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We report on measurements of an elementary surface mode in an ultracold, strongly interacting Fermi gas of
6Li atoms. The radial quadrupole mode allows us to probe hydrodynamic behavior in the crossover from
Bose-Einstein condensation �BEC� to the Bardeen-Cooper-Schrieffer �BCS� regime without being influenced
by changes in the equation of state. We examine the frequency and damping of this mode, along with its
expansion dynamics. In the unitarity limit and on the BEC side of the resonance, the observed frequencies
agree with standard hydrodynamic theory. However, on the BCS side of the crossover, a striking downshift of
the oscillation frequency is observed in the hydrodynamic regime as a precursor to an abrupt transition to
collisionless behavior; this indicates coupling of the oscillation to fermionic pairs.
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I. INTRODUCTION

The advent of ultracold, strongly interacting Fermi gases
�1,2�, molecular Bose-Einstein condensates �3–5�, and fermi-
onic condensates �6,7� has opened up unique possibilities to
study the fundamental physics of interacting fermions. The
availability of controllable model systems with tunable inter-
actions provides unprecedented experimental access to the
many-body physics of fermionic quantum systems, which is
of great fundamental importance for various branches of
physics �8�.

A fundamental problem, which has been discussed in the
theoretical literature for decades �9–12�, is the crossover
from Bose-Einstein condensation �BEC� to a macroscopic
quantum state in the Bardeen-Cooper-Schrieffer �BCS� re-
gime. In this crossover, the nature of pairing changes from
the formation of bosonic molecules by fermionic atoms to
pairing supported by many-body effects. With novel model
systems now available in ultracold Fermi gases, the BEC-
BCS crossover has recently stimulated a great deal of interest
in both theory and experiment �8�.

Collective excitation modes in trapped ultracold Fermi
gases provide powerful tools to investigate the macroscopic
properties of a system in the BEC-BCS crossover �13�. For
experiments of this class, ultracold 6Li gases have excellent
properties. This is because of their stability in the molecular
regime �3,14,15� and precise magnetic tunability of interac-
tions based on a broad Feshbach resonance �16,17�. Early
experiments on collective modes in the BEC-BCS crossover
provided evidence for superfluidity �18� and showed a strik-
ing transition from hydrodynamic to collisionless behavior
�19�. More recent experiments yielded a precision test of the
equation of state �20�. The previous experiments have fo-
cused on collective modes with compression character,
where both the hydrodynamic properties and the equation of
state determine the mode frequency �18–23�.

In this article, we report on measurements of a pure sur-
face mode in the BEC-BCS crossover, which provides in-
sight into the dynamics of the system. The “radial quadru-
pole mode” in an elongated trap, the fundamentals of which
are discussed in Sec. II, allows for a test of hydrodynamic

behavior without being influenced by changes in the equa-
tion of state. In Sec. III, we present our experimental setup
and the main procedures. We introduce a tool to excite col-
lective oscillations with an acousto-optic scanning system.
The results of our measurements, presented in Sec. IV, pro-
vide us with insight into the abrupt transition from hydrody-
namic to collisionless behavior, first observed in �19�. The
present work provides strong evidence that quasistatic hydro-
dynamic theory �24� does not apply to collective modes of a
strongly interacting fermionic superfluid, when the oscilla-
tion frequencies approach the pairing gap �25�.

II. RADIAL QUADRUPOLE MODE

The confining potential in our experiments is close to the
limit of an elongated harmonic trap with cylindrical symme-
try. In this case, we can consider purely radial collective
oscillations, neglecting the axial motion. The frequencies of
the radial modes can be expressed in units of the radial trap
frequency �r. We note that our experiments are performed in
a three-dimensional regime, where the energy ��r is typi-
cally a factor of 30 below the chemical potential and finite-
size effects can be neglected.

In this situation, there are two elementary collective
modes of the system: the radial compression mode and the
radial quadrupole mode �13,26�. We focus on the quadrupole
mode, which is illustrated in Fig. 1. This mode corresponds
to an oscillating radial deformation, which can be interpreted
as a standing surface wave. The mode was first demonstrated
in atomic BEC experiments �27� and applied to investigate
rotating systems �28�, but so far it has not been studied in
strongly interacting Fermi gases.

