BEC is exact. The dynamics of the
low momentum modes are expected to fall into this regime,
and therefore it is of interest to examine this case first.

1. Conformal time

We define a coordinate transformation from laboratory
time t to conformal time � by

d� = �b�t�dt . �44�

The line-element �33� then reads

dseff
2 = 
0

2b���−1�− c0
2d�2 + dx2� . �45�

In �2+1� dimensions the equation of motion for the field
obtained from Eq. �17� in conformal time becomes

��
2 �̂1 −

1

2

ḃ���
b���

���̂1 − c0
2�2�̂1 = 0. �46�

Note that the coefficient of ���̂1 is the Hubble parameter
given by Eq. �42�. The calculation of particle production re-
quires the solution of this field equation for the mode func-
tions ����. This task is assisted by reducing the field equa-
tion to standard form where the first order derivative of the
field operator does not appear; this can be achieved, for in-
stance, by introducing an auxiliary field of the form �̂���
=b����̂, showing mathematically equivalent dynamics to �̂.
Alternatively we can consider the transformation to auxiliary
time as follows.

2. Auxiliary time

Defining the auxiliary factor by

� = 
0
2/3b�t�−1/3 �47�

and the auxiliary time by

t̃ =� c0b�t�

0

dt , �48�

the line-element �33� transforms as

dseff
2 = − �6dt̃ 2 + �3dx2. �49�

For a massless scalar field, the corresponding field equation
in �2+1� dimensions is

�t̃
2
�̂1 − �3�2�̂i = 0. �50�

Using the field mode expansion given by Eq. �36� we then
get a time-dependent harmonic oscillator for each mode

�t̃
2
�k + �̃k

2�t̃��k = 0, �51�

where �̃k
2�t̃�=�3k2=
0

2b�t̃�−1k2 is the oscillator frequency.
While the auxiliary time approach is useful in the acoustic
approximation, it does not generally lead to the simple form
�51� when the quantum pressure term is included �see Sec.
III B�.

B. Beyond the acoustic approximation

The description from the previous section was given
within the acoustic approximation, valid only for long wave-
length modes, whereby the quantum pressure term is omitted
from the field equation �17� and the resulting equations for
the FRW analog model given by Eq. �46� or �51�. We can
extend the analysis to higher momentum modes by including
the quantum pressure term; this leads to a super-phononic-
type dispersion relation for high frequency modes and an
appropriately modified field equation as we presently dis-
cuss. Moreover, this description corresponds to the presence
of “trans-Planckian–like” modes, and leads to the idea of
Lorentz violation. Such modified dispersion relations have
similarly been incorporated into some studies of inflationary
cosmology—we discuss this here briefly, but dedicate our
companion paper �17� to exploring this subject. In Sec. VI
we will consider two specific forms of the scaling function in
this regime: the limiting case of a sudden transition �Sec.
VI A� and a cyclic universe model �Sec. VI B�, both which
include the effect of quantum pressure.

1. Nonlinear dispersion

We include the quantum pressure term by using Eq. �77�
so that the field equation �17� in momentum space becomes

�t
2�k −

1

2

c0
2k2

�k�t�2�tb�t��t�k + �k�t�2�k = 0, �52�

where we have now defined

�k�t�2 =
k2

2m

�2k2

2m
+ 2U�t�n0� . �53�

It should come as no surprise that we have recovered the
Bogoliubov dispersion relation for a weakly interacting Bose
gas �see Sec. IV below�. In particular, we see that if we set
b�t�=const. then the field equation describes the dynamics of
each Bogoliubov mode for a time-independent Hamiltonian.

In general, it is difficult to solve Eq. �52� for the mode
functions, and to hence calculate particle production. This
situation often persists even though it may be possible to
reduce Eq. �52� to standard form where the first order deriva-
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tive term �t�k does not appear. We can, however, make a
qualitative statement about particle production for high mo-
menta modes by considering the crossover from phononic to
free-particle modes as determined by the healing length �43�.
For modes that satisfy k�kc, the field equation takes the
approximate form

�t
2�k + 
 �k

0

�
�2

�k = 0, �54�

where

�k
0 =

�2k2

2m
�55�

represents the single particle energy for a non-interacting
gas. That is, the time dependence from b�t� above is largely
suppressed, and each mode with k�kc evolves trivially as a
time-independent harmonic oscillator, remaining in its initial
vacuum state. Therefore these modes experience no particle
production.

2. Lorentz violation

Planck-scale Lorentz violation is a feature of some theo-
ries of quantum gravity that can be modeled by the presence
of a modified dispersion relation at the Planck-scale
�26,30–33,51�. In this sense, for a BEC the healing length �
provides the analog of the Planck-scale, characterizing the
crossover from phononic �k�1/�� to free-particle-like �k
�1/�� modes. Specifically, the field equation �52� is not Lor-
entz invariant because of the nonlinear super-phononic dis-
persion of the modes �53� at large momenta �this is clearly
evident from Eq. �54�, where the second term varies as �k4�.
On the other hand, for small momenta �i.e., in the acoustic
approximation� the dispersion relation is linear in k and the
field equation reduces to the Lorentz invariant form �46�. It
should be stressed however, that the effective quantum field
theory for the BEC is still valid as long as atomic interac-
tions can be characterized by the s-wave scattering length,
which is true in general for some cutoff in wave vector
kcutoff�1/�.

We note that modified dispersion relations have some-
times been used to study the “trans-Planckian” problem in
inflationary cosmology �52–55�—the results there showed
that certain modifications to the dispersion relation could
lead to significant deviations for the density fluctuation spec-
trum when compared to the unmodified dispersion relation
�i.e., the usual model of inflation�.

IV. CONNECTION WITH BOGOLIUBOV THEORY

Thus far, we have derived a field equation for a scalar
field propagating in an effective spacetime. The quanta of
this scalar field must correspond to the linearized quantized
excitations �i.e., phonons� of the quantum field for the theory
to be consistent. Therefore, at this point, to make this con-
nection explicit, it is worth reviewing the theory of quantum
excitations in BECs, which is well described by Bogoli-
ubov’s theory of excitations for a weakly interacting system.

A. Bogoliubov theory

While the GPE has been extremely successful for describ-
ing mean-field effects �i.e., classical dynamics�, it neglects
quantum and thermal fluctuations. To first order, we can in-
clude quantum fluctuations in this description by considering
the theory of elementary excitations for a weakly interacting
Bose gas, first formulated by Bogoliubov for the homoge-
neous case �56�. The standard procedure is to first expand the
field operator in a plane-wave basis

�̂�x,t� =
1

�V
�
k

eik·xâk�t� . �56�

If the number of atoms in the condensate is large �i.e., the
field is highly condensed� then replacing â0, â0

†→�N0 and
retaining terms of at least order N0, the Hamiltonian �1� can
be approximately diagonalized using the Bogoliubov trans-
formation

âk = ukb̂k + vkb̂−k
† ,

â−k
† = ukb̂−k

† + vkb̂k, �57�

when uk and vk are chosen so that the new operators b̂k and

b̂k
† satisfy the commutation relations for Bose field operators

uk
2 − vk

2 = 1. �58�

This leads to the result that �57,58�

uk =
1

�1 − Ak
2
, vk =

Ak

�1 − Ak
2

, �59�

with

Ak =
1

Un0
�− ��k

0 + Un0� + ��k
0��k

0 + 2Un0�� , �60�

where n0=N0 /V is the density. The resulting Hamiltonian is

Ĥ � ĤBog = E0 + �
k�0

�kb̂k
†b̂k, �61�

with a constant E0 and where the quasiparticle excitations
have the energy spectrum

�k = ��k
0��k

0 + 2Un0� , �62�

in terms of the single particle energy for a noninteracting
gas, see Eq. �55�. In the Bogoliubov approximation, explic-
itly pulling out a phase factor depending on the chemical
potential 	=Un0, the Bose field operator can conveniently
be expanded as

�̂�x,t� = e−i	t/���n0 + ��̂�x,t�� , �63�

where

��̂�x,t� = �
k

�Uk�x,t�b̂k�0� + Vk
*�x,t�b̂k

†�0�� . �64�

Note that the time dependence of each mode is fully con-
tained in the mode functions Uk�x , t� and Vk�x , t�. When the
Hamiltonian is time independent �i.e., U constant� the time
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dependence is purely oscillatory and the number of quasipar-

ticles in each mode �b̂k
†b̂k	 is a constant of the motion.

