
Ramsey interferometry with a two-level generalized Tonks-Girardeau gas

S. V. Mousavi*
Departamento de Química-Física, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

and Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran

A. del Campo,† I. Lizuain,‡ and J. G. Muga§

Departamento de Química-Física, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
�Received 25 May 2007; published 17 September 2007�

We propose a solvable generalization of the Tonks-Girardeau model that describes a coherent one-
dimensional �1D� gas of cold two-level bosons which interact with two external fields in a Ramsey interfer-
ometer. They also interact among themselves by idealized, infinitely strong contact potentials, with interchange
of momentum and internal state. We study the corresponding Ramsey fringes and the quantum projection noise
which, essentially unaffected by the interactions, remains that for ideal bosons. The dual system of this gas, an
ideal gas of two-level fermions coupled by the interaction with the separated fields, produces the same fringes
and noise fluctuations. The cases of time-separated and spatially separated fields are studied. For spatially
separated fields the fringes may be broadened slightly by increasing the number of particles, but only for large
particle numbers far from present experiments with Tonks-Girardeau gases. The uncertainty in the determina-
tion of the atomic transition frequency diminishes, essentially with the inverse root of the particle number. The
difficulties to implement the model experimentally and possible shortcomings of strongly interacting 1D gases
for frequency standards and atomic clocks are discussed.
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I. INTRODUCTION

A basic feature of the observed interference fringes in a
standard Ramsey experiment is that their width is determined
by the inverse of the time taken by the atoms to cross the
intermediate drift region. For precision measurement pur-
poses, as in atomic clocks, this motivates the use of very
slow �ultracold� atoms, and therefore the development of la-
ser cooling techniques has changed the entire prospects of
frequency standards �1�. Experimentally, atomic velocities of
the order of 1 cm/s and smaller can be achieved, and space-
based clocks are in development to eliminate gravitational
effects in the motion of such slow particles �2�. Laser cooled
atoms are also interesting in metrology and interferometry
because of the possibility to achieve narrow velocity distri-
butions and avoid averaging effects. In addition, fundamen-
tally new effects may arise by using coherent few-body or
many-body states as input in the form of condensates or oth-
erwise: for example, there exist proposals to beat the limita-
tions imposed by quantum projection noise using entangle-
ment �3,4�.

In spite of the above, the motto “the slower the better” in
the context of atomic clocks has actually a limited domain
beyond which quantum motional phenomena may affect
strongly and eventually deform totally the usual Ramsey pat-
tern. If the slow atom moves initially along the x axis and the
fields are oriented perpendicularly along the y axis, there are
two origins of modification of the standard Ramsey result

�5�. First, the absorption of a photon leads to a transverse
momentum transfer on the atom, such that the excited state
separates in space from the ground state. This is negligible
for microwaves but not for optically induced �one- or two-
photon� transitions. The effect can be understood classically
by means of energy conservation and momentum conserva-
tion in y direction. It has been studied in detail by Bordé and
co-workers �6� and multibeam setups have been imple-
mented to correct for this separation in order to observe
quantum interference �7–9�. Second, the field acts as a bar-
rier for the longitudinal motion of the atom, and quantum
reflection and tunneling may occur. Thus, momentum in x
direction is not conserved as a consequence of the x depen-
dence of the fields. For microwave fields and the correspond-
ing Rabi frequencies these quantized motion effects are tiny
for present atomic velocities but may become important for
deeply ultracold particles. Moreover, in view of a proclaimed
near-future accuracy of frequency standards of 10−18 �10�,
even those tiny effects have to be studied beyond the limits
of the standard theoretical description of the Ramsey pattern.
Recently, we have given an exact quantum result of the Ram-
sey fringes for guided atoms as a function of the detuning
including quantum tunneling and reflection by means of two-
channel recurrence relations �11�.

Apart from quantum motion effects affecting ensembles
of independent particles, other effects are due to the impor-
tance of quantum statistics and interactions. The use of a
Bose-Einstein condensate for an atomic clock immediately
comes to mind, but the improvements associated with low
velocities and narrow velocity distribution may be compen-
sated by negative effects, such as collisional shifts and insta-
bilities leading to the separation of the gas cloud �12,13�.