Being a pure surface mode, the frequency �q of the radial
quadrupole mode does not depend on the compressibility of
the system. The frequency �q does not depend on the equa-
tion of state but on the collisional properties. In the hydro-
dynamic regime, whether the gas is a superfluid or a classical
gas with a collision rate strongly exceeding the radial trap
frequency, the frequency of this mode is given by �26�

�q = �2�r . �1�

In contrast, for a collisionless gas, where the atoms freely
oscillate in the trap, the frequency is
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�q = 2�r . �2�

Because �q is insensitive to the compressibility of the gas
and the difference between the collisionless and the hydro-
dynamic frequencies is large, the radial quadrupole mode can
serve as an excellent tool to probe pure hydrodynamics. Par-
ticularly interesting is the transition from hydrodynamic to
collisionless behavior at the lowest temperatures. Such a
change occurs in a strongly interacting Fermi gas on the BCS
side of the resonance �19,21,23�. Near this transition, mea-
surements on the compression mode indicated frequency
downshifts, which raised questions concerning the validity of
standard hydrodynamic theory in this interaction regime
�29,30�. Previous experiments could not unambiguously
identify the origin of frequency shifts near the
hydrodynamic-to-collisionless transition, which is a particu-
lar motivation for probing the crossover gas with the radial
quadrupole mode.

III. EXPERIMENTAL PROCEDURE

The apparatus and the basic preparation methods for ex-
periments with a strongly interacting Fermi gas of 6Li atoms
have been described in our previous work �3,19,25,31�. As a
starting point, we produce a molecular BEC of 6Li2 �3,31�.
By changing an external magnetic field, we can control the
interparticle interactions in the vicinity of a Feshbach reso-
nance, which is centered at 834 G �16,17�. The interactions
are characterized by the atomic s-wave scattering length a.

We start our experiments with an ensemble of about N
=4�105 atoms in an almost pure BEC at a magnetic field of
764 G. In order to change the properties of the system adia-
batically, we slowly ramp to the final magnetic field, where
the measurements are performed �31�. The temperature of
the gas is typically below 0.1 TF, unless stated otherwise.

In order to observe the collective oscillations, we take
absorption images of the cloud in the x-y plane after release
from the trap. We illuminate the atoms with a probe beam
along the z direction of the cigar-shaped cloud. The probe
light causes a resonant excitation of the D2 line at a wave-

length of 671 nm. We use dichroic mirrors for combining
and separating the probe and the dipole-trapping beam. The
frequency of the probe beam can be tuned over a range of
more than 1 GHz, which enables resonant imaging over the
whole range of magnetic fields that we create in our
experiments.

The gas is confined in a nearly harmonic trapping poten-
tial, which has an axially symmetric, cigar-shaped trap ge-
ometry. Optical confinement in the radial direction is created
by a focused 1030-nm near-infrared laser beam with a waist
of �58 �m. The potential in the axial direction consists of a
combination of optical and magnetic confinement �3�; the
magnetic confinement is dominant under the conditions of
the present experiments. We set the laser power to 270 mW,
which results in a radial trap frequency of �r�2�
�370 Hz and an axial trap frequency of �z�2��22 Hz at
a magnetic field of 764 G. The trap frequencies correspond
to the Fermi energy of a noninteracting cloud, EF
=���r

2�z3N�1/3=kB�740 nK.
In order to excite collective oscillations, we suddenly

change the optical trapping potential. The position and shape
of our trapping potential in the x-y plane can be manipulated
through the use of a two-dimensional scanning system. One
feature of the system is that we can rapidly displace the trap
laterally. Fast modulation of the beam position enables us to
create time-averaged potentials �32,33�.

The scanning system is constructed by use of two
acousto-optic modulators �AOMs�, which are aligned for
vertical and horizontal deflections. Figure 2 illustrates the
principle of our scanning system for one direction. A colli-
mated beam passes through an AOM and is deflected de-
pending on the driving frequency. A lens is placed at a dis-
tance of one focal length behind the AOM, so that the
deflection results in a parallel displacement of the beam. By
changing the driving frequency of the AOM, the lateral po-
sition of the focus is shifted. This system enables us to dis-
place the focus of the trapping beam in the horizontal and the
vertical direction by up to 4 times the beam waist in all
directions. Furthermore, the deflection can be modulated by
frequencies of up to �1 MHz within 3 dB bandwidth. In our
trap configuration, we use modulation frequencies of
100 kHz, which greatly exceeds the trap frequency. We cre-
ate elliptic potentials—i.e., potentials with �x��y—by

FIG. 1. Illustration of the radial quadrupole mode as an elemen-
tary collective excitation of an elongated, trapped atom cloud.

FIG. 2. Schematic illustration of the scanning system. A wide
collimated beam passes through an AOM. The resulting deflection
angle depends on the driving frequency of the AOM. The beam
passes through a lens at the distance of one focal length behind the
AOM. The lens focuses the beam for atom trapping. A change in
deflection angle results in a parallel shift of the beam position in the
focal plane. The solid and dashed lines show the beam path for
different deflection angles. The zeroth-order beam is not shown.
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modulating the trap position along a specific direction. We
use this for the excitation of the quadrupole mode. By choos-
ing a suited modulation function �34�, these elliptic poten-
tials are nearly harmonic.