Alternatively when we linearize the density-phase repre-
sentation of the field operator we find

��̂�x,t� � �n0
 n̂1

2n0
+ i�̂1� . �65�

If n̂1 and �̂1 are Hermitian we can write

n̂1 = �n0���̂ + ��̂†� , �66�

�̂1 =
1

2�n0i
���̂ − ��̂†� . �67�

The commutation relations for the field operator �4� can be
used to show that the density and phase fluctuations satisfy
the commutation relation

�n̂1�x�, �̂1�x��� = i��x − x�� . �68�

Using the mode expansion �36� we expand the field �̂1 in
Fourier �plane-wave� modes as

�̂1 =
1

�V
�
k

�eik·x�kb̂k�t� + e−ik·x�k
*b̂k

†�t�� �69�

and similarly for n̂1

n̂1 =
1

�V
�
k

�eik·xnkb̂k�t� + e−ik·xnk
*b̂k

†�t�� . �70�

The commutation relation �68� thus reduces to

nk�k
* − nk

*�k = i . �71�

We can expand ��̂, n̂1, and �̂1 in the same set of plane
wave modes, using the mode expansions �69� and �70� and

Uk�x,t� = uk�t�eik·x/�V �72�

and

Vk�x,t� = vk�t�eik·x/�V , �73�

so that the Fourier components are

uk�t� =
1

2�n0

nk�t� + i�n0�k�t� , �74�

vk�t� =
1

2�n0

nk�t� − i�n0�k�t� . �75�

Clearly these mode functions are consistent with the require-
ment that the Bogoliubov modes are normalized by 
uk
2
− 
vk
2=1. We note that these are general expressions, which
are valid within the linearized theory of excitations regard-
less of what form the mode functions take. That is, they are
valid for arbitrary forms of the scaling function b�t� so long
as the mode functions nk�t� and �k�t� can be found.

B. Bogoliubov modes—Minkowski spacetime

For the homogeneous model presented here the differen-
tial term �15�, accounting for the quantum pressure term,
takes the simple form

D̃2n̂1 =
1

2n0
�2n̂1. �76�

Rearranging Eq. �13� and extracting the Fourier component
then gives

nk = −
�

U
� �k

0

2Un0
+ 1�−1

�t�k. �77�

Using Eq. �77� with the mode expansions �69� and �70�, the
commutation relation �68� is satisfied when the mode func-
tions take the form

�k =
1

2�n0

��k

�k
0e−i�kt,

nk = i�n0��k
0

�k
e−i�kt. �78�

These are the positive-frequency solutions for a time-
independent Hamiltonian—that is, when when U is
constant—and correspond to an effective spacetime geom-
etry that is Minkowski flat. The mode functions �74� and �75�
can therefore be written


uk
 =
1

2
���k

�k
0 +��k

0

�k
� , �79�


vk
 =
1

2
���k

�k
0 −��k

0

�k
� . �80�

C. Acoustic modes—Minkowski spacetime

To facilitate the computation of particle production we
again consider the acoustic approximation, which is valid for
low momenta when �2k2 /2m�Un0 so that the quantum
pressure term can be neglected. In this case, Eq. �77� reduces
to

nk = −
�

U
�t�k. �81�

The mode functions are then given by

�k =� U

2��k
e−i�kt, �82�

nk = i���k

2U
e−i�kt. �83�

Using the general expressions �74� and �75� the mode func-
tions are given by


uk
 =
1

2
�� ��k

2Un0
+�2Un0

��k
� , �84�
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vk
 =
1

2
�� ��k

2Un0
−�2Un0

��k
� . �85�

D. Quasiparticle production

The concept of particle production in our analog model
can be made explicit in terms of the Bogoliubov theory out-
lined above. To calculate the quasiparticle number in each
mode after a finite expansion of duration t it is necessary to
project onto the Bogoliubov basis that instantaneously diago-
nalizes the many-body Bose Hamiltonian at t. �That is, we
take the instantaneous Minkowski vacuum as the zero par-
ticle state.� In what follows we take the initial condition as

the quasiparticle vacuum at t=0 so that b̂k�0�
0	=0 and
therefore Nk�0�=0. Here the mode functions are determined
by the solutions to the time-independent case with U�t�
=U0, which yields the mode functions for a Minkowski
spacetime. With this premise, we now proceed to calculate
the particle production for each mode for a given expansion.
The Bogoliubov theory of a weakly interacting Bose gas
predicts a nonzero depletion even at zero temperature; the
real particle annihilation operator is given by the time-
dependent canonical transformation

âk�t� = uk
exp�t�b̂k�0� + vk

exp*�t�b̂−k
† �0� , �86�

where uk
exp and vk

exp are solutions for the mode functions
during the expansion—these must coincide with Minkowski
mode functions at t=0 with U�t�=U0. The projection into the
Bogoliubov basis at t is

b̂k�t� = uk
out*�t�âk�t� − vk

out*�t�â−k
† �t� , �87�

where uk
out and uk

out are given using Eqs. �74� and �75� and the
Minkowski mode solutions �82� and �83� with U�t�=U0 /X in
terms of the expansion X. The particle production in each
mode at time t is then given by

Nk�t� = �b̂k
†�t�b̂k�t�	

= 
uk
out*�t�vk

exp*�t� − vk
out*�t�uk

exp*�t�
2

= �
uk
out�t�
2 + 
vk

out�t�
2�� 1

4n0

nk

exp�t�
2 + n0
�k
exp�t�
2�

− 2
uk
out�t�

vk

out�t�
� 1

4n0

nk

exp�t�
2 − n0
�k
exp�t�
2� −

1

2
,

�88�

where we have used Eqs. �74� and �75�. Evidently, the cen-
tral task is to solve the field equation �20� for the mode
functions uk

exp and vk
exp for a given expansion b�t�. This pro-

cedure will be applied in Sec. V C to calculate the quasipar-
ticle production for the case of de Sitter expansion �in the
acoustic approximation�, and in Sec. VI A for the case of
sudden expansion �with high-frequency dispersion�.

V. QUASIPARTICLE PRODUCTION IN ACOUSTIC
APPROXIMATION

We presently provide analytic solutions for quasiparticle
production in the acoustic approximation for three different

expansion scenarios: �i� sudden transition, �ii� tanh expan-
sion, and �iii� de Sitter expansion. Scenarios �i� and �ii� both
have asymptotically flat in and out regions, so the calculation
of particle production follows the standard procedure from
Sec. III. Scenario �iii�, however, does not have asymptoti-
cally flat in and out regions for a finite time expansion, and
therefore we must resort to the Bogoliubov theory of the
previous section to calculate the particle production.

A. Sudden transition (2+1 dimensions)

A simple example of particle production is given by the
limiting case of a sudden expansion. Here, the interaction is
instantaneously switched from U to U /X at some time t̃0

which we take as t̃0=0 for convenience. The scaling function
is given by

b�t̃� = 1 − 
1 −
1

X
�H�t̃� , �89�

where H is the Heaviside step function. The case of particle
production for a sudden transition has been previously ex-
plored by Jacobson for a parametric oscillator �44�.