A natural candidate for further exploration is the Tonks-
Girardeau �TG� regime of impenetrable, tightly confined
bosons subjected to “contact” interactions �14,15�, since
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some of its properties are complementary to those of the
condensates. In particular, the TG requirement of strong con-
tact interactions implies similarities between the bosonic sys-
tem and a “dual” system of freely moving fermions, with all
local correlation functions and the elementary excitations of
the TG bosons and the dual system of fermions being actu-
ally equal. Other important feature of the TG gas is its one
dimensional �1D� character. Olshanii showed �16–18� that
when a bosonic vapor is confined in a wave guide with trans-
verse trapping so tight and temperature so low that the trans-
verse vibrational excitation quantum ��� is larger than
available longitudinal zero point and thermal energies, the
effective dynamics becomes one dimensional, and accurately
described by a 1D Hamiltonian with �-function interactions
g1D��xj −x��, where xj and x� are 1D longitudinal position
variables. This is the Lieb-Liniger �LL� model, exactly
solved in 1963 by a Bethe ansatz method �19�. The coupling
constant g1D can be tuned along a broad range of values by
varying the magnetic field �and thus the three dimensional
s-wave scattering length� or the confinement �confinement
induced resonances �16,17�� near a Feschbach resonance;
this allows in particular to reach the Tonks-Girardeau regime
of impenetrable bosons, which corresponds to the g1D→�
limit of the LL model. The limiting regime has been realized
experimentally �20,21�, and was solved exactly in 1960
�14,15� by the so-called Fermi-Bose mapping to the ideal
Fermi gas.

In metrology and atomic interferometry, the tight 1D con-
finement along a waveguide is a simplifying feature since no
transversal motional branches have to be considered with the
possible bonus of an increased signal. Nevertheless, the con-
finement is by itself problematic for frequency standard ap-
plications, since it is carried out by means of magnetic or
optical interactions which will in principle perturb the inter-
nal state levels of the atom. Several schemes have been pro-
posed to mitigate this problem and compensate or avoid the
shifts due to magnetic �12� or optical interactions �22,23�,
and we shall assume hereafter that such a compensation is
implemented.

The possible applications in interferometry are a strong
motivation for current research in TG gases. Interference ef-
fects have been examined so far in a few publications in
which internal states have not played any role �24,25�. In-
deed, a TG model including internal states and an external
interaction coupling them has not been discussed, although
optically guided systems with free spin subjected to poten-
tials for singlet and triplet interactions have been studied by
means of effective LL models �26,27�. Note also that a
model applicable to a two-level LL gas coupled by an on-
resonance laser has been solved by nested Bethe ansatz �28�.

In this paper, we investigate the implications in Ramsey
interferometry of a model in the spirit of the original �struc-
tureless� TG gas, but with internal structure. The idealized,
strong contact interactions of the model allow to achieve
essential solvability of the dynamical problem in the Ramsey
two-field excitation setup by simple quadrature: the colli-
sions are characterized by internal state and momentum ex-
change, which reduce to the usual impenetrable constraint
for collisions in the same internal channel. The difficulties
and somewhat extreme requirements to implement the gen-

eralized TG gas may have negative implications in metrol-
ogy applications which will also be discussed.

We shall study different configurations for the two fields,
both in space and time domains. They are conceptually dif-
ferent and the mathematical treatment is different too. For
reasonable parameters, however, the results turn out to be
very similar.

II. TWO-LEVEL TONKS-GIRARDEAU GAS WITH
EXCHANGE, CONTACT INTERACTIONS

A. Notation and contact interactions

We shall propose here a generalization of the Tonks-
Girardeau gas for two-level impenetrable atoms. First we
shall need to review or introduce some notation and basic
concepts. In one dimension the state of a single two-level
atom may be written as a two-component “spinor”

�n�x1� = �
b=g,e

�n
�b��x1��b� , �1�

where n=1,2 ,3 , . . .. is a label to distinguish different spinors
and b is a generic index for the internal bound state, which
may be g �ground� or e �excited�. �Remark 1: Note that in
general g and e do not necessarily correspond to states with
definite values of the component of the electronic spin in one
direction, i.e., the word “spinor” is here synonym of “two-
component wave vector;” Remark 2: the subindex n will
later on correspond to states prepared as harmonic oscillator
eigenstates of a longitudinal trap.� One-particle states may be
combined to form two-particle ones with the form

�nn��x1,x2� = �
b,b�

�n
�b��x1��n�

�b���x2��bb�� , �2�

and similarly for more particles. The convention in �bb�� is
that b is for particle 1 and b� for particle 2. This will in some
equations be indicated even more explicitly adding a particle
subscript to the internal state label, b1, b2, etc.