When we excite the quadrupole mode, we first adiabati-
cally deform the trapping potential in �100 ms to an elliptic
shape. This slow deformation ensures that the cloud stays in
thermal equilibrium even in the near-collisionless regime and
no excitations occur. We suddenly switch off the deforma-
tion, leading to an oscillation in the x-y plane of the elliptic
cloud in the originally round trap.

The initial deformation corresponds to different trap fre-
quencies in the horizontal and vertical directions where �0x
= �1+���r and �0y = �1−���r. The parameter � determines
the amplitude of the emerging oscillation; we choose it for
most of our measurements �unless stated otherwise� to be
��0.05. We increase � by increasing the modulation for the
time averaged potential along the y direction. As the modu-
lation decreases the confinement strength of the dipole trap,
we simultaneously ramp up the trap power to ensure that the
mean trap frequency �r=��0x�0y remains constant. This
avoids excitation of the compression mode.

Figure 3 shows the timing scheme for the excitation of the
radial quadrupole mode. At t=0, the collective oscillation is
excited and the cloud starts oscillating in the trap for a vari-
able time ttrap. Horizontal and vertical widths of the cloud,
Wx and Wy, oscillate in the trap out of phase with a relative
phase shift of �. As an observable, we choose the difference
in the widths, 	W=Wx−Wy, which cancels out small effects
of residual compression oscillations. For normalization, we
introduce the width W0 of the cloud in the trap without ex-
citation.

Experimentally, we determine the collective quadrupole
oscillations after suddenly switching off the trap and a sub-
sequent expansion time tTOF. We then take an absorption im-
age of the cloud and determine its horizontal and vertical
widths Wx and Wy via a two-dimensional Thomas-Fermi pro-
file fit. From these measurements after expansion, we can
determine the in-trap behavior.

Typical data sets of radial quadrupole oscillations are
shown in Fig. 4. Figure 4�a� shows an oscillation in the hy-
drodynamic regime; here, we observe a weakly damped har-
monic oscillation centered about a small constant offset. Fig-
ure 4�b� shows the typical behavior in the collisionless
regime. The frequency of the oscillation is clearly higher
than in the hydrodynamic regime. The oscillation shows
stronger damping and has an exponentially time-varying
offset.

We find that, for both regimes, the dependence of 	W on
ttrap can be well described by the fit function

	W = Ae−
ttrap cos��qttrap + �� + Ce−�ttrap + y0, �3�

which is explained in detail in Appendix B.
Note that the frequency �q and the damping constant 


are independent of the expansion during tTOF and character-
ize the behavior of the trapped oscillating atom cloud. In
contrast, the amplitude A and the phase shift � depend on the
expansion time and provide further information on the dy-
namics of the gas. The offset function Ce−�ttrap with ampli-
tude C and damping constant � results from thermalization
effects and is only relevant in the collisionless regime �see
discussion in Appendix B�. The constant offset y0 results
from a slight inhomogeneity of the magnetic field, which
gives rise to a weak saddle potential. This increases �de-
creases� the cloud size in the y direction �x direction� during
expansion.
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FIG. 3. Timing scheme for the excitation of the radial quadru-
pole mode. The ellipticity of the trap is slowly ramped up within
100 ms. This results in a change of � in the trap frequencies, where
� characterizes the ellipticity and sets the initial, normalized defor-
mation 	W /W0=−2�. W0 is defined as the width of the cloud in the
trap without excitation. At t=0, the elliptic deformation is switched
off and the oscillation in the trap begins. �Shown here is an oscil-
lation in the hydrodynamic regime.� The oscillation continues until
the trap is turned off at t= ttrap, which is usually between 0 and
10 ms. At t= ttrap, the cloud is released from the trap and expands for
the time tTOF, which is typically 2 ms.
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FIG. 4. Typical radial quadrupole oscillations in the hydrody-
namic �a� and collisionless �b� regimes. The solid lines show fits to
our data according to Eq. �3�. The dashed lines indicate 	W=0. The
expansion time tTOF is 2 ms. In �a�, the oscillation in the unitarity
limit �B=834 G� is shown, whereas �b� shows the oscillations for
B=1132 G �1/kFa�−1.34�.
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IV. EXPERIMENTAL RESULTS

Here we first discuss our measurements of the frequency
�q and the damping rate 
 of the in-trap oscillation �Sec.
IV A�. We then present the data for the phase offset � and
the amplitude A �Sec. IV B�. Finally, we explore the
hydrodynamic-to-collisionless transition �Sec. IV C�. As
commonly used in the field of BEC-BCS crossover physics
�8�, the dimensionless parameter 1 /kFa is introduced to char-
acterize the interaction regime. The parameter kF
=�2mEF /� is the Fermi wave number and m is the mass of
an atom.