Using the normalization condition �38� the positive fre-
quency solutions to Eq. �51� are given by

�k
in/out =

1

�2�̃k
in/out

e−i�̃k
in/outt̃. �90�

It is straightforward to calculate the Bogoliubov coefficients
by applying the boundary conditions from Eq. �37� and its
first derivative for the Minkowski in and out modes at t0
=0. We find

�k =
1

2

� �̃k

in

�̃k
out +��̃k

out

�̃k
in � �91�

and

�k =
1

2

��̃k

out

�̃k
in −� �̃k

in

�̃k
out� , �92�

so that

Nk
out = 
�k
2 =

1

4

� �̃k

in

�̃k
out −��̃k

out

�̃k
in �2

. �93�

Further noting for an expansion X that �̃k
out / �̃k

in=1/�X, the
particle production is then

Nk
out =

1

4
�X1/4 − X−1/4�2. �94�

This yields, for example: Nk
out�0.4 for X=10; Nk

out�2 for
X=100; and Nk

out�11 for X=2000.
Equation �94� provides an upper limit for the particle pro-

duction in each mode �59�. This quantity does not depend on
the mode number—a feature that reflects the fact that all
modes experience a sudden change in the effective spacetime
geometry. We shall see in Sec. III B that including the quan-
tum pressure term �i.e., nonlinear dispersion� in our formu-
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lation leads to suppressed particle production for increasing

k
.

It should be noted that the sudden transition corresponds
to a delta function for the Hubble parameter H at t̃=0; this is
physically unfeasible as any change in the s-wave scattering
length via a Feshbach resonance would require a finite time
in practice; moreover, a very rapid change in the scattering
length is not possible since the low momentum approxima-
tion for the T-matrix scattering potential is no longer valid
�8,50�. In spite of this, the sudden transition still provides a
useful prediction for comparison with the results of the clas-
sical field simulations.

B. tanh expansion „2+1 dimensions)

One nontrivial form of the metric tensor for which the
particle production can be calculated analytically is the case
of a tanh function expansion, with asymptotically flat in and
out regions. This was first considered by Bernard and Dun-
can �60�, and Birrell and Davies �1� for a massive scalar
field, and then by Barceló et al. �8� for a massless scalar
field. Similarly to Ref. �8� we consider the case of tanh ex-
pansion, but for 2+1 dimensions.

In particular, Eq. �51� can be solved exactly when the
auxiliary factor � has the time dependence

�3�t̃� =
�i

3 + � f
3

2
+

� f
3 − �i

3

2
tanh
 t̃

t̃s
� �95�

for some time constant t̃s that determines the rate of expan-
sion. Noting that

�3 = 
0
2 1

b�t̃�
, �96�

the scaling function with respect to auxiliary time is

b�t̃� = 
0
2��0

3 + � f
3

2
+

� f
3 − �0

3

2
tanh
 t̃

t̃s
��−1

= 2�1 + X + �X − 1�tanh
 t̃

t̃s
��−1

�97�

for an expansion X; we have implicitly assumed b�t̃i�=1. We
can also write

t =

0

c0
� 1

b�t̃�
dt̃ =


0

2c0
��1 + X�t̃ + �X − 1�t̃s ln�cosh
 t̃

t̃s
��� .

�98�

This is not easy to invert but b�t̃� and t�t̃� define a parametric
curve for b�t�—this relation is required for implementing a
tanh expansion in laboratory time simulations. With the con-
formal factor given by �95� it is possible to calculate the
particle production in each mode exactly. Using the result in
Ref. �8� we get

Nk
out =

sinh2��kt̃s
0��X − 1�/2�

sinh��kt̃s
0�sinh��kt̃s
0
�X�

. �99�

Note, in the limit t̃s→0 this reduces to the sudden transition
result �93� as expected.

C. de Sitter universe (2+1 dimensions)

The case of the de Sitter universe is particularly relevant
in cosmology. The inflationary model of the early universe is
thought to include a de Sitter phase of rapid expansion which
ultimately accounts for the inhomogeneities observed in the
present universe �61�. The de Sitter spacetime is a solution to
the Einstein’s field equations with a positive cosmological
constant, and has a high degree of symmetry. It has been
shown that an observer moving in a timelike geodesic will
measure a thermal spectrum—this particle production from
cosmological horizons being related to the Hawking and Un-
ruh effect �for event and particle horizons, respectively�. This
result was first derived by Gibbons and Hawking using the
path integral formalism �62� and has been subsequently veri-
fied by applying the method of Bogoliubov mode mixing
�63�.

1. Scaling function

To map the FRW analog model to a de Sitter spacetime,
the scaling function for the scattering length in laboratory
time �which is equivalent to proper time for two dimensions�
is of the form

b�t� = e−t/ts �100�

with the scaling unit ts that determines the rate of expansion.
In this case the Hubble parameter �42� is given by H
=1/2ts.

We further consider the transformation to so-called con-
formal time �denoted �� by d�=�b�t�dt. In this case we get

� = − 2tse
−t/2ts, t � 0. �101�

The following limits are evident: �i� �=−2ts for t=0 and �ii�
�→0 as t→ +�. We also have

b��� = 
 �

2ts
�2

, − 2ts � � � 0. �102�

2. Mode solutions

The field equation �46� then yields the second-order dif-
ferential equation for the mode functions

�2�k

��2 −
1

�

��k

��
+ c0

2k2�k = 0. �103�

This is a Bessel equation and the solution �Ref. �64� Eq.
�9.1.52�� is given in terms of Bessel functions of the first and
second kind �65�

�k = Ak�J1�− �k�0��� + Bk�Y1�− �k�0��� �104�

for some undetermined constants Ak and Bk; we have defined
the frequency �k�0�=c0k at t=0. Using Eq. �81� here and Eq.
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�9.1.27� of Ref. �64� it can be shown that the density fluc-
tuation mode function is given by

nk = − 2ts
��k�0�

U0
�AkJ0�− �k�0��� + BkY0�− �k�0���� .

�105�

With no loss of generality we choose b�t�=1 for
t�0—i.e., for ��−2ts. Thus t=0 �or �=−2ts� corresponds
to the end of the in region, whereas t� tf corresponds to the
out region �see Fig. 1�. To determine the particle production
it will be necessary to calculate the Bogoliubov coefficients
�k and �k between these two regions.

Using Ref. �64�, Eq. �9.1.16� it can be shown by matching
the Minkowski and de Sitter modes at t=0 that

Ak =
�

2
�U0�k�0�

2�
�iY1�2ts�k�0�� − Y0�2ts�k�0��� ,

�106�

Bk = −
�

2
�U0�k�0�

2�
�iJ1�2ts�k�0�� − J0�2ts�k�0��� .

�107�

It can easily be verified using Eq. �9.1.16� of Ref. �64� that
these mode solutions satisfy the normalization condition
�71�.

3. Particle production

The lack of a �globally� timelike Killing vector for the de
Sitter universe means it is not possible to unambiguously
define a Fock vacuum for all times. Additionally, the particle
number of each mode after some expansion is observer de-

pendent. However, for our analog model, we circumvent this
complication by associating an instantaneous Minkowski
vacuum at each point in time—that is, we project into the
quasiparticle basis that diagonalizes the many body Hamil-
tonian to second order. This prescription we now follow has
been outlined in Sec. IV D. Figure 1 shows the scaling factor
for the relevant temporal regions.

For convenience we define

Rk�t� � − �k�0�� = 2ts�k�0�e−t/2ts �108�

as well as

 0 = �2U�0�n0/��k�0� . �109�

Using the mode solutions �104� and �105� we then have

1

4n0

nk

dS�t�
2 =
1

 0
2

��ts�k�0��2

4
„�Y1

2�Rk�0��

+ Y0
2�Rk�0���J0

2�Rk�t�� + �J1
2�Rk�0��

+ J0
2�Rk�0���Y0

2�Rk�t�� − 2�J1�Rk�0��Y1�Rk�0��

+ J0�Rk�0��Y0�Rk�0���J0�Rk�t��Y0�Rk�t��…
�110�

and

n0
�k
dS�t�
2 =  0

2 ��ts�k�0��2

4X
„�Y1

2�Rk�0�� + Y0
2�Rk�0���J1

2�Rk�t��

+ �J1
2�Rk�0�� + J0

2�Rk�0���Y1
2�Rk�t��

− 2�J1�Rk�0��Y1�Rk�0��

+ J0�Rk�0��Y0�Rk�0���J1�Rk�t��Y1�Rk�t��… . �111�

We can therefore use Eq. �88� to calculate the particle pro-
duction explicitly—for example, Fig. 2 shows the particle
production for a fixed expansion X=2000 with several dif-
ferent rates of expansion ts.