To discuss the contact interactions of the model consider
now the usual Pauli operators acting on one-particle internal
state vectors,

�X = �g��e� + �e��g� ,

�Y = i��g��e� − �e��g�� ,

�Z = �e��e� − �g��g� , �3�

and the corresponding three-component operator Ŝ j =� j /2
for particle j analogous to the spin-1 /2 angular momentum
operator. If S=S1+S2, S2 has eigenvalues S�S+1� with S
=0 and S=1 corresponding to singlet and triplet subspaces
spanned by �−�	��eg�− �ge�� /
2 and ��gg� , �ee� , �+ �	��eg�
+ �ge�� /
2�, respectively.

Assume now the following Hamiltonian

MOUSAVI et al. PHYSICAL REVIEW A 76, 033607 �2007�

033607-2



Ĥcoll = −
�2

2m
�
j=1

2

�xj

2 + vs�x12�P̂12
s + vt�x12�P̂12

t,el. �4�

Here x12=x1−x2, P̂12
s = �−��−�= 1

4 − Ŝ1 · Ŝ2 is the projector onto

the subspaces of singlet functions, and P̂12
t,el= �gg��gg�+ �ee�

��ee�+ �+ ��+� is a projector onto the triplet subspace re-
stricted to elastic processes.

The internal Hilbert space can be written as the sum of
singlet and triplet subspaces as Hs � Ht. Suppose now that
the reflection amplitude for relative motion in such represen-
tation takes the values +1,−1 in singlet and triplet subspaces
respectively. The particles are impenetrable and these values
correspond to a hard wall potential vt at x12=0 for all
collisions in triplet channels �gg�→ �gg�, �ee�→ �ee�, or
�+ �→ �+ �, whereas vs has, in addition to the hard wall at
x12=0, a well of width l and depth V, so that the reflection
amplitude becomes R= +1 in the limit in which the well is
made infinitely narrow and the well infinitely deep, keeping
�2mV /�2�1/2l=	 /2 �26,29–31�. �Notice that in these refer-
ences the well applies to the triplet subspace and not to the
singlet subspace as here. This infinite well potential appears
in the so-called fermionic Tonks-Girardeau gas �26,29,30�.�

Translated into the g ,e basis and for the sector x1
x2 this
implies that in all collisions between atoms in g or e and
well-defined momenta, they interchange their momenta �the
relative momentum changes sign�, as well as their internal
state, with the outgoing wave function picking up a minus
sign because of the hard-core reflection, as shown in Fig. 1.
For x1
x2 and equal internal states such collision is repre-
sented by

eikx1eik�x2�bb� − �eik�x1eikx2��bb� , �5�

whereas for b�b�,

eikx1eik�x2�bb�� − �eik�x1eikx2��b�b� . �6�

In the diagonal case of equal internal states the spatial part
vanishes at contact, x1=x2, whereas in the nondiagonal case
it does not, but note that in Eq. �6� only the “external region”
is considered, disregarding the infinitely narrow well region.

We shall proceed now to discuss a possible implementa-
tion of these contact interactions. First of all, undesired in-
elastic collisions are expected to be substantially reduced by
confinement at low collision energies, so as to limit the in-
ternal space to the two internal levels of the model and to the
simple processes considered �32�. The internal levels of
133Cs clocks, �F=3,mF=0� and �F=4,mF=0�, combine spin-
down and -up components, and the different triplet elastic
channels may have different scattering amplitudes. We may
again rely on strong confinement and low energies to expect
that the inner electronic cores will produce effective reflec-
tion coefficients close to −1, independently of the internal
state.

A second and important condition is the need to achieve
strongly attractive singlet collisions. For two bosons in the
singlet subspace, the space wave function is antisymmetric,
so that s-wave scattering is forbidden; therefore the interac-
tions are governed to leading order by a 3D p-wave scatter-
ing amplitude and can be enhanced by a 1D odd-wave
confinement-induced Feschbach resonance �CIR�, which al-
lows in principle to engineer vs and achieve a strong attrac-
tion as required above. For two spin-polarized interacting
fermions �26,29,30,33�, the spatial symmetry of the sub-
spaces is interchanged with respect to the bosonic case, and
one requires a p-wave scattering in the triplet subspace.
However, in the rest of the paper we shall focus on the
former, bosonic case, whose dual, auxiliary system of free
fermions we introduce next.