A. Frequency and damping

In Fig. 5, we show the results for the frequency �q and the
damping rate 
 of the radial quadrupole mode throughout the
BEC-BCS crossover. Both �q and 
 are normalized to the
trap frequency �r, which we determine by a sloshing mode
measurement �20�. We include small corrections resulting
from anharmonicity of the trapping potential and the residual
ellipticity of the trap �see Appendix C�.

The data confirm the expected transition between the hy-
drodynamic and the collisionless regime on the BCS side of
the resonance �see Sec. II�. The transition is qualitatively
different from the hydrodynamic-to-collisionless crossover
in a classical gas �35� or in a Fermi gas without superfluidity
�36�. Instead of a continuous and monotonous variation of
the frequency between the two limits ��2�r and 2�r�, an

abrupt change occurs. When this transition is approached
from the hydrodynamic side, a striking frequency downshift
shows up as a precursor of the transition to higher frequen-
cies. In the transition region �shaded area in Fig. 5�, no data
points are shown because of the large damping and corre-
spondingly very large uncertainties for the measured
frequency.

The damping rate shows similar behavior as in our previ-
ous measurements on the radial compression mode �19,23�.
Maximum damping occurs near the hydrodynamic-to-
collisionless transition, whereas minimum damping is ob-
served slightly below the resonance. In general, we find that
damping is roughly 2 times larger for the quadrupole mode
than for the compression mode at the same temperature �37�.
The faster damping of the quadrupole mode is plausible in
view of the larger frequency change at the transition. We
now discuss the behavior in different regions in more detail.

1 /kFa�0. In the unitarity limit, the normalized frequency
agrees well with the theoretically expected value of �q /�r
=�2 for a hydrodynamic gas; see Eq. �1�. To check for con-
sistency with previous experiments �20�, we here also repro-
duced the frequency �10/3�r of the radial compression
mode on a 10−3 accuracy level. The damping is low for the
Fermi gas in the unitarity limit. In contrast to the compres-
sion mode, the quadrupole-mode frequency stays constant
throughout the crossover, indicating that it is independent of
the equation of state.

1 /kFa
0. In the strongly interacting BEC regime, there
is an increase in the damping and a slight increase in the
frequency for increasing 1/kFa. As the gas is more suscep-
tible to heating by inelastic processes in the deep molecular
regime �13�, both effects may be due to a thermal component
in this region.

1 /kFa�−0.8. The frequency exhibits a pronounced
“jump” from the hydrodynamic to the collisionless fre-
quency. This transition is accompanied by a pronounced
maximum of the damping rate.

1 /kFa�−0.8. The frequency stays almost constant about
5% above the theoretically expected value of �q=2�r. Inter-
action effects in the attractive Fermi gas are likely to cause
this significant upshift �38,39�. As we cannot experimentally
realize a noninteracting Fermi gas above the resonance, we
could not perform further experimental checks.

1 /kFa�0 and 1/kFa�−0.8. In this regime, we detect a
substantial downshift in the quadrupole-mode frequency. The
effect begins to show up already slightly above the resonance
�1/kFa=0� and increases to a magnitude of almost 20%
��q /�r�1.15 at 1 /kFa=−0.72�, before the transition to col-
lisionless behavior occurs. Indications of a similar downshift
have been observed already in compression-mode experi-
ments �19,21,23�, but here the downshift is considerably
larger and not blurred by changes in the equation of state.

A plausible explanation for the curious behavior of the
collective-mode frequency on the BCS side of the resonance
is provided by coupling of the oscillation to the pairing gap
�13,25,29�. If we assume that the abrupt transition is caused
by pair breaking resulting from resonant coupling of the os-
cillation to the gap, then the downshift may be interpreted as
a coupling effect when the gap is not much larger than the
oscillation frequency �30�. A similar shift may also arise
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plot� of the radial quadrupole mode. Both quantities are normalized
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from coupling of hydrodynamics and quasiparticle motion
�39�. The observed phenomenon still awaits a full theoretical
interpretation.

B. Phase shift and amplitude

Additional information on the interaction regime is pro-
vided by the phase shift � and the amplitude A of the ob-
served oscillation �see Eq. �3��. This is useful since ex-
tremely high damping in the transition region makes a
meaningful determination of frequency and damping practi-
cally impossible. We find that both the amplitude and phase
shift, however, can be determined with reasonable uncertain-
ties even in the transition regime.

In the following, we present measurements of the phase
shift and amplitude. These are compared to model calcula-
tions, which are described in detail in Appendix A.