b(t)

tf

Region II Region IIIRegion I

t0

1
X

1

FIG. 1. Schematic of de Sitter expansion for the FRW analog
model; for region I �t� t0�, there is no expansion and the mode
solutions are those of a Minkowski spacetime with U=U0; for re-
gion II �t0� t� tf�, there is a de Sitter–type expansion and the mode
solutions are nontrivial; finally, for region III �t� tf�, the expansion
is turned off and the mode solutions are those of a Minkowski
spacetime with U=U0 /X.

|k|L

N
k

sudden
t̄s = 1 × 10−5

t̄s = 2 × 10−5

t̄s = 5 × 10−5

t̄s = 1 × 10−4

t̄s = 1 × 10−3

0 50 100 150 200
0

2

4

6

8

10

12

FIG. 2. �Color online� Particle production for a de Sitter space-
time in the FRW analog model with X=2000 and a range of expan-
sion rates t̄s as shown. The dimensionless scaling unit is t̄s

= ts� / �mL2� and the nonlinearity is U0n0=105�2 / �mL2�.
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4. Limits

The particle production from the de Sitter expansion in-
terpolates between two opposite limits: a sudden expansion
for ts→0 and an analytically tractable asymptotic limit for
1�2ts�k�0��X1/2.

Sudden expansion. In this case we have the Minkowski
mode functions

1

4n0

nk

dS�t�
2 →
1

4 0
2 , �112�

n0
�k
dS�t�
2 →

1

4
 0

2 �113�

and the particle production from Eq. �88� reduces to the ex-
pression �94� we found previously for a sudden expansion

Nk →
1

4
�X1/4 − X−1/4�2. �114�

This behavior can be clearly seen in Fig. 2 where the particle
number approaches the sudden result for faster expansion
rates �i.e., smaller values of ts�.

Asymptotic expansion. Consider the condition

1 � 2ts�k�0� � X1/2, �115�

which places a constraint on the input frequencies

H � �k�0� � HX1/2. �116�

In view of the fact that �k�t�=�k�0� /X1/2 we can deduce

X−1/2 � 2ts�k�t� � 1, �117�

and so rewrite the initial constraint �115� and its consequence
�117� as

1 � Rk�0� � X1/2, �118�

X−1/2 � Rk�t� � 1. �119�

In terms of the expansion X we can rewrite Eq. �88� as

Nk =
 0

2

�X

1

4n0

nk

exp
2 +
�X

 0
2 n0
�k

exp
2 −
1

2
. �120�

Then using Eqs. �110� and �111� we have

Nk = 
�

2
�2 �2ts�k�0��2

4�X
„�Y1

2�Rk�0�� + Y0
2�Rk�0����J0

2�Rk�t��

+ J1
2�Rk�t��� + �J1

2�Rk�0�� + J0
2�Rk�0����Y0

2�Rk�t��

+ Y1
2�Rk�t��� − 2�J1�Rk�0��Y1�Rk�0��

+ J0�Rk�0��Y0�Rk�0����J0�Rk�t��Y0�Rk�t��

+ J1�Rk�t��Y1�Rk�t���… −
1

2
. �121�

Now using the limits for Bessel functions given in
Abramowitz and Stegun �64�, as well as some basic trigono-
metric identities, we deduce

Nk →
X1/2

4�ts�k�0�
=

1

4�ts�k
. �122�

Further noting that the low k �and/or high temperature� limit
of the Bose-Einstein distribution is

Nk � kBT/��k �123�

leads to the temperature

kBT =
1

4�ts
, �124�

in units of �=c�0�=1. That is, the particle production ap-
proaches the usual cosmological result of a thermal spectrum
�1� for a sufficiently large expansion that proceeds suffi-
ciently slowly.

VI. QUASIPARTICLE PRODUCTION BEYOND
THE ACOUSTIC APPROXIMATION

In this section we consider quasiparticle production where
the acoustic approximation is not enforced—we first intro-
duced this more general case in Sec. III B. In general the
usual calculations become unmanageable in this regime, and
so, we present only two expansion scenarios here: We first
calculate quasiparticle production for a sudden transition in
Sec. VI A, for which an exact solution can be easily found.
In Sec. VI B we additionally consider the cyclic universe
model, for which we are able to make some general state-
ments with regards to quasiparticle production.

A. Sudden expansion

Particle production for a sudden expansion can be calcu-
lated using the Bogoliubov theory from Sec. IV. The scaling
function is given by Eq. �89� with the substitution for labo-
ratory time t̃→ t. The excitation of each mode is attributed to
the quantum depletion corresponding to the initial vacuum
state with nonlinearity U0, projected into the Bogoliubov ba-
sis corresponding to the final nonlinearity U0 /X. We can thus
calculate the number of Bogoliubov quasiparticles directly
using Eq. �57�, assuming the initial state is the Bogoliubov

vacuum defined by b̂k
in
0	=0. Using Eq. �88� the result is

Nk
out = �uk

outvk
in − vk

outuk
in�2 =

�Ak
in − Ak

out�2

�1 − Ak
in 2��1 − Ak

out 2�
,

�125�

where Ak
in and Ak

out is given by Eq. �60� with U=U0 and U
=U0 /X, respectively. The particle production from Eq. �125�
is suppressed for modes of large momenta, as can be seen
from Eq. �60� by the observation that Ak

in/out→0 as

k
→�—this is consistent with the preceding discussion of
Sec. III B.

This calculation can also be repeated using the usual
methods of quantum field theory in curved spacetime as out-
lined in Sec. III—similarly to the previous calculation for the
sudden transition in the acoustic approximation outlined in
Sec. V A—but instead by using the field equation �52�,
which includes nonlinear dispersion. The result is �17�
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Nk
out = 
�k
2 =

1

4

� �k

in

�k
out −��k

out

�k
in �2

. �126�

This takes the same form as the result from the acoustic
approximation given by Eq. �93�. However, here �k

in and �k
out

are the Bogoliubov mode frequencies given by �62�, which
includes nonlinear dispersion, for the in and out regions, re-
spectively.

It is straightforward to show that Eqs. �125� and �126�
agree exactly for all 
k
. We further note that for small 
k
,
the Bogoliubov coefficients are uk�vk and the Bogoliubov
mode expansion coincides with the mode expansion for the
quantized phase fluctuations �36�. Therefore in this limit the
acoustic result �94� agrees with Eq. �125�.

B. Cyclic universe (2+1 dimensions)

The final scenario we consider is that of a cyclic �or os-
cillatory� universe. While models of a cyclic universe cer-
tainly exist in the literature �66�, they are not as firmly es-
tablished as inflationary models �such as the de Sitter
universe�. From a condensed matter point of view, an analog
model of a cyclic universe is interesting because it leads to
parametric excitation of the quasiparticle modes, and in par-
ticular to parametric resonance �67�. Moreover, by taking
b�tf�=b�t=0�, a cyclic universe is an interesting counterpoint
to the case of a sudden transition: in a sudden transition the
field does not evolve and any particle production is entirely
attributed to a sudden change in the effective spacetime �i.e.,
we project into a new quasiparticle basis that depends on the
final nonlinearity U=U0 /X�, however, in a cyclic universe
model, the initial and final effective spacetimes are the same
�so long as condensate does not evolve too far from the ini-
tial ground state� and particle production occurs due to para-
metric excitation only.

A suitable function can be expressed as

b�t� =
1

X
+

1

2

1 −

1

X
��cos
2�mt

tf
� + 1� �127�

with b�0�=1 and where we have defined m as the number of
cycles of the oscillation �we note that ts= tf /m is the period
of each oscillation�, and X is now defined as the amplitude of
the oscillation �rather than the final expansion�.