B. Two noninteracting fermions

Let us consider now a fermionic state made of two non-
interacting one-particle states with the form

�F�x1,x2� =
1

2
�1�x1� �1�x2�

�2�x1� �2�x2�
 =

1

2

detn,j=1
2 �n�xj�

=
1

2

�
b1,b2=g,e

�1
�b1��x1� �1

�b2��x2�

�2
�b1��x1� �2

�b2��x2�
�b1b2� ,

with the state sign changing by switching particles 1 and 2
and the internal states. We insist that these fermions do not
interact among themselves, but they could interact with an
external potential as we shall see later. To construct the state
we are simply combining two Hartree products of one-
particle two-component wave vectors �n, each vector corre-
sponding to the solution of the Schrödinger equation for a
single fermion with internal structure. �F is thus a solution
of the Schrödinger equation for two fermions without mutual
interaction.

More explicitly,

FIG. 1. �Color online� Diagrammatic representation of the col-
lisions for particles with different internal states in the sector x1


x2: the particles interchange their momentum and internal state
picking up an additional phase �minus sign�.
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21/2�F�x1,x2� = ��1
�g��x1��2

�g��x2� − �2
�g��x1��1

�g��x2���gg�

+ ��1
�e��x1��2

�e��x2� − �2
�e��x1��1

�e��x2���ee�

+ ��1
�g��x1��2

�e��x2� − �2
�g��x1��1

�e��x2���ge�

+ ��1
�e��x1��2

�g��x2� − �2
�e��x1��1

�g��x2���eg� .

�7�

It might at first be surprising that the spatial part for the
nondiagonal components �ge� or �eg� does not vanish at x1
=x2, but one can check that the state is indeed fermionic
noticing that, with our notation, the interchange of particle
label and internal state leaves in each term the internal state
vectors �bb�� unchanged. Thus the interchange symmetry op-
eration simply changes the sign of the total state.

C. Mapping to a bosonic wave function

An associated bosonic system of interacting atoms, totally
symmetric under �xi ,bi�↔ �xj ,bj� permutations may be now
obtained by means of the Bose-Fermi mapping, �B�x1 ,x2�
=A�F�x1 ,x2�, where the antisymmetric unit function is A
=sgn�x2−x1�.

For the sector x1
x2 we could use Eq. �7� directly, or
rearrange it slightly to construct the bosonic wave function
as

21/2�B�x1,x2� = ��1
�g��x1��2

�g��x2� − �2
�g��x1��1

�g��x1���gg�

+ ��1
�e��x1��2

�e��x2� − �2
�e��x1��1

�e��x2���ee�

+ ��1
�g��x1��2

�e��x2���ge� − ��2
�e��x1��1

�g��x2��

��eg� + ��1
�e��x1��2

�g��x2���eg�

− ��2
�g��x1��1

�e��x2���ge� . �8�

In the complementary sector x1�x2 we would obtain the
same form except for a global minus sign consistent now
with the bosonic character. The resulting bosonic state is
discontinuous at contact and cannot represent noninteracting
bosons. Comparing Eq. �8� with Eqs. �5� and �6�, we may
interpret the bosonic function as the result of contact colli-
sions between impenetrable atoms that interchange internal
state and momenta, exactly as described in Sec. II A. In other
words, �B is a bosonic solution of the two-body Schrödinger
equation with Hamiltonian �4�, with an infinite wall for the
triplet potential, whereas the singlet potential, in addition to
the infinite wall has an infinitely narrow and deep well. �B
represents the wave function only outside the narrow well.
Figure 1 provides a pictorial representation of the last two
terms in Eq. �8� within the sector x1
x2.