In Fig. 6, the phase � and the relative amplitude are plot-
ted versus the interaction parameter 1 /kFa. The relative am-
plitude is given by the amplitude A �for a definition, see Eq.
�3�� divided by the average width of the cloud after expan-
sion. The average width is obtained by averaging
�Wx+Wy� /2 over one oscillation period using the same data
set from which we extract A.

In the transition area around 1/kFa=−0.8, the phase shift
� shows a steplike change at the transition from the hydro-
dynamic to the collisionless regime. This is similar to the
jump in frequency in Fig. 5. In the collisionless and unitary

regimes, the phase agrees with the theoretically expected val-
ues �solid line and dotted line, respectively�.

As a general trend, the relative amplitude is larger in the
hydrodynamic and smaller in the collisionless regime. In the
hydrodynamic regime, the relative amplitude decreases for
decreasing 1/kFa, which is explained by the change of �
from 1 to 2/3; � is the polytropic index of the equation of
state �see Appendix A�. At unitarity, the relative amplitude
agrees well with the numerically calculated value for �
=2/3 �dotted line�. In the collisionless limit, the relative am-
plitude is half of the value at unitarity, which is also consis-
tent with our calculations in Appendix C. We note that at the
transition from the hydrodynamic to the collisionless regime,
the value of the relative amplitude decreases even below the
collisionless value.

In summary, the behavior of the phase shift and the am-
plitude agrees with our model presented in Appendix A �see
also Figs. 9 and 10�; in particular, the prominent change in
the phase offset is confirmed.

C. Further observations

The measurements presented in the preceding subsections
were taken under fixed experimental conditions, where only
the scattering length a was varied. In this subsection we in-
vestigate how the transition from hydrodynamic to collision-
less behavior depends on the experimental parameters exci-
tation amplitude, trap depth, and temperature.

In a first set of experiments, we explored whether the
position of the transition depends on the excitation ampli-
tude. We increase or decrease the amplitude by a factor of 2.
This allows us to compare the oscillations where the ampli-
tude is �20%, �10%, and �5% of the averaged width. We
do not observe any significant change in the position of the
transition.

In general, we find that the transition always occurs when
the mode frequency is similar to the pairing gap. This is
supported by the fact that when we vary the trap depth the
transition occurs at a constant scattering length
�a�−5000a0, B�960 G� and does not depend on 1/kFa
�40�. A change in laser power of our trapping laser influences
both the Fermi energy EF and the frequency �q. As we in-
crease the trap power by a factor of 10, we also increase the
radial trap frequencies by a factor of �10�3.2. This changes
the Fermi energy by a factor of 2.2 and the pairing gap,
which scales like the trap frequencies, by roughly a factor of
3 �25�. These findings suggest that the transition is linked to
a coupling of the collective oscillation to the pairing gap.
This is also in agreement with earlier results on the radial
compression mode �13,19�.

To explore the temperature dependence of the transition
between the hydrodynamic and collisionless phases, we use a
controlled heating scheme similar to the one described in
�20�, where we hold the gas in a recompressed trap and let it
heat up. We set the magnetic field to 920 G
�1/kFa=−0.66�—i.e., slightly below the hydrodynamic-to-
collisionless transition, where the regime is still clearly hy-
drodynamic. We observe the oscillations in a gas at the low-
est temperature we can achieve in our experiments �solid
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circles� and in a “hotter” gas �open triangles� in Fig. 7. The
temperature of the cold gas is �0.1TF, and we believe the
temperature of the heated gas to be �0.2TF. Figure 7 clearly
shows that the frequency for the colder ensemble is lower
than that of the heated one and the amplitude is lower by
roughly a factor of 2. Using our model in Appendix A this
indicates a temperature-driven transfer of the ensemble from
the hydrodynamic to the collisionless regime.

Thus we find that the radial quadrupole mode is suited to
detect temperature-induced changes of the collisional regime
of the gas. An exploration of the phase diagram of our sys-
tem depending on temperature is possible, but beyond the
scope of this article. In our laboratory, work is currently in
progress on the radial scissors mode, which turns out to be
an even better tool for the exploration of temperature effects.

V. CONCLUSIONS

We have presented measurements on the radial quadru-
pole mode of an ultracold 6Li Fermi gas in the BEC-BCS
crossover. As a pure surface excitation, this elementary mode
probes hydrodynamic behavior without being affected by
changes in the equation of state. We have measured the char-
acteristic properties of this collective mode in a wide range
of interaction strengths.

Our observations provide insight into the dynamics of the
gas, in particular on the BCS side of the crossover, where the
character of the oscillations abruptly changes from hydrody-
namic to collisionless behavior. Our measurements presented
in this paper show the phenomenon much clearer than in the
radial compression mode �19,21,23� and provide quantitative
data on the behavior near the transition. In particular, the
data show that a substantial downshift of the collective-mode
frequency occurs in the hydrodynamic regime as a precursor
of the transition.