1. Parametric resonance

The phenomena of parametric resonance has been previ-
ously investigated in Bose condensed systems �68,69�, and in
the context of an expanding universe model �70,71�. The
condition for parametric resonance occurs close to ��k�
=
 /2 where 
=2�m / tf is the driving frequency of some
external parameter �67�, in this case the nonlinearity. Using
the Bogoliubov excitation spectrum ��k�=���k� from Eq.
�62� then gives a simple estimate of the peak wave vector for
resonance:

kres = 
2m

�2 �1/2

���Uaven0�2 + ���/ts�2�1/2 − Uaven0�1/2,

�128�

where Uave= 1
2 �1+1/X�U0 is the average nonlinearity during

the evolution. However, it is worth noting that this result
requires that !=1−1/X from Eq. �127� is a perturbative pa-
rameter with !�1; we therefore henceforth refer to this as
the “perturbative resonance condition.”

The extension of the analysis to a strongly driven system
�!�1� has been considered in Ref. �68�. The general result
is that the mode frequency region where parametric reso-
nance occurs broadens as ! increases; that is, for the para-
metric resonance peak broadens in momentum space with
larger X.

VII. THE CLASSICAL FIELD METHOD

Classical field methods are a powerful tool for approxi-
mating the dynamics of quantum systems. Their application
to BECs include the closely related methodologies of the
finite temperature Gross-Pitaevskii equation �72,73�, the
truncated Wigner approximation �11–16�, and the positive-P
method �11,74�.

Neglecting quantum and thermal fluctuations, the conden-
sate dynamics are determined by the GPE �7�. This approxi-
mation arises from the assumption that the condensate is

highly occupied so that N0=�dx��†ˆ �x��̂�x�	�1. In the clas-
sical field approximation this description is extended by also
including the noncondensate modes from a low energy sub-
space of the system; these modes are to be considered clas-
sical in that they are highly populated—this is akin to the
Bogoliubov approximation where the commutators can be
neglected. We thus proceed by expanding the field operator
in some basis

�̂�x,t� = �
k

"k�x�âk�t� , �129�

and replacing this in Eq. �5� by the classical field

��x,t� = �
k�C

"k�x��k�t� , �130�

where âk→�k for those modes where Nk= �âk
†âk	�1 is sat-

isfied; we denote these modes in the low-energy subspace by
k�C. For a homogeneous Bose gas in a box with periodic
boundary conditions the modes of the system �the eigenstates
that diagonalize the single-particle Hamiltonian� are plane
wave states

"k�x� =
1

�V
eik·x. �131�

The low-energy subspace C is then determined by a momen-
tum cutoff, below which all modes are retained in the clas-
sical field. This is formalized by the use of a projector which
is defined by its action on some function f�x� as

P̂�f�x�� = �
k�C

"k�x� � dx�"k
*�x��f�x�� . �132�
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A. Projected Gross-Pitaevskii equation

Neglecting all modes orthogonal to C the projected
Gross-Pitaevskii equation �PGPE� is given by

i�
���x�

�t
= −

�2

2m
�2��x� + U0P̂�
��x�
2��x�� . �133�

For consistency with our FRW analog model we have not
included an external potential here. The projector is required
for the following reasons.

�i� The classical field approximation naturally divides the
system into a coherent region, which is described by the
propagation of a classical field, and an incoherent region
which is neglected in the present formalism. In equilibrium,
the system is then described by a microcanonical ensemble
since particle numbers are conserved by the Hamiltonian �1�.

�ii� While the finite size of the spatial grid inherently de-
fines a momentum cutoff, the split operator Fourier methods
used to propagate the classical field can introduce aliasing if
a projector is not applied explicitly.

�iii� The application of a projector is consistent with using
a contact potential to describe the two-body interactions; this
description leads to ultraviolet divergences at large momenta
and so a cutoff is required.

B. The truncated Wigner approximation

A formal framework for the ideas outlined above is pro-
vided by the truncated Wigner approximation �TWA�. We
briefly outline the method but the reader is referred to Refs.
�11–16� for further details.

The TWA is a phase space method originating from the
representation of the density operator in terms of the Wigner
function, which is familiar from quantum optics �75�. The
master equation for the multimode density operator can be
formally mapped to a third-order differential equation for the
Wigner function by the application of operator correspon-
dences. The approximation involved in the TWA is to neglect
the third-order derivative terms, which become small for
highly occupied modes. The resulting Fokker-Planck–type
equation has no diffusion term and is equivalent to evolving
a classical field of the form �130� with the GPE, however,
with two crucial modifications.

�1� Quantum vacuum fluctuations are included in the ini-
tial state by adding classical noise sampled from the Wigner
distribution; the form of this noise depends on the Wigner
function for the ground state of the system. For a BEC at
T=0 the initial amplitude of each mode is a random Gauss-
ian variable that is distributed according to the Wigner func-
tion for a coherent state.

�2� The moments of the the Wigner function give the ex-
pectation values for symmetrically ordered operators. In
practice calculating the expectation value of an observable O
requires an ensemble average over many trajectories in phase
space. We denote such an expectation value by �O	W.

The initial condition is given by superposition of the
ground state and noise sampled from the Wigner distribution:

��x,t = 0� = �0�x� + ���x� . �134�

We can expand the noise term via a Fourier transform as

��r� =
1

�V
�
k�0

eik·r�k. �135�

Within the truncated Wigner approximation the initial
vacuum state is prepared by specifying noise on each of the
Bogoliubov modes

���x� = �
k�0,k�C

�Uk�x��k + Vk
*�x��k

*� , �136�

where Uk�x� and Vk�x� are the plane wave modes with am-
plitudes uk and vk, respectively �as defined in Sec. IV A�.
The �k are complex random variables that obey the Gaussian
statistics �11,76�:

��p�q	 = ��p
*�q

*	 = 0, �137�

��p
*�q	 =

1

2
�p,q. �138�

The initial state is thus constructed by populating the Bogo-
liubov modes with half a particle per mode according to the
TWA prescription, for the initial nonlinearity U0; for our cos-
mological model this corresponds to the instantaneous
vacuum state �Minkowski vacuum� in laboratory time at t
=0.

The Wigner and quantum expectation values for the popu-
lation of the k mode in the Bogoliubov quasiparticle basis
are related by

��k
*�k	W = ��b̂k

†b̂k�	 = �N̂k	 +
1

2
, �139�

where the braces require that the symmetrized operator
should be taken. The vacuum state therefore corresponds to
half a particle per mode in the classical field.

C. Validity of the TWA

In the present application of the TWA, only the k=0 con-
densate mode is macroscopically occupied, the other modes
being initially unpopulated �i.e., the quantum expectation

value is �N̂k	=0�. The requirement that Nk�1 for each mode
in the classical field is then violated. However, a more de-
tailed treatment of the validity of the TWA leads to the cri-
terion that N�M for a system of N particles and M modes
�14�. This criterion has been made explicit by Norrie et al.
�16� as the requirement that the particle density exceeds the
commutator for the restricted field operator. It has been
shown that for a homogeneous system these two criteria co-
incide �77�. Therefore the TWA can still be applied when
most of the modes are unoccupied as long as the average
particle density is sufficiently large.

Moreover the above choice for the initial state can lead to
heating as is evident by a transient thermalization of the sys-
tem �11,12�. In this case the classical field dynamics deviate
from the Bogoliubov theory valid for a weakly interacting
gas; the system evolves to thermal equilibrium via the non-
linear interactions between Bogoliubov modes. This effect
can be suppressed by evolving the classical field only for
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short times and by choosing a regime where system is
weakly interacting �i.e., U small�. This is an important con-
sideration for our simulations where any thermalization
could obscure the effect of particle production.

D. Quasiparticle number

Following the discussion on Bogoliubov theory in Sec.
IV, the classical field for the homogeneous system can be
expressed as

��x,t� = e−i	t/���0�x� + ���x,t�� ,

���x,t� =
eik·x

�V
�

k

�uk�−k�t� + vk�k
*�t�� , �140�

where the time-dependent amplitudes are given from Eq.
�57� by

�k�t� = uk�k�t�
�0

*


�0

− vk�*

−k�t�
�0


�0

, �141�

and where the condensate phase factor is given by �0 / 
�0

=e−i	t/�. Referring to Eq. �139�, the quasiparticle number in
the TWA prescription �where the expectation value is implic-
itly assumed� is given by

Nk�t� = ��*
k�t��k�t�	W −

1

2
. �142�

We use this quantity to calculate the quasiparticle mode
populations in our simulations; at each time the mode func-
tions uk and vk are determined from Eq. �59� using the time-
dependent nonlinearity U�t�. Hence this result is consistent
with Eq. �88�, as it requires projection into the quasiparticle
basis that instantaneously diagonalizes �to second-order in
quasiparticle operators� the many body Hamiltonian �1�.