D. Generalization for N atoms

We have in summary constructed a bosonic wave function
for a system of two particles subjected to contact interactions
with internal state and momentum interchange, using a dual
system of two noninteracting fermions and the antisymmetric
unit function. The generalization to N-atoms is straightfor-
ward. The state for N noninteracting fermions with internal
structure takes the form

�F�x1, . . . ,xN� =
1


N!
detn,j=1

N �n�xj�

=
1


N!
�

b1,¯,bN=g,e ��1
�b1��x1� ¯ �1

�bN��xN�
] � ]

�N
�b1��x1� ¯ �N

�bN��xN�
�

��b1 ¯ bN� ,

and

�B�x1, . . . ,xN� = A�F�x1, . . . ,xN� , �9�

where

A = �
1j
kN

sgn�xk − xj� , �10�

is the bosonic solution of the time-dependent or stationary
Schrödinger equation for the Hamiltonian

Ĥcoll = −
�2

2m
�
j=1

N

�xj

2 + �
1j
�N

�vs�xj��P̂j�
s + vt�xj��P̂j�

t,el� ,

�11�

with the same contact interactions as before.
The density profile, normalized to N particles, which

gives the appearance of the cloud, is defined by

�N�x� = N� ��B�x1, . . . ,xN��2dx2 . . . dxN. �12�

Provided that the one-particle spinor states �n are orthonor-
mal, as they will always be hereafter, the density profile
reads

�N�x� = �
b=g,e

�
n=1

N

��n
�b��x��2 = �

b=g,e
�N

�b��x� , �13�

where the density profile for each of the channels defined by
the two internal levels is given by

�N
�b��x� = �

n=1

N

��n
�b��x��2. �14�

The simplicity achieved by our model parallels that of the
usual �structureless� TG gas in the sense that an N-body
wave function with interactions is obtained from freely mov-
ing one-body states. Even more, this property is preserved by
adding an interaction affecting the individual atoms only and
coupling the internal levels. This is precisely the type of
interaction that we find in the Ramsey interferometer.

III. QUANTUM PROJECTION NOISE IN THE TWO-LEVEL
GENERALIZED TONKS-GIRARDEAU GAS

Itano et al. �34� studied the quantum projection noise for
a Hartree product state of the form �b1 , . . . ,bN�= � i=1

N �bi�.
This noise is, in other words, the fluctuation of the number of
excited atoms for measurements made in the N-body system.
In Ramsey interferometry, the error in the determination of
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the atomic frequency depends on the ratio between the �root
of the� fluctuation in the number of excited atoms and the
derivative of the signal �proportional to the number of ex-
cited atoms� with respect to detuning.

Here we shall obtain the noise associated with the state
�B�x1 , . . . ,xN�. We shall follow �34� and introduce the op-
erator

ŜZ = �
i=1

N

ŜiZ
=

1

2�
i=1

N

��ei��ei� − �gi��gi�� , �15�

where it is assumed, as usual, that each term in the summa-
tion is multiplied by the identity operator for all the other
atoms.

The quantum projection noise of a signal is proportional
to the variance

��SZ�2 = �ŜZ
2� − �ŜZ�2, �16�

and expressions for both terms will now be worked out.
First, notice that SZ commutes with A so that, using A2=1,
we may compute the expectation values substituting �B by
�F, i.e., for the more easily tractable, dual fermionic system.
Since �F is antisymmetric it follows that

�ŜZ� = N��B�Ŝ1Z
��B� �17�

and

�ŜZ
2� = �

i=1

N

�ŜiZ
2 � + �

i,ji�j

�ŜiZ
ŜjZ

� = N�Ŝ1Z

2 � + N�N − 1��Ŝ1Z
Ŝ2Z

� .

�18�

Equation �17� takes the form

N��B�Ŝ1Z
��B� = N� �

i

dxi�B
*�x1, . . . ,xN�Ŝ1Z

�B�x1, . . . ,xN�

= �
n=1

N

��n�Ŝ1Z
��n� =

1

2�
n=1

N

�n, �19�

where �n= pn
�e�− pn

�g� is the probability difference for the ex-
cited and ground state in state n.

In Eq. �18�, note that S1Z

2 =1N /4 and therefore �Ŝ1Z

2 �=1/4
for the normalized state �B�x1 , . . . ,xN�. The cross term can
be evaluated as