The experimental results support the interpretation that
the coupling of oscillation mode and pairing gap �13,25,29�
plays a crucial role for the collective excitation dynamics on
the BCS side of the crossover. We anticipate that our quan-
titative data on the hydrodynamic-to-collisionless transition
will stimulate further theoretical investigations of this in-
triguing phenomenon.
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APPENDIX A: SCALING APPROACH AND EXPANSION
EFFECTS

Here we present a theoretical model to describe the oscil-
lation of the cloud in the trap as well as its expansion after
release; the model adopts the scaling approach applied in
�41–43�. The interplay between the dynamics of the collec-
tive mode and the expansion behavior is of particular interest
as it introduces novel methods to investigate the collisional
regime. We use a scaling approach for both the hydrody-
namic and the collisionless regime �41–43�. In Appendix A
1, the limit of a hydrodynamic gas is presented, whereas in
Appendix A 2, the model in the collisionless regime is dis-
cussed. Based on these models, we show calculated results
for the amplitude and the phase after expansion in Appendix
A 3.

The scaling approach describes the cloud at the time t
after excitation �41–43�. Using the scaling function bi�t� for
i=x ,y, the width Wi�t� for all times t
0 can be written as

Wi�t� = bi�t�Wi�0�,1 �A1�

where Wx�0�= �1−��W0 and Wy�0�= �1+��W0 are the initial
widths at excitation and W0 is the width of the cloud without
excitation. The initial conditions for the scaling function are

bi�0�=1 and ḃi�0�=0.

1. Dynamic behavior in the hydrodynamic limit

In the hydrodynamic limit, the equations of hydrodynam-
ics lead to the following differential equations for bx and by
�42�:

b̈x =
�0x

2

bx�bxby�� − bx�x
2,

b̈y =
�0y

2

by�bxby�� − by�y
2, �A2�

where � is the polytropic index of the equation of state and
bz�t�=1 for our elongated trap geometry. The parameters �0x

and �0y are the trap frequencies at the moment of excitation
�t=0� when the cloud has no further excitation and is in
thermal equilibrium. In contrast to this, �x�t� and �y�t� are
the time-dependent trap frequencies. The timing scheme is
illustrated in Fig. 3. The following equation summarizes the
behavior of the trap frequencies �i�t�:

�i�t� = ��0i, t = 0,

�r , 0 � t � ttrap,

0, t 
 ttrap.

�A3�

This enables us to calculate the scaling functions bx and by as
solutions of Eq. �A2� for the in-trap oscillation. In the limit
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FIG. 7. �Color online� Oscillations of the quadrupole surface
mode at a magnetic field of 920 G and 1/kFa=−0.66. The solid
circles correspond to a cold ensemble, whereas the open triangles
correspond to a heated ensemble. The solid lines are fits to the data
according to Eq. �3�.
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of small amplitudes ���1� the solutions are

bx = 1 + ��1 − cos �qt� ,

by = 1 − ��1 − cos �qt� , �A4�

where �q=�2�r is the radial quadrupole oscillation fre-
quency. Together with Eq. �A1�, we are able to determine the
difference in widths of the cloud to be

	W = − 2�W0 cos �qt . �A5�

2. Dynamic behavior in the collisionless limit

In the collisionless limit, the following set of two un-
coupled equations characterizes bi, where i stands for x ,y
�43�:

b̈i =
�0i

2

bi
3 − bi�i

2. �A6�

In the limit of small amplitudes ���1� solutions of the in-
trap oscillation are

bx = 1 +
�

2
�1 − cos �qt� ,

by = 1 −
�

2
�1 − cos �qt� , �A7�

where �q=2�r is the radial quadrupole oscillation frequency.
Together with Eq. �A1�, we are able to determine the differ-
ence in widths of the cloud to be

	W = − �W0�1 + cos �qt� . �A8�

In contrast to the hydrodynamic limit, the oscillation is ini-
tially not centered around 	W=0. Furthermore the oscilla-
tion has an amplitude 1/2 of the amplitude in the hydrody-
namic gas.