E. Numerical details

Our “universe” is specified by a box with dimensions Lx
=#xL, Ly =#yL, and Lz=#zL. In what follows we assume #x
=#y =1 and that #z is strictly less than one as required by the
quasi-two-dimensional model. To facilitate numerical com-
putation we introduce the dimensionless parameters

x̄ =
x

L
, �̄ = �

Ld/2

�N0

, t̄ = t
�

mL2 . �143�

With a time-dependent nonlinear interaction, the two-
dimensional GPE �35� then takes the dimensionless form

i
��̄

�t̄
= �−

1

2
�̄2 + CNL�t̄�
�̄
2��̄ . �144�

We have taken V̄ext=0 for the homogeneous system. The
effective nonlinearity is �integrating over the z direction for
the quasi-two-dimensional geometry�

CNL�t̄� =
U2Db�t̄�N0m

�2 =
4�a�t̄�N0

Lz
. �145�

Note that the wave function is normalized to unity here. The
corresponding dimensionless speed of sound is

c̄ =
mL

�
c = �CNL. �146�

For completeness, we note the Bogoliubov excitation spec-
trum �62� in dimensionless units is given by

�k̄ =� k̄2

2

 k̄2

2
+ 2CNL� . �147�

In dimensionless units the spatial coordinates span the
region − 1

2 � x̄�
1
2 . For convenience we henceforth drop the

bar notation �unless otherwise specified�.
Equation �144� is propagated using the fourth order

Runge-Kutta algorithm in the interaction picture �78�. For
the results presented here the time step was chosen so that
the total normalization change during each trajectory was
!norm�10−9 �for our choice of total particle number, this
corresponds to a total loss or gain of much less than one
particle for the entire field�.

The field is discretized on a grid of 128$128 points. The
projector retains all modes with 
k
�32$2�, an area which
includes M =3209 modes in the classical field. In practice,
the mode populations Nk�kx ,ky� were resampled on polar co-
ordinates 
k
 and " and then averaged over angle.

F. Suitable parameter regime

It is appropriate at this point to determine a viable set of
parameters for the classical field simulations. The choice of
simulation parameters is constrained by three main factors.

�i� The criterion for the validity of the classical field
method �i.e., for the TWA�.

�ii� The requirement that all modes of the system are in
the phononic regime at the start of the simulation. In this
regime the particle production is significant.

�iii� A set of parameters that are experimentally relevant.
The criteria for the validity of the TWA has been dis-

cussed in Sec. VII C. In particular, for our simulations, we
are required to choose a condensate population with N0
�M =3209. Additionally, noting that in our simulations the
classical field is normalized to unity, the requirement that the
system is weakly interacting is satisfied when the nonlinear-
ity CNL is small compared with the condensate population
N0.

We wish to investigate a regime where a significant frac-
tion of the modes are phononic �as determined by k�1/�� so
that we can compare our results with the analytic calcula-
tions in the acoustic approximation. In computational units

the phonon to free-particle crossover is determined by k̄c
2 /2

=CNL�0�. That is, we require a large initial nonlinearity.
Recent experimental observations indicate that 85Rb con-

densates have the most widely tunable interactions via a
Feshbach resonance. We refer in particular to experimental
results from the JILA group �79,80�. In their results �see Ref.
�80�� a stable condensate of 104 atoms was formed with a
variation of the scattering length from zero to 4000a0. The
associated diluteness factor na3�10−2 indicates such a sys-
tem has significant interactions but can still be considered to
be weakly interacting.
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We employ the parameters from Ref. �76�, but use a larger
atom number of N0=107 while considering the same �peak�
number density N0 /V�1012 cm−3. We also take the maxi-
mum possible initial scattering length to be a=4000a0 at t
=0.

With these parameters in mind we calculate the dimen-
sionless parameters required for the classical field simula-
tion. From Eq. �145� and assuming Lz�#zV

1/3 we can esti-
mate the �dimensionless� initial nonlinear interaction
strength is

CNL =
4�a

#zV
1/3N0 �

1.24 $ 105

#z
. �148�

The anisotropy parameter should be taken #z�1 for the
quasi-two-dimensional geometry—we do not impose a spe-
cific value, but note that we are free to choose a value of the
scattering length less than �4000a0. Therefore to meet all
the above requirements we select CNL �t̄=0�=1$105 and
N0=107 for the simulation results presented in this paper.
While a stable condensate with this atom number has not yet
been achieved experimentally, it gives a diluteness factor less
than na3�10−2 as found in Ref. �80�, and so should in prin-
ciple be possible.

With a large value for N0, we have checked that the ther-
malization that can occur in the TWA at large nonlinearities
is suppressed. The quasiparticle production demonstrated is
then due solely to the effects of expanding the effective
spacetime. Additionally we note that the TWA is valid for
short times only—this allows us to explore systems undergo-
ing rapid expansion and for which there is appreciable par-
ticle production.

VIII. EXPANDING UNIVERSE SIMULATIONS

We now present the numerical results of classical field
simulations based on the TWA for the expansion scenarios
outlined in Sec. V—namely, the de Sitter, tanh, and cyclic
expansion scenarios, with the sudden transition as a limit of
an infinitely fast de Sitter or tanh expansion. The results are
compared to the analytic predictions in the acoustic approxi-
mation, and also to the sudden transition prediction that in-
cludes the nonlinear dispersion of the modes �see Eq. �125��.

In the results shown, we have calculated the quasiparticle
populations for each mode as a function of time; this was
accomplished by projecting from the single particle basis to
the Bogoliubov basis using the expression �142�, and using
the nonlinearity CNL�t̄�. Thus the basis for counting quasipar-
ticles corresponds to projecting into the instantaneous
Minkowski vacuum at each time.

A. de Sitter universe

For an expansion corresponding to the de Sitter universe,
the scaling function b�t� takes the form �100�. An intuitive
picture of the effect of quasiparticle production is demon-
strated by Fig. 3, which gives the field density at the initial
and final times for the case of ts=1$10−5. The small scale
fluctuations given by the initial quasiparticle �Bogoliubov�

vacuum are amplified to a larger scale after expansion has
occurred.

Figure 4 shows the results for an expansion of X=2000
and four different rates of expansion ts=1$10−5, 5$10−5,
1$10−4, and 1$10−3. In particular, the mode populations
are shown as a function of 
k
 and time. For comparison, the
sudden transition result for X=2000 from Eq. �126� is shown
at the final time by the red dashed curve. This gives the
upper limit �including the effect of the quantum pressure� on
the permissible particle production in each mode. The green
dashed curve shows the analytic prediction at the final time,
that is calculated in the acoustic approximation using Bogo-
liubov theory and Hamiltonian diagonalization as outlined in
Sec. V A Also shown is the time tc when each mode crosses
from phonon to particlelike behavior due to the expansion of
the universe, as determined by k2 /2=CNL�tc�—this is indi-
cated by the blue points on each plot.

B. tanh expansion

In this case the scaling function b�t� is given by the para-
metric curve in t̃ determined by equations �97� and �98�. The
form of b�t� tends to exhibit a rapid early change followed by
a long tail as it approaches its final value b�tf�. Due to the
computational expense in running simulations for long times,
we took the final simulation time as t̃ f = t̃s tanh−1�0.999�. The
final value of the scaling function b�tf� then reached �99.9%
of its target value 1/X. This minor discrepancy had a negli-
gible effect on the results shown.