N�N − 1��Ŝ1Z
Ŝ2Z

� = �
n,m

���n�Ŝ1Z
��n���m�Ŝ2Z

��m�

− ��n�m�Ŝ1Z
Ŝ2Z

��m�n��

=
1

4�
n,m

��n�m − �nm� , �20�

where the �nm terms are positive and defined as

�nm = � dx��n
�e��x��*�m

�e��x� − ��n
�g��x��*�m

�g��x�2

= ���n
�e���m

�e�� − ��n
�g���m

�g���2. �21�

Combining these results, the variance simply reads

��SZ�2 =
N

4
−

1

4�
n,m

�nm. �22�

If the dependence of single particle expectation value

��n�Ŝ1Z
��n� on n can be neglected, so that �n�� for all n,

��SZ�2 =
N

4 �1 −
1

N
�

n

�n
2� −

1

4 �
n,mn�m

�nm �
N

4
�1 − �2�

−
1

4 �
n,mn�m

�nm 
 ��SZ�0
2, �23�

where we have identified a term ��SZ�0
2	 N

4 �1−�2� corre-
sponding to the quantum noise for the Hartree product state
in Ref. �34�, and a negative correction for the strongly inter-
acting bosonic TG gas.

IV. THE RAMSEY INTERFEROMETER

Ramsey interferometry with guided ultracold atoms has
recently been discussed in Ref. �11�. Here we consider a
system of N two-level atoms in the Tonks-Girardeau regime,
initially confined in their ground internal states in a harmonic
trap of frequency �. All energy scales are supposed to be
much smaller than the transverse excitation energy ���, so
that the radial degrees of freedom are frozen out and the
system is effectively one dimensional. The cloud is prepared
in the ground state, and released by switching off the trap
along the x axis at time t=0 ��=0 for t�0�; a momentum
kick �k0 is also applied, so that the cloud moves along the x
axis towards the two separated oscillating fields localized
between 0 and l and between l+L and 2l+L �Fig. 2�. The
initial state is prepared far from the first field. We thus have
to take into account the spatial width �root of the variance� of
the highest state, �N= ��N+1/2�� / �m���1/2, and choose the
central initial position of the harmonic trap x0
0 so that
�x0���N.

In an oscillating-field-adapted interaction picture �which
does not affect the collisional Hamiltonian� and using the
Lamb-Dicke �see the next section�, dipole and rotating-wave
approximations the Hamiltonian is, for each of the particles,

L+2lL+ll0 x

k0000

FIG. 2. �Color online� Schematic setup for Ramsey interferom-
etry of guided atoms in the spatial domain. The atoms are prepared
in the ground state and the probability of excitation is measured
after passing the two fields.
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H =
p̂2

2m
− ���e��e� +

�

2
��x̂���g��e� + �e��g�� , �24�

where the first term counts for the kinetic energy of the atom,
�=�L−�12 is the detuning between the oscillating field fre-
quency and atomic transition frequency, and ��x� is the
position-dependent Rabi frequency. For the explicit x depen-
dence we assume mesa functions, ��x�=� for x� �0, l� and
x� �l+L ,2l+L� and zero elsewhere. In addition, we have to
include the interparticle interactions but this is done implic-
itly by means of the wave function �9� and its boundary
conditions at contact.

The Ramsey pattern is defined by the dependence on the
detuning of the probability of excited atoms after the inter-
action with the two field regions. From Eq. �14� it follows
that Pe= 1

N�n=1
N pn

�e�, which is a remarkably simple result for
an N-body system with external and interparticle interac-
tions. Once a particle incident from the left and prepared in
the state eik0�x−x0��n�x−x0��g� at t=0 has passed completely
through both fields, the probability amplitude for it to be in
the excited state is

�n
�e��x,t� =

1

2	

� dkeiqx−ik2�t/�2m�Tge�k��̃n�k� , �25�

where �̃n�k� is the wave number representation of the kicked
nth harmonic eigenstate,

�̃n�k� =
�− i�n


2nn!
�2�0

2

	
�1/4

e−�0
2�k − k0�2

e−ikx0Hn�
2�0�k − k0�� ,

�26�

the momentum in the excited state is q=
k2+2m� /�, the
spatial width of the n=0 state is �0= �� / �2m���1/2, Hn the
Hermite polynomials, and Tge is the “double-barrier” trans-
mission amplitude for the excited state corresponding to at-
oms incident in the ground state �the excited state probability
for monochromatic incidence in the ground state is q

k �Tge�2�.
The full quantum treatment of Tge can be done by means of
the two-channel recurrence relations connecting it with one-
field transmission and reflection amplitudes �11�.