Besides the finding of analytical solutions, it is enlight-
ning to understand the collective oscillations in the collision-
less limit by considering the phase-space dynamics of the
cloud. In Fig. 8, we show the contours of phase-space distri-
butions in the x and y directions. The axes are scaled such
that for the round trap—i.e., �x=�y =�r—the dynamics of
any point in phase-space is a simple circular rotation about
the origin with frequency �r. Thus, the solid circle in Fig.
8�a� indicates an equilibrium phase-space contour for the
round trap. Right after applying the excitation scheme as
described in Sec. III the phase-space contours in the x and y
directions are given by the dashed and dotted ellipses in Fig.
8�a�. Since the gas is fully thermalized at the instant of ex-
citation, the initial momentum distribution in the x and y
directions is the same. As time progresses, the elliptic con-
tours will rotate with frequency �r �see Fig. 8�b��, which
corresponds to oscillations in the trap. We note that both the
spatial and momentum distributions in the x direction are
never larger than the ones in the y direction. Therefore, 	W
oscillates between 2�W0 and zero and the aspect ratio of the
cloud never inverts. This is to be compared to the hydrody-

namic case where 	W oscillates between ±2�W0.
Residual thermalization effects in a near collisionless gas

will damp out the initial oscillation amplitude of �W0, and
one will eventually end up again with a circular phase-space
contour �see Fig. 8�c��. This is studied in detail in Appendix
B.

3. Amplitude and phase on expansion

Here we present our calculated results based on the mod-
els in Appendixes A 1 and A 2 for the hydrodynamic and
collisionless limits, respectively. We show the relative ampli-
tude that is given by the amplitude A �for a definition see Eq.
�3�� divided by the average width of the cloud after expan-
sion �for definition details see Sec. IV B�. Calculations of
this relative amplitude are shown in Fig. 9, whereas calcula-
tions and measurements for the phase offset � are shown in
Fig. 10.

Figure 9 shows the calculated relative amplitude of a
surface-mode oscillation in the hydrodynamic �dashed and
dotted curves� and in the collisionless �solid curve� regime as
a function of the reduced expansion time �rtTOF. The hydro-
dynamic curves are calculated for the BEC limit of �=1
�upper, dashed curve� and in the unitarity limit of �=2/3
�lower, dotted curve�. The amplitude in the collisionless re-
gime is smaller than in the hydrodynamic regime. Initially

� t = 0

� t = �/2

� t � �

x,y

P

x,y

x,y

P

P

�� �
q r
= 2 )
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r

r

r

FIG. 8. Phase-space dynamics for the quadrupole mode in the
collisionless regime. Shown are phase-space contours of an en-
semble of particles which is held in a round trap �i.e., �x=�y =�r�.
In �a� and �b� the situation during the oscillation in the trap is shown
for two different times t. The solid line indicates the equilibrium
phase-space contour �without excitation�, whereas the dotted
�dashed� line shows the contour in the x �y� direction after excita-
tion of the oscillation mode. �c� After long times, residual thermal-
ization finally damps out the oscillations and leads to a circular
phase space contour.
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the amplitude of the excitation is half as large in the colli-
sionless as in the hydrodynamic regime, as already explained
in Appendix A 2. In expansion the normalized amplitude
stays constant in the collisionless regime and in the hydro-
dynamic regime for �=1. For �=2/3 in the hydrodynamic
regime it decreases for longer expansion times.

In Fig. 10 we compare experimental data for the phase
shift � with numerical simulations. The data have been taken
at unitarity where 1/kFa=0 �hydrodynamic, open circles�,
and on the BCS side of the resonance at 1 /kFa=−1.34
�collisionless, solid triangles�. The dashed line is based on a
model for the hydrodynamic interaction regime and the solid
line on a model for the collisionless regime. The data agree
with the theoretical model where no free fit parameters are
used. This confirms our approach presented above.

APPENDIX B: THERMALIZATION EFFECTS
IN A NEAR-COLLISIONLESS GAS

Here we describe thermalization effects in a near-
collisionless gas that are not included in the model for the
collisionless limit in Appendix A 2. Despite the word “colli-
sionless”, collisions play a crucial role for thermalization for
our experimental parameters. A typical time scale for ther-
malization processes is only a few oscillation cycles long. By
analyzing the theory, we are able to introduce a universal fit
function, as given by Eq. �3�, which describes the oscillation
both in the hydrodynamic and in the near-collisionless re-
gime.

The measured behavior of the nearly collisionless quad-
rupole oscillation �see Fig. 4� has two characteristics: after
excitation the oscillation is centered around 	W= �Wx�0�
−Wy�0�� /2; then, after some time it is centered around 	W
=0. These two limits are consistent with thermalization of
the gas on a relevant time scale greater than the period of the
oscillation.

In order to model these effects, we follow a theory based
on a classical gas in the transition between the hydrodynamic
and the collisionless behavior described in �38�. An applica-
tion of this theory for the compression mode in the hydrody-
namic regime has been used in �41�. Here we will handle
thermalization effects of the quadrupole mode in the near-
collisionless regime.