Figures 5�a� and 5�b� show the results for an expansion of
X=1000 and two different rates of expansion t̃s=0.1 and 0.5.
Similarly to the de Sitter expansion results, the sudden result
for X=1000 is shown by the red solid curve and the phonon
to particlelike crossover is indicated by the blue points.
Moreover, the green dotted curve shows the particle produc-
tion for each mode at the final time according to the predic-
tion for the acoustic approximation given by Eq. �99�.

C. Cyclic universe

In this case, we consider the oscillating scaling function
given by Eq. �127�. In particular, we consider two subcases:
a single cycle �m=1�, which corresponds to a single expan-
sion and contraction for the effective spacetime and multiple
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FIG. 3. �Color online� de Sitter model: density plot for renor-
malized wave function at the beginning �t=0� and end �t= tf� of
expansion. Parameters are ts=1$10−5, CNL �t=0�=1$105, and
N0=107.
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cycles �m�1�, which correspond to m expansion and con-
tractions. The peak wave-vector kres for parametric resonance
from Eq. �128� is shown by the position of the red solid line
in each case.

1. Single cycle „m=1…

We further consider two specific sets of parameters: �i�
m=1, X=2000, and ts=1$10−5 and �ii� m=1, X=2000, and
ts=1$10−4. The corresponding simulation results are given
by Figs. 7�a� and 7�b�. In both cases there is a transient phase
where there is dramatic quasiparticle production in the time-
dependent Bogoliubov basis; however, the net quasiparticle
production at the end of the cycle �t= tf� is small in both
cases, and in particular is very close to zero for the faster
cycle in Fig. 7�a�. Note that for ts=1$10−5 the resonance
condition occurs for a wave-vector larger than the cutoff for
the projector �i.e., kres�kcutoff�.

2. Multiple cycles „m�1…

The excitation of the field due to parametric resonance is
much greater when there are multiple cycles of the scaling
factor, and we can therefore consider a smaller driving am-
plitude X. In particular, we consider two specific sets of pa-
rameters for this subcase: �i� m=5, X=100 and ts=1$10−4

and �ii� m=10, X=2, and ts=1$10−4. The corresponding
simulation results are given by Figs. 7�c� and 7�d�. Clearly
the mode population is peaked near the resonance condition.

IX. DISCUSSION

A. Inflationary universe models

The results for the de Sitter and tanh cases can be inter-
pretted as follows. The healing length increases as the expan-
sion proceeds; a mode k that starts as phononic
�k�1/��0�� will at a later time tc crossover to a particlelike
regime �k�1/��tc��. According to the discussion of Sec. 3
we expect particle production to be dominant before this
time, the mode populations becoming fixed after this time.
This prediction is borne out in the results shown in Figs. 4
and 5.

For fast expansions, the analytic prediction in the acoustic
approximation overestimates the quasiparticle production for
modes that crossover from phononlike to particlelike. The
role of the crossover is further illustrated in Fig. 8. Here we
have plotted the quasiparticle numbers Nk at four different
times, corresponding to the results from Fig. 4�c� for
ts=1$10−4. For each time, the blue points represent the cal-
culated Nk from the classical field simulations, the green
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FIG. 4. �Color online� de Sitter expansion: time dependence of Bogoliubov mode populations. Parameters are CNL �t̄=0�=1$105, N0
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dashed curve is the analytic prediction in the acoustic ap-
proximation from Bogoliubov Hamiltonian diagonalization,
and the solid red vertical line represents the value of the
crossover kc. As can be seen, for modes that are phononic
�left of kc�, the quasiparticle production from the classical
field simulations closely match the analytic prediction for the
acoustic approximation. As the expansion proceeds kc de-
creases and Nk for modes k�kc is suppressed below the
analytic prediction.

Moreover, as is clear from Figs. 4 and 5, the sudden tran-
sition prediction given by Eq. �126� sets an upper limit on
the particle production in each mode. A sudden transition
corresponds to ts→0 in the de Sitter expansion case, or
t̃s→0 in the tanh expansion case; in this limit the classical
field does not evolve, but the Bogoliubov basis that diago-
nalizes the Hamiltonian changes. The results clearly indicate
that the particle production approaches the sudden transition
prediction in both scenarios when the expansion rate is
largest—see Figs. 4�a� and 5�a�. The discrepancy for small

k
 in the tanh expansion case is due to nonlinear interac-

tions, which are neglected in the free field theory of Sec. III.
We elaborate on this point below.

B. Thermal equilibrium and the adiabatic regime

There are two factors which can lead to a thermal spec-
trum for the occupation numbers of quasiparticles. First, if
the expansion is adiabatic, the particle production leads to a
thermal spectrum �1�. This is the case even when the under-
lying theory is a free field as in Sec. II.

Secondly, as is the case with our simulations, the CFM is
based on the field dynamics for the Hamiltonian �1� which
implicitly includes higher-order terms not present in the ap-
proximate Bogoliubov Hamiltonian �61�; therefore the Bogo-
liubov modes are interacting—albeit weakly—and even in
the absence of damping the system will eventually approach
thermal equilibrium due to ergodicity. In the CFM the tem-
perature for a weakly interacting system can be estimated by
assuming equipartition of energy. Following Davis et al.
�Ref. �72�, Sec. VI�, this gives

�Nk	W =
kBT

Ek − 	
, �149�

where Ek=�k+ is the energy for each Bogoliubov mode in
a condensate with eigenvalue  , and 	 is the chemical po-
tential. Here �Nk	W refers to the quasiparticle population cal-
culated in the Bogoliubov basis. We can then write

�k = kBT
 1

�Nk	W
−

1

�N0	W
� . �150�

Defining the dimensionless temperature as T̄=kBT /�LN,
where �L=mL2 /�2, and rearranging Eq. �150� gives

T̄ = �̄k
 N

�Nk	W
−

N

�N0	W
�−1

. �151�

That is, if the system is in thermal equilibrium the function

T̄�
k 
 � should be constant.
In Fig. 6 we plot this function for the de Sitter expansion

results with ts=1$10−5 , 5$10−5, 1$10−4, and 1$10−5,
and at the final time in each case for X=2000. For the fastest
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expansion with ts=1$10−5, T̄ is approximately linear, indi-
cating the system is not in thermal equilibrium. This is ex-
pected since the fastest expansion rate approaches the sudden
expansion case, for which the particle production �125� is not
thermal. For the slowest expansion with ts=1$10−3, there is
negligible particle production so that the mode populations
are fixed at the initial value of half a particle per mode for
the classical field. In this case it follows from Eq. �151� that

T̄� �̄k as evident in the plot.
In contrast, we note for the two intermediate expansion

rates �ts=5$10−5 and 1$10−4�, T̄ is relatively flat for small

k
 which corresponds to the regions in Fig. 4 where the
particle production is most significant. In these cases, the
slower expansions result in an approximately thermal spec-
trum for the phononic modes, which is consistent for adia-
batic expansion in the free-field theory. For the larger 
k

modes, no particle production occurs, and the mode popula-
tions are frozen at the initial value of half a particle per mode
in the classical field. If the field was further evolved at the
final nonlinearity CNL�t=0� /X, the system should eventually
reach thermal equilibrium via ergodicity. This effect is evi-
dent in the tanh expansion results �Fig. 5� where the nonlin-
earity CNL asymptotically approaches a nonzero final value.
In particular, the nonlinear mode mixing accounts for the
discrepancy between the analytic predictions for the free-
field theory and the particle production in the low 
k
 modes.

This effect is more pronounced in Fig. 5�b� where the system
evolves for a much longer time.

C. Cyclic universe model

The mode spectrum that results from the implementation
of a cyclic universe model is markedly different to the case
of inflationary expansion �i.e., de Sitter, tanh, or sudden ex-
pansions�. Specifically, there is a nonzero wave vector at
which the mode population peaks, which is given by the
condition for parametric resonance as discussed in Sec. VI B.
The results for a cyclic universe are given for a single cycle
by Figs. 7�a� and 7�b�, and for multiple cycles by Figs. 7�c�
and 7�d�.

For the subcase of a single cycle �m=1� there are two
observable effects.