Our numerical simulations are for l=1 cm, L=10 cm, N
=10, and v0=1 cm/s. Figure 3 shows that the variation of
the excitation probability for different harmonic eigenstates
is negligible in the scale shown, and in fact the curves for the
central fringe are indistinguishable from the semiclassical re-
sult of Ramsey �which assumes classical motion for the cen-
ter of mass, uncoupled from the internal levels�,

Pe,scl��� =
4�2

��2 sin2����

2
��cos����

2
�cos��T

2
�

−
�

��
sin����

2
�sin��T

2
��2

, �27�

where �= l /v0, T=L /v0, and ��= ��2+�2�1/2.
There is in principle a broadening of the central fringe by

increasing n due to the momentum broadening of vibra-
tionally excited states. This effect may be expected however
to be quite small for the few-body states of our calculations,

N=10, which is in fact of the order of current experiments
with TG gases �N�15,50 in Refs. �20,21��. The width �root
of the variance� of the velocity distribution around the cen-
tral velocity v0=�k0 /m for the nth state is

�v = ��n +
1

2
���

m
�1/2

= 
2n + 1
�

2m�0
, �28�

where we have used the spatial width of the n=0 state, �0
= �� / �2m���1/2. This will not affect significantly the width of
the central fringe �proportional to the inverse of the crossing
time T� as long as �v /v0�1. For v0=1 cm/s, �0=20 �m,
the mass of 133Cs, and N=10, this ratio is �5�10−3. N
should be �4�105 to obtain a ratio of order one, but this
means four orders of magnitude more particles than in the
existing experiments.

The error to estimate the atomic frequency from the Ram-
sey pattern depends on the ratio �34�

r =
�SZ

���SZ�/���
, �29�

which we calculate at half height of the central interference
peak. We compute �SZ with Eq. �22�. Since, according to the
previous discussion, the excitation probabilities are essen-
tially independent of n, Eq. �23� is an excellent approxima-
tion. Moreover, the correction to ��SZ�0 due the particle cor-
relations is negligible, with a relative error ���SZ�0

−�SZ� /�SZ�10−10 in our calculations. Since, in addition,
the derivative in Eq. �29� is very well approximated by the
semiclassical result, the ratio r essentially coincides with that
for freely moving, uncorrelated particles �34� and, for L� l it
gives 1/ �T
N� for all �, see Fig. 4.

V. RAMSEY INTERFEROMETRY IN THE TIME DOMAIN
FOR GUIDED ATOMS

An alternative to the previous setup is the separation of
the fields in time rather than space but, at variance with the
usual procedure, keeping the gas confined transversally at all
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FIG. 3. �Color online� Central fringe for Ramsey interferometry
in the spatial domain. The agreement is shown for the n=0,9
single-particle wave packets and the semiclassical result, for 133Cs
atoms, with �k0 /m=1 cm/s, l=1 cm, L=10 cm, �0=20 �m
���0.6 Hz�, and t=15 s.
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times as required for the 1D regime of the TG gas, Fig. 5.
Because of the tight confinement the transverse vibrational
excitation is negligible so that the Ramsey pattern is given
by the standard expression irrespective of the value of n. The
whole TG gas therefore produces the usual Ramsey pattern
�27� as we shall see in more detail.

A two level atom in a cigar shape trap with characteristic
frequencies �x, �y, and �z ��x��y ��z� interacting with a
�classical� laser field directed in the perpendicular y direction
is described �in a laser adapted interaction picture� by the
Hamiltonian

H = �
i=x,y,z

��i�ai
†ai +

1

2
� − ���e��e�

+
��

2
�ei�y�ay+ay

†��+ + H.c.� , �30�

where �+= �e��g�. The Rabi frequency � is here a constant,
independent of x, and ai

† �ai� are the creation �annihilation�
operators of the vibrational modes in the direction of the
subscript. The parameter �y =kLy0 is known as the Lamb-
Dicke �LD� parameter, with y0=
� /2m�y being the exten-
sion of the atomic ground state in y direction. The vibrational
levels in the longitudinal x direction are not coupled by the
field if the x dependence of the field is negligible in the scale
�N of the cloud. Also, motion in the z direction remains un-
coupled.