Using the classical Boltzmann-Vlasov kinetic equation in
the relaxation-time approximation and ignoring mean-field
effects one can derive the coupled differential equations �38�

b̈i = �0i
2 �i

bi
− �i

2bi �B1�

and

�i
˙ =

1

�R
��i − �̄� − 2

bi
˙

bi
�i. �B2�

The parameter bi is the scaling function described earlier in
Appendix A, �i is a scaling parameter directly related to the

temperature, and �̄= 1
3�k�k. The initial condition for �i is

�i�0�=1, as long as the gas is in thermal equilibrium at the
moment of the excitation. The parameter �R is the relaxation
time which describes the time scale of collisions. In the col-
lisionless limit, when �R→�, the differential equation �B1�
simplifies to the simple form in Eq. �A6�. For the hydrody-
namic limit ��R→0�, we find Eq. �A2�.

The solutions to these equations depend on the parameter
�R as can be seen in Fig. 11. Our measured data in the col-
lisionless regime are well described by �r�R�2.3 �compare
to Fig. 4�.

Universal fit function. We find that the model calculations
from Eqs. �B1� and �B2� can be well described by the fit
function

	W = Ae−
ttrap cos��qttrap + �� + Ce−�ttrap + y0. �B3�

The first term describes the exponentially damped oscilla-
tions. The second term describes the shift of the center of the
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FIG. 9. �Color online� Calculated relative amplitude of a surface
mode oscillation versus reduced time of flight �rtTOF after release
from the trapping potential. The values are calculated for the hy-
drodynamic �dashed curve, �=1; dotted curve, �=2/3� and colli-
sionless regime �solid curve�. The vertical dotted line marks the
typical expansion time in our experiments.
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FIG. 10. �Color online� Phase � of the collective surface mode
as detected by fits according to Eq. �3� versus reduced expansion
time �rtTOF at unitarity �open circles� and at 1 /kFa=−1.34 �solid
triangles�. The lines are numerical simulations for the hydrody-
namic �dashed line� and collisionless regime �solid line�. The verti-
cal dotted line marks the typical expansion time in our experiments.
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oscillation in the collisionless regime. The third term y0 is a
constant offset which will be discussed later.

We have used Eq. �B3� to fit our experimental measure-
ments. We find that the free-fit parameters � and 
 are related
through � /
�1.5 for all our measurements in the near-
collisionless regime. In the hydrodynamic regime C=0, and
therefore � becomes irrelevant.

The constant offset y0 is due to an experimental artifact
that results from a slight inhomogeneity of the magnetic
field. At the location of the atoms the inhomogeneous mag-
netic field leads to a weak saddle potential which causes a
slight anisotropic expansion during the time of flight. This
anisotropy is responsible for a slight offset in 	W.

APPENDIX C: CORRECTIONS TO THE NORMALIZED
FREQUENCY

The theoretical normalized frequencies �q /�r are calcu-
lated for perfectly harmonic trapping potentials in an ideal-

ized symmetric trap geometry. There are small derivations
from this conditions in real experiments. In order to compare
the experimental data to the idealized theoretical case, we
have to correct our data. The measured normalized frequency
�q /�r of the radial quadrupole mode has to be increased
because of two small corrections. The larger correction is
based upon a slight anharmonicity of the trapping potential
and the spatial extension of the cloud in the trap. The smaller
correction is caused by a small residual ellipticity of the trap-
ping potential.

The potential created by our trapping beam has a Gauss-
ian shape. This results in a nearly harmonic potential in the
center of the trap; however, for higher precision one must
take into account higher-order terms of the potential. Anhar-
monicity effects influence both our measurements of the
sloshing-mode frequency, where we determine �r, and our
measurements of the quadrupole-mode frequency �q. As we
evaluate the normalized frequency �q /�r, the anharmonicity
effects on the sloshing and quadrupole modes almost cancel
out each other. The small remaining correction to the normal-
ized frequency is included by multiplying by a prefactor 1
+b� �20,44�. The anharmonicity parameter � relates the en-
ergy of the oscillation to the total potential depth and is de-
fined by �= 1

2m�r
2rrms

2 /V0, where rrms is the root-mean-square
radius of the trapped cloud and V0 is the potential depth. The
parameter b depends on the interaction regime. In the hydro-
dynamic regime, it is given by �4+10�� / �2+7��, whereas in
the collisionless regime b is determined by 6/5�44�. Here, �
is the polytropic index of the equation of state. In our experi-
ments, typically b��0.014, but b� can rise to an upper limit
of b��0.027.

In the hydrodynamic regime, there is also a correction due
to residual ellipticity effects. This correction takes into ac-
count that we compare our measurements with a theory for
nonelliptic geometries. The ellipticity � of the trap is defined
by �= ��y −�x� /�r. In our experiments, the ellipticity is small
and given by ��0.07. Therefore, we can apply the ellipticity
correction by multiplication of a prefactor 1+��2 �20,44�,
where the interaction dependent factor � is given by
��+2� / �4��. Altogether, ��2 is smaller than 0.006 for all
data points.
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