�i� A peak in quasiparticle number midway through the
cycle, which corresponds to the usual notion of particle pro-
duction due to expansion as in the inflationary models. This
is an artifact of projecting the quasiparticle number into the
time-dependent Bogoliubov basis with nonlinearity U
=U0 /X �i.e., Hamiltonian diagonalization�.

�ii� The net quasiparticle number at the end of the cycle is
determined by projecting into the Bogoliubov basis with
nonlinearity U�tf�=U�0�. That is, the effective spacetime is
the same at the start and end of the cycle �providing quasi-
particle production does not lead to appreciable depletion of
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the condensate�. Any quasiparticle production is then attrib-
uted to parametric excitation, which peaks for the wave vec-
tor corresponding to the resonance condition �128�. For the
cycle with a longer period �ts=1$10−4�, shown in Fig. 7�b�,
the resonant wave vector is within the projected mode-space
�i.e., kres�kcutoff� and there is nonzero quasiparticle produc-
tion at the end of the cycle. In contrast, for the cycle of
shorter period �ts=1$10−4�, shown in Fig. 7�a�, the resonant
condition occurs for modes outside the projected mode space
�i.e., kres�kcutoff� and there is negligible quasiparticle pro-
duction for the system modes.

Quasiparticle production is more dramatic for the case of
multiple cycles as we can see from the results in Figs. 7�c�
and 7�d�. In particular, referring to the discussion in Sec.
VI B, for the first case with m=5 and X=100, the parametric
resonance leads to a broad peak which can be attributed to
the large value of X. By contrast, for the second case with
m=10 and X=2 the peak is narrower due to the smaller value
of X. A thermal component is also evident in both cases for
low momenta modes, due to interactions between the quasi-
particle modes. This component is expected to grow with
longer evolution times as the modes continue to interact �not-
ing that CNL is signficant throughout the evolution�.

X. CONCLUSIONS

In summary, we have run classical field simulations for
analog models of inflationary cosmology �de Sitter and tanh
expansions� and also for a cyclic universe model. For the
inflationary models the calculation of quasiparticle produc-
tion Nk shows the following trends.

�1� Nk is enhanced for faster expansions �small ts� and
larger expansions �large X�. In the limit of a very fast expan-
sion, the results approach the sudden result from Eq. �125�,
which is expected since the field does not evolve for a suf-
ficiently fast change in the nonlinearity. Quasiparticle pro-
duction is always suppressed below the sudden prediction.

�ii� Nk is larger for small momenta, since each mode is
strongly coupled to the effective spacetime in this case. Al-
ternatively stated, the field equation �17� becomes adiabatic
for large momenta, so that these modes are not strongly ex-
cited by the expansion. Hence the classical field simulations
demonstrate the effects of Lorentz violation for the effective
spacetime. As expected, the analytic predictions within the
acoustic approximation agree favorably with the quasiparti-
cle production for small momenta.

Finally, for the case of a cyclic universe, quasiparticle
production is entirely attributed to parametric excitation of
the modes as there is no net change to the effective space-
time. In particular, parametric resonance is observed for a
mode satisfying ��k�=
 /2 where 
 is the driving fre-
quency. The parametric resonance peak broadens in momen-
tum space for larger driving amplitude ! as expected from
the analysis in Ref. �68�. Our calculations �both analytical
and numerical� clearly indicate that quasiparticle production
should occur in a number of different scenarios but it is
worth commenting on relevant experimental studies that
have appeared in the literature, and to then suggest possible
extensions to our simple model.
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diction in the acoustic approximation based on the Bogoliubov
theory and Hamiltonian diagonalization as outlined in Sec. V A.
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A. Possible experimental implementation

While a specific experiment corresponding to the analog
FRW model we have described has not yet been imple-
mented, there has been significant progress in experiments
which might ultimately lead to this goal. In particular, the
two main features required by our model are �i� a homoge-
neous BEC in a box trap and �ii� a time-varying scattering
length.

In particular, some progress has been made in experimen-
tal implementations of a box trap for BECs, including a
square well potential with high barriers on an atom chip �81�
and an optical trap �82�. It should be noted, however, in both
these experiments the resulting hard-wall potential confined
the condensate in only one dimension. On the other hand, the
implementation of a time-varying scattering length is easily
achievable in a number of different atomic species by mak-
ing use of a Feshbach resonance �37,38�. As noted in Sec.
VII F, a promising candidate in this regard is 85Rb which
allows widely tunable interactions �79,80�. However, it
should be emphasized that there are additional complications
near a Feshbach resonance from either the inelastic processes
of three-body recombination �TBR� �83�, molecule formation
�84�, or the existence of Efimov states �85�. It should be
possible to avoid these issues in experiments by not tuning
the interactions too closely to the Feshbach resonance or by
expanding on a time scale too fast for TBR to have an
appreciable effect.

Irrespective of the exact details for the experimental real-
ization of the FRW analog model—i.e., for a homogeneous
condensate in a box trap—we should apply either �or both�
of the conditions: �i� that the potential at the edge of the box
satisfies Vbox�Un0 or �ii� that the time scale of expansion
should be very small compared with the trapping frequency
so that the condensate remains in the ground state of the trap.

Finally, it is worth commenting that there is already ex-
perimental evidence for excitation of a condensate �i.e., qua-
siparticle production� due to a time-varying scattering length.
In one such experiment by Claussen et al. �86�, Bose con-
densed 85Rb atoms were subjected to an increase in scatter-
ing length, followed by a hold time and then a reduction in
scattering length. In that work the resulting depletion of the
condensate increased with decreasing rise time, except for
small hold times �thold�15 	s� and small rise times �trise
�20 	s�. The time scale over which the scattering length
was modified was too small for the condensate shape to ad-
just dynamically. This experiment would therefore corre-
spond to a contraction and expansion of an effective space-
time, and the dependence of the condensate particle loss on
the rise time is consistent with our predictions of quasiparti-
cle production. This effect has been reproduced in numerical
simulations by using a generalized Gross-Pitaevskii equation
�87�, although it was necessary to include the effects of TBR
there because of the relatively long hold times.

B. Outlook

The FRW analog model we have considered is based on
several simplifying assumptions, the two most significant be-

ing homogeneity of the condensate and the two-dimensional
box geometry. The preceding discussion therefore motivates
several directions in which the formalism could be extended
to deal with any realistic experiments that would implement
a FRW analog model of an expanding unverse.

�i� In an experimental implementation of the FRW analog
model, the actual trapping potential may differ from a two-
dimensional box trap—specifically, an implementation will
likely require a three-dimensional system with a nonzero po-
tential. The extension of the classical field simulations from
two to three dimensions is straightforward since the PGPE
�133� takes the same form in either case. Moreover, it is
straightforward to include a realistic trap into the classical
field simulations by specifying the nonzero potential in the
PGPE. However, due to the significant increase in size of the
mode space for three dimensions, these simulations would
necessarily require a considerable computational effort �i.e.,
running trajectories in parallel on a cluster of workstations�.

�2� As an alternative to the condensate in a box scenario,
we might consider the case of a BEC in a harmonic trap
where the trapping frequency and scattering length are si-
multaneously modified in such a way that the condensate
density is approximately constant at the center of the trap.
Thus the FRW analog model we have considered could be
approximately reproduced near the center of the trap.

�3� It may be necessary to include the effects of TBR to
accurately describe the dynamics close to a Feshbach reso-
nance. The inclusion of TBR into the TWA has been previ-
ously described by Norrie et al. �88�.

�4� Finally, the presence of a thermal cloud will certainly
affect the results of any experiment, possibly obscuring the
signal of quasiparticle production due to expansion. Finite
temperature effects may be included by using the classical
field method whereby the phase space is separated into a
coherent region �highly occupied modes� and an incoherent
region �weakly occupied modes�. This has been formalized
in terms of either the finite temperature GPE �72� or the
stochastic GPE �76�. Whether or not any of the above modi-
fications are incorporated into the model, however, one
should remain careful that the analogy to a FRW-type uni-
verse is preserved in some regime of interest.
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