A. Lamb-Dicke regime

A particular interesting limit when dealing with trapped
atoms interacting with laser fields is the so-called Lamb-
Dicke regime. In this regime, the extension of the atom’s
wave function in the direction of the field is much smaller
than the laser wavelength, i.e., �y �1. If the LD regime is
assumed, it is natural to approximate the exponentials in the

coupling term of the Hamiltonian �30� as e±i�y�ay+ay
†��1, giv-

ing an approximate Hamiltonian

HLD = �
i=x,y,z

��i�ai
†ai +

1

2
� − ���e��e� +

��

2
��+ + �−� ,

�31�

which does not couple the well-separated vibrational levels
in the transversal y direction �the recoil frequency is much
smaller than the trapping frequency�. Within this approxima-
tion the number operators ni=ai

†ai are some constant of mo-
tion for i=x ,y ,z and thus the dynamics of the system is
independent of the vibrational modes, reproducing the usual
Ramsey fringe pattern �27� when time separated pulses are
applied.

B. TG regime

A tight transversal confinement is needed in order to reach
the TG regime, which is achieved when the dimensionless
parameter �=mg /�2n�1. Here n�N /�N is the linear den-
sity of the gas and g the 1D interaction strength, which is
given by g=2�2a /my0

2, with a being the s-wave scattering
length �35�. We may then write the criterion for being in the
TG regime as 2a /ny0

2�1 or

� =
2a�N

Ny0
2 � 1. �32�

If 133Cs atoms in a trap with frequency �y �2	
�1 MHz are considered, the transversal confinement turns
out to be y0�6 nm. For �0�20 �m, a scattering length of
a�100a0, a0 being the Bohr radius, and N=10, ��2�103,
well in the TG regime.

If the hyperfine transition of the 133Cs atom at 9.192 GHz
is driven, a LD parameter of �y =kLy0�10−6 is obtained for
the transversal confinement of y0�6 nm previously esti-
mated, which is well inside the LD regime. The TG condi-
tion then imposes the LD condition for microwave transi-
tions. For optical transitions, LD parameters of 0.05–0.1 are
obtained, that can also be considered to be into the LD re-
gime.

VI. SUMMARY AND DISCUSSION

In this paper we have explored the behavior of atomic
clocks or frequency standards based on ultracold atoms in
the strong interaction, Tonks-Girardeau, 1D regime. This is
motivated by the benefits of increased flight times and nar-
row velocity widths of ultracold atoms, and the similarities
between TG interacting bosons and freely moving fermions,
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FIG. 4. �Color online� Quantum projection noise ratio, Eq. �29�,
for the Ramsey interferometry in the spatial domain. The two-level
Tonks-Girardeau gas ratio is essentially that of a Hartree product
�uncorrelated atoms�. The same parameters as in Fig. 3 are used,
with �a� L=10 cm, �b� L=100 cm.
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FIG. 5. Schematic setup for Ramsey interferometry in time do-
main. The TG gas is confined in a cigar-shaped trap and illuminated
by a laser in y direction.
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which suggest that collisional shifts and instabilities found
for condensates may be avoided.

A solvable model of N bosons in 1D with contact inter-
actions that interchange the momentum and internal state of
the two-level atoms subjected to two oscillating fields has
been worked out. For parameters in the ultracold regime, the
system behaves similarly for spatial or temporal separation
of the fields, and according to the semiclassical Ramsey pat-
tern for independent, freely moving particles. Moreover, the
quantum projection noise remains close to that of an en-
semble of independent atoms.

For the two-level Tonks-Girardeau gas, the interactions do
not worsen the quality of the Ramsey pattern but have the
additional advantage of dramatically reducing the three-body
correlation function �36,37� and therefore enhancing the sta-
bility of the gas with respect to the ideal case. We thus expect
strongly interacting gases to play a remarkable role in inter-
ferometry with ultracold atoms in waveguides.

Our results are based on an idealized model and much
remains to be done before a definite assessment can be made
of the usefulness of the strongly interacting regime of ultra-
cold guided atoms in time-frequency metrology. We have
argued that strong confinement and a p-wave Feschbach
resonance may provide the necessary conditions to imple-

ment the contact interactions of the model, but strong con-
finement may induce level perturbations difficult to compen-
sate. In any case we hope that the present model will motive
further analysis of atom interferometry with internal states in
the strongly interacting regime. At the modeling level, one of
the possibilities is to study other phase relations between
singlet and triplet reflection amplitudes �which do not give
the simple structure for the wave function found here�; other
possibilities are more complex mappings or mappings from
free bosons to interacting fermions �38�; and there is of
course the need to jump from the modeling level to an actual
realistic atomic level scenario and investigate the parameters
and species leading to a closer realization of contact
interactions.